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ABSTRACT

We present here a new stochastic modelling in the constitution of fluid flow reduced-order models. This framework
introduces a spatially inhomogeneous random field to represent the unresolved small-scale velocity component. Such
a decomposition of the velocity in terms of a smooth large-scale velocity component and a rough, highly oscillating
component gives rise, without any supplementary assumption, to a large-scale flow dynamics that includes a modified
advection term together with an inhomogeneous di↵usion term. Both of those terms, related respectively to turbophoresis

and mixing e↵ects, depend on the variance of the unresolved small-scale velocity component. They bring an explicit
subgrid term to the reduced system which enable us to take into account the action of the truncated modes. Besides,
a decomposition of the variance tensor in terms of di↵usion modes provides a meaningful statistical representation of
the stationary or nonstationary structuration of the small-scale velocity and of its action on the resolved modes. This
supplies a useful tool for turbulent fluid flow data analysis. We apply this methodology to circular cylinder wake flow
at Reynolds numbers Re = 100 and Re = 3900, respectively. The finite dimensional models of the wake flows reveal the
energy and the anisotropy distributions of the small-scale di↵usion modes. These distributions identify critical regions
where corrective advection e↵ects as well as structured energy dissipation e↵ects take place. In providing rigorously
derived subgrid terms, the proposed approach yields accurate and robust temporal reconstruction of the low-dimensional
models.

1 Introduction

Surrogate empirical models of flow dynamics with a reduced set of degrees of freedom are widely used in fluid
mechanics for control applications or physical analysis (Noack et al., 2010). Within such modelling a few numbers of
modes extracted from experimental or numerical measurements are used to represent the main dynamical behaviour of a
flow. The modes in themselves may help in unveiling recurrent dynamical patterns. Spectral approaches are quite natural
for this purpose. Fourier representation has been used for a long time to characterize hydrodynamic instabilities. Proper
Orthogonal Decomposition (POD) and the spectral representation of the velocity auto-correlation matrix are used to
extract descriptive empirical spatial or temporal basis of the flow (Aubry et al., 1988; Holmes et al., 1996; Sirovich,
1987). More recently the Dynamic Modes Decomposition (DMD) relying on the eigenvectors of the Koopman operator
(Koopman, 1931) and Takens’s delay embedding theorem (Takens, 1981) have been proposed to represent, from the
evolution of observations, the principal modes of the dynamical system’s attractor (Mezic, 2005; Rowley et al., 2009;
Schmid, 2010). Combination of both representations can also be used to provide a suitable energy spectrum representation
(Cammilleri et al., 2013). In all those modal representations the construction of the reduced-order dynamics requires a
truncation operation in which the most “influential” modes – with respect to a given criterion – are kept to describe the
flow. In general, the action of the discarded modes must be modeled to get accurate and stable dynamical systems. The
e↵ect of those neglected processes encompasses dissipation e↵ects but is also responsible for some energy redistribution
and backscattering (Piomelli et al., 1991).

In most of the flow low-order dynamics, the unresolved small-scale processes are represented on the basis of an eddy
viscosity assumption (Boussinesq, 1877). This takes the form of a damping term in the reduced-order dynamical system.
In Galerkin POD reduced models, this extra dissipation, which is added to the linear molecular di↵usion, is modeled by
a constant coe�cient (Aubry et al., 1988) or through a modal constant vector (Cazemier et al., 1998; Rempfer & Fasel,
1994). Recently, nonlinear functions have been proposed for a blu↵ body wake flow (Östh et al., 2014). Although those
models have demonstrated their e�ciency in numerous situations, the estimation of the associated parameters and/or
the choice of the nonlinear dependency between the eddy-viscosity coe�cients and the modal coe�cients constitute a
sensible issue. Furthermore, from a physical interpretation point of view, the action of the small-scale velocity component
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is interpreted only with regard to a homogeneous stationary dissipation e↵ect. Neither preferential local direction of
di↵usion related to the flow physics, nor energy redistribution action by the small scales are considered.

Robust techniques based on optimal control strategies have also been proposed for building reduced dynamical models
from noisy data (D’Adamo et al., 2007; Artana et al., 2012; Cordier et al., 2013; Semaan et al., 2016) and incomplete
knowledge of the actual flow dynamics (i.e. unknown initial condition, partially known forcing terms, etc.). Calibration
techniques built from very close paradigms have also been proposed to tune appropriately dynamics parameters (Couplet
et al., 2005; Bu↵oni et al., 2006; Perret et al., 2006). Those techniques accurately estimate low-order dynamical systems
in the temporal windows on which the data are available. These methods unfortunately present some limitations for
predicting new states of the system. Furthermore, the physical interpretation of the unresolved velocity component
remains di�cult since its contribution is distributed in an unknown manner over all the coe�cients of the dynamical
system and on the error function when weak dynamical constraint is considered (Artana et al., 2012).

In this work, to take into account the unresolved modes in the surrogate dynamic model, we will rely on a recently
proposed stochastic framework (Mémin, 2014; Resseguier et al., 2017a). In this context, an advection of the large-scale
component due to the action of the unresolved random component emerges naturally, together with an inhomogeneous
nonstationary di↵usion. This will lead us to consider corrective advection and di↵usion terms driven by the turbulence
inhomogeneity whose local e↵ects can now be physically interpreted.

After presenting the stochastic model in §2, we describe the derivation of the associated POD reduced-order model in
§3. Furthermore, we propose a method to estimate the additional components of the dimensional reduced system from the
residual velocity. Then, the data benchmarks are detailed in §4. From the estimated additional components, we analyse
the influence of the residual velocity on the large-scale flow and reconstruct the temporal modes of the reduced-order
models in §5.

2 Dynamics stochastic modelling

The proposed stochastic principle relies on a Lagrangian random description of the flow velocity :

dXt

dt
= w(Xt, t) + ⌘̇(Xt, t). (2.0.1)

The first right-hand term, w, stands for the large-scale velocity component. It is a smooth component along time. For
turbulent flows, it is associated with a much larger time-scale than the unresolved small-scale velocity component. This
latter, ⌘̇ = d⌘/dt, is associated with fast modes that are rapidly decorrelating at the resolved time scale. Based on this
observation, we will assume that such a component can be ideally represented through a spatially smooth incompressible
(divergence-free) Gaussian random field uncorrelated in time. This (possibly inhomogeneous) random field is formally
built from an infinite-dimensional Brownian motion. It is associated with a covariance tensor denoted :

Qij(x,y, t, t
0) = E(d⌘i(x, t)d⌘j(y, t0)) = cij(x,y, t)�(t� t0)dt. (2.0.2)

In the following, the diagonal of the covariance tensor, which plays a central role in our setting, will be denoted as :

a(x)
4
= c(x,x, t). This tensor, that may depend on time, will be referred to as the small-scale variance tensor. It is a

symmetric positive definite matrix at all spatial points, x (excluding degenerate cases) with dimension in m2.s�1. It thus
corresponds to an eddy viscosity term.

This stochastic formulation is related in spirit to the Lagrangian stochastic models based on Langevin equations that
have been intensively used for turbulent dispersion (Sawford., 1986) or in probability density function (PDF) modelling
of turbulent flows (Haworth & Pope, 1986; Pope, 1994, 2000). However, our interest here focuses on the associated
large-scale Eulerian representations of the flow dynamics. This Eulerian description of the resolved velocity component
is obtained through a formulation of the Reynolds transport theorem adapted to such a stochastic flow.

2.1 Stochastic conservation equations

Considering the flow decomposition (2.0.1), the rate of change of a scalar quantity (in the absence of random forcing)
within a material volume is given by the following expression (Mémin, 2014; Resseguier et al., 2017a) :

d
dt

Z

V (t)

q dx =

Z

V (t)

✓
@q
@t

+r · (qw⇤)�r ·
✓
1
2
arq

◆
+ ⌘̇ ·rq

◆
dx, (2.1.1)

where the e↵ective advection velocity is given as :

w⇤ 4
= w � 1

2

�
r · a

�T
. (2.1.2)

Equation (2.1.1) provides a stochastic representation of the so-called Reynolds transport theorem. It is important to
outline that at a given grid point, q is a random value which depends among other things on the Brownian component of
the particles flowing through that point. The second term corresponds to the large-scale advection by an e↵ective drift,
w⇤, that includes a contribution related to the divergence of the small-scale velocity variance tensor (2.1.2). The third
term is a di↵usion expressing the mixing e↵ect exerted by the small-scale velocity component. The final term corresponds
to the scalar advection by the small-scale velocity field. From this expression a conservation of an extensive property,R
V (t)

q, such as mass or internal energy (neglecting diabatic and compressive e↵ects) reads immediately as the following

intensive property evolution equation

@q
@t

+r · (qw⇤) + ⌘̇ ·rq = r ·
✓
1
2
arq

◆
. (2.1.3)
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As the right-hand term is a smooth temporal component, we observe immediately that the Brownian terms associated, on
the one hand, to the scalar temporal variation and, on the other hand, to the small-scale advection necessarily compensate
each other. A fluid with a constant density ⇢, naturally requires a divergence-free constraint on the e↵ective advection :

0 = r · ⌘̇, (2.1.4)

0 = r ·w⇤ = r ·
✓
w � 1

2
(r · a)

◆
. (2.1.5)

This is the case we are dealing with in this study. The two constraints (2.1.4–2.1.5) correspond to the incompressibility
conditions associated with the stochastic representation. For isochoric flows with variable density as in geophysical fluid
dynamics, interested readers can refer to Resseguier et al. (2017a,b,c).

2.2 Navier-Stokes equations associated with a stochastic representation of the

small-scales

As in Newton second law, a dynamical balance between the temporal di↵erentiation of the stochastic momentum,
⇢dXt, and the action of the forces is assumed. Applying the stochastic representation of the Reynolds transport theorem
(2.1.1) leads to the following Navier-Stokes equations (Mémin, 2014) :

@w
@t

+ (w⇤ ·r)w = �1
⇢
rp+

dX

i,j=1

@
@xi

✓
1
2
aij

@w
@xj

◆
+ ⌫4w. (2.2.1)

This equation corresponds to the large-scale momentum equation. This expresssion di↵ers from the classical Reynolds
decomposition formulation mainly by the introduction of both a large-scale dissipation term and a correction term in the
large-scale advection. The dissipative term plays a role that is similar to the eddy viscosity models which are introduced
in classical large-scale representations (Bardina et al., 1980; Lilly, 1992; Smagorinsky, 1963) or to spectral vanishing
viscosity (Karamanos & Karniadakis, 2000; Pasquetti, 2006; Tadmor, 1989). It is also akin to numerical regularization
models considered in implicit models (Aspden et al., 2008; Boris et al., 1992; Lamballais et al., 2011). The small-scale
stochastic representation principle is nevertheless more general as it does not rely on a priori fixed shapes of the subgrid
tensor (e.g. Boussinesq assumption) nor does it presuppose a given numerical scheme (e.g. implicit models). The subgrid
term takes a general di↵usion form whose matrix coe�cients are given by the small-scale variance tensor. The di↵usion
principal directions are thus aligned with this tensor principal directions.

The advection correction term is much less intuitive. It is related here to an advection bias due to the inhomogeneity
of the small-scale variance tensor. This corresponds to the eddy-induced velocity introduced for tracer mean transport
in oceanic or atmospheric circulation models (Andrews & McIntyre, 1976; Gent et al., 1995) and more generally to the
turbophoresis phenomenon associated with small-scale inhomogeneity, which drives inertial particles toward the regions
of lower di↵usivity (Brooke et al., 1992; Caporaloni et al., 1975; Reeks, 1983; Sehmel, 1970). Qualitatively, this drift
correction can be understood as follows. Fluid parcels with higher turbulent kinetic energy (TKE) move faster. It ensues
that at large scales, areas associated with maximum TKE spread whereas areas associated with minimum TKE shrink.
Hence, a large-scale drift oriented toward these maxima/minimum emerges. This orientation suggests an anticorrelation
with the TKE gradient. Since the turbulent velocity variations are multidimensional, they are better described by the
variance tensor. The drift correction is consequently proportional to the opposite of the variance tensor divergence. For
homogeneous turbulence, the small-scale variance tensor is constant and this corrective advection does not come into
play. It can be noted that this advection correction is of the same form as that proposed in Caporaloni et al. (1975);
Macinnes & Bracco (1992); Reeks (1983).

The small-scale random field can be freely defined and be in a shape that goes from isotropic stationary models
up to inhomogeneous non-stationary random fields. However, in the inhomogeneous case (such as the Smagorinsky
model) the advection correction term comes into play. A stochastic representation of the unresolved scales thus di↵ers
significantly from classical large-scale modelling. It relies on less strict assumptions, which enable us to cope naturally
with inhomogeneous anisotropic turbulence.

This stochastic representation relies on a scale gap assumption, which is coherent with deterministic justifications of
the eddy viscosity (Kraichnan, 1987). The stochastic transport expression (2.1.1) and the momentum equation (2.2.1)
provide the foundations of a physically relevant large-scale fluid dynamics formulation. It opens a new paradigm for large-
scale modelling adapted to turbulence inhomogeneity in involving a general subgrid di↵usion together with a small-scale
drift correction. In the next section, we will rely on this model for the construction of reduced-order dynamical systems.

3 Reduced-order models

Dimensional reduction techniques enable the constitution of simplified lower dimensional representations of partial
di↵erential equations (PDE). They are usually specified from a Galerkin projection onto data-based dedicated basis.
The proper orthogonal decomposition, also called Empirical Orthogonal Functions (EOF) in geophysics, is one of those
methods for turbulent flows. In §3.1 the POD model reduction is briefly presented. Then, in §3.2 we introduce the
derivation of the reduced-order model from the stochastic representation principle described in §2. In §3.3, di↵erent
characteristic time scales are introduced for the di↵erent modes, leading to the concept of modal characteristic time
steps. Finally, in §3.4 a precise specification of the small-scale variance tensor is proposed with two di↵erent estimation
methods.

3



3.1 POD model reduction

POD reduced-order models rely on the linear decomposition of the velocity w on a reduced number of orthogonal
spatial modes (Holmes et al. (1996)) :

w(x, t) ⇡ bi(t)�i(x), (3.1.1)

where we used Einstein summation convention. Unless stated otherwise, this convention is adopted in this paper.
The number of modes, n, is assumed to be much lower than the state space dimension. The functions (�i(x))16i6N

encoding the spatial flow variations are referred to as topos and are computed from a Karunen-Loeve decomposition
on a series of N + 1 available velocity snapshots. The topos are sorted by decreasing order of the snapshots’ empirical
covariance eigenvalues : �1 > ... > �N . The (bi(t))16i6N denote the temporal modes ; they are called chronos. The chronos
are the eigenvectors of the spatially averaged temporal correlation matrix, whereas the topos constitute the eigenvectors
of the temporally averaged spatial correlation matrix. They are both computed from the snapshots’ covariance. Function

�0 corresponds to the time average velocity and b0
4
= �0

4
= 1. We also denote by T the time between the first and the

last snapshot. The Navier-Stokes equations can be written in the general following form :

@w
@t

= I +L(w) +C(w,w), (3.1.2)

where L and C stand respectively for linear and bilinear di↵erential operators. The first term, I, collates the pressure
and the external forces such as gravity. The second one, L, includes the molecular friction term and possibly the Coriolis
force. The last one, C, encodes the nonlinear advection term. Projecting this PDE on each topos (with the L2 scalar
product noted h·, ·i) : ⌦

@tw,�i

↵
=
⌦
I,�i

↵
+
⌦
L(w),�i

↵
+
⌦
C(w,w),�i

↵
, (3.1.3)

leads to a system of ordinary di↵erential equations for the chronos :

dbi
dt

=

✓Z

⌦

�i · I
◆

| {z }
4
=ii

+

✓Z

⌦

�i ·L(�p)

◆

| {z }
4
=lpi

bp +

✓Z

⌦

�i ·C(�p,�q)

◆

| {z }
4
=cpqi

bpbq. (3.1.4)

Due to nonlinearity, the temporal modes strongly interact with one another. In particular, even though the original
model (with n = N) is computationally stable for moderate Reynolds number, a strongly reduced model (n ⌧ N)
appears unstable in general. A frequency shift is also often observed. Those artefacts are extensively documented in the
literature (Artana et al., 2012; Aubry et al., 1988; Rempfer & Fasel, 1994; Östh et al., 2014; Protas et al., 2015). The
introduction of a damping eddy viscosity term to mimic the truncated modes’ dissipation leads to a modified linear term
in (3.1.4). Unfortunately, as this term is built on empirical grounds its precise form is di�cult to justify. Furthermore, its
parametrization has to be tuned for each simulation to achieve good results. When large wake domains are considered the
influence of the pressure term (and of the boundaries) is in general negligible (Deane et al., 1991; Ma et al., 2002; Noack
et al., 2005). We will also rely on this assumption, although several authors have shown that neglecting the pressure
term was a source of uncertainty regarding an accurate representation of the flow dynamics (Kalb & Deane, 2007; Noack
et al., 2005). To take into account the e↵ect of the outflow boundary, corrective terms are introduced by some authors
through modifications of the linear (Galetti et al., 2007) or quadratic terms (Noack et al., 2005).

3.2 Reduced-order modelling associated with the stochastic representation

To overcome the di�culties previously evoked, we propose to derive the reduced-order model from the stochastic
representation principle described previously. To account for the e↵ect due to the modal truncation, we will assume that
the whole field u = w+⌘̇ can be decomposed in such a way that the large-scale component lives on the subspace endowed
with the reduced POD basis w =

Pn
i=0 bi�i while realisations of the small-scale component belong to the orthogonal

complement subspace ⌘̇ =
PN

i=n+1 bi�i. Since r ·u = 0, for all i, r ·�i = 0 and, then, r ·w = 0. The dynamics of the
large-scale component, w, is given by the incompressible Navier-Stokes equations (2.2.1). Projecting this equation onto
the topos �i now leads for i > 0 to :

dbi
dt

= ii +
⇣
lpi + f̆p

i (a)
⌘
bp + cpqi bpbq , (3.2.1)

with f̆p
i (a)

4
=

Z

⌦

�(k)
i

 
�1
2
(r · a)r�p

(k)
| {z }

Advection

+r ·
✓
1
2
ar�p

(k)

◆

| {z }
Di↵usion

!
, (3.2.2)

where �(k)
i and �p

(k) stand for the k-th coordinate of the i-th and of the p-th topos respectively.

The additional term f̆(a) corresponds to the projection on the topos of the e↵ective advection and the di↵usion
brought by the stochastic representation of the small scales. We note that this function is linear and is the only function
that depends on the variance tensor a. This system now includes a natural small-scales dissipation mechanism, through
the di↵usion term. But it also corrects the frequency shift through the additional advective term ensuing from the
small-scale inhomogeneity.

To fully define this system, we need to specify the small-scale variance tensor a. This issue is developed in subsection
3.4. But before that, we will further elaborate on the choice of the characteristic times related to the modal truncation.
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3.3 Time scale characterisation

Very e�cient flow simulations are obtained by reducing as much as possible the number of modes of the associated
surrogate model. An even higher e�ciency can be obtained by increasing the evolution time step. Moreover, a larger
sampling time step of the snapshots also reduces the computational cost of the reduced system computation. This time
step can be naturally chosen as a single constant for the whole system. However, as we shall see, di↵erent characteristic
time scales can be fixed for the di↵erent modes, leading to the concept of modal characteristic time steps.

3.3.1 Single time step

As long as the resolved modes, representing w, are smooth with respect to time, the assumption pertaining to our
reduced model construction is valid. The time-step must thus be fixed as the largest value that guarantees that all the
chronos remain smooth. The characteristic time scale associated with the fastest resolved mode (which is often the least
energetic mode) is a good target for that purpose. This time scale is associated with the highest frequency of the chronos

Fourier modes. Quantitatively, the Shannon-Nyquist theorem provides us with a natural upper bound to fix its value.
This theorem states that a function can be sampled, without loss of information, if the sampling frequency is at least
twice as large as the largest frequency of the original function. Otherwise, the sampled function undergoes an aliasing
artifact characterized by a folding of the Fourier spectrum and a loss of regularity. We will thus assume that the required
regularity condition is fulfilled if the modes are not a↵ected by aliasing phenomena. A su�cient condition thus reads :

1
�t

> 2max
i6n

(fmax (bi)) . (3.3.1)

where fmax (bi) is the maximum frequency of the i-th mode. Aliasing takes place in the unresolved temporal modes,
which are associated with smaller time scales , and live on the chronos complement space. However, the stochastic
representation is precisely built from a decorrelation assumption of the small-scale unresolved part of the velocity. This
characteristic time scale of the resolved modes may be thus also seen as a sampling time at which the unresolved modes
appear uncorrelated. So, a strong subsampling of those components strengthens further the decorrelation property of the
unresolved modes.

3.3.2 Modal characteristic times

The previous model can be enriched by considering that the resolved chronos are associated with di↵erent time scales.
So, we introduce a new criterion that reads for each chronos, bi :

1
�ti

> 2fmax (bi) . (3.3.2)

A modal variance tensor field for each chronos immediately follows :

a(i)(x)
4
= �tiE

�
⌘̇⌘̇T

 
(x) =

�ti
�t

ã(x) with ã(x) = �t E
�
⌘̇⌘̇T

 
(x). (3.3.3)

The modal variance tensor ai corresponds to the small-scale velocity variance over a period given by the time-scale of
the Chronos bi (i.e. it corresponds to an eddy viscosity associated with the neglected modes expressed with respect to
the characteristic time associated with bi). The chronos evolution equation (3.2.1) becomes :

dbi
dt

= ii +

✓
lpi +

�ti
�t

f̆p
i (ã)

◆
bp + cpqi bpbq (no sum on i). (3.3.4)

In practice, the common characteristic time �t is set up by formula (3.3.1). Even though it does not depend on the
index i of the chronos, this time is a function of the number n of resolved modes. The estimation procedures involved in
the construction of the reduced system – detailed in the following – use this characteristic time as a sampling time step
for the velocity snapshots. Let us note that to reconstruct the chronos from that reduced system, the simulation time
step is in general fixed to smaller values than this characteristic time ; it is indeed ruled by a CFL condition in order to
ensure the convergence of the temporal discretization scheme.

3.4 Estimation of the small-scale variance tensor

The full definitions of the reduced-order models (3.2.1) and (3.3.4) require a precise specification of the small-scale
variance tensor. We compare here two di↵erent estimation methods for this tensor. A first method will rely on a statio-
narity assumption while a second technique will allow us to define a non-stationary tensor. To avoid misunderstanding,
note that the time steps �t and �ti – previously described – are a priori not related to the possible time variations of
the variance tensor. Indeed, the characteristic time steps �t and �ti are by definition associated with the fastest time
variations of the resolved chronos. In contrast, the possible time variations of the variance tensor is defined as the time
evolution of the variance of the unresolved modes.

3.4.1 Stationary small-scale variance tensor

This case corresponds to the model developed in Mémin (2014). The small-scale velocity variance, a/�t can be
computed through a temporal averaging of the residual velocity second moment (v � w)(v � w)T (ti) at all spatial
locations. This simple scheme thus provides a representation of a spatially varying stationary variance tensor. The
computational cost of this estimator linearly depends on the number of snapshots and is thus inversely proportional to
the sampling characteristic time step �t of the unresolved modes.
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3.4.2 Small-scale variance tensor in the chronos subspace

A stationary model has obvious limitations in terms of turbulence intermittency modelling. A time dependent variance
tensor is nevertheless more complex to estimate as in this case only a single realization of the small-scale velocity
trajectory, (v(x, t) � w(x, t)), is available. However considering a temporal basis it is possible to estimate, at a fixed
point, the matrix coe�cients, zi(x), of the tensor, a(x, t) (Genon-Catalot et al., 1992). We term those coe�cients the
di↵usion modes, as they correspond to a modal decomposition of the principal di↵usion directions. With the chronos

reduced basis we get :
ã(x, t) = bj(t)zj(x). (3.4.1)

Note that even though the residual velocity, (v �w), lives in the subspace which is orthogonal to the chronos reduced
basis, its one-point one-time covariance – and hence the variance tensor – do not. So, it seems natural to introduce the
decomposition (3.4.1). Using the orthogonality of the Chronos,

R T

0
bkbldt = �kl�kT (no sum on k), leads without sum on

j to :

zj(x) =

Z T

0

bj(t)
T�j

ã(x, t)dt ⇡ �t
N + 1

NX

k=0

bj(tk)
�j

(v � w)(x, tk)((v � w)(x, tk))
T , (3.4.2)

where N = T
�t . Again, the computational costs of these estimators are inversely proportional to the sampling time step

�t. The formulas (3.4.1) and (3.4.2) – rigorously supported by stochastic calculus theory (Genon-Catalot et al., 1992) –
can be heuristically understood as a time smoothing of the square residua, (v�w)(v�w)T . Indeed, by the projections
of this square residua onto the large-scale chronos we only keep the large-scale patterns of the square residua. It can
be noticed that keeping only the zero-di↵usion mode and cancelling the others : zi = 0, 8i > 1, brings us back to the
stationary variance tensor model. The non-zero modes introduce a non-stationary variance. Yet, it is important to outline
that the reduced-order model (3.2.1) remains a quadratic autonomous system. As a matter of fact from (3.4.1), we get
the following system :

dbi
dt

= ii + lpi bp + (cpqi + fpq
i ) bpbq, where fpq

i
4
=

�ti
�t

f̆q
i (zp) (no sum on i). (3.4.3)

Finally, we can combine the parametrization based on single or modal characteristic times with the stationary or with
the non-stationary variance tensor model. As such, we obtain four distinct methods. Even with their large adaptabilities,
each of these methods only requires simple estimation algorithms and yields an autonomous quadratic reduced order
model.

4 Flow configuration and numerical simulations

To evaluate the pertinence of the modelling developed in the previous section for the specification of a low order
dynamical system and to analyse the contribution of the small-scale component, we consider two-dimensional and three-
dimensional incompressible flows past a circular cylinder at Reynolds number Re = 100 and Re = 3900 respectively. For
the Reynolds Re = 100, we performed direct numerical simulations (DNS) using Incompact3d, a high-order flow solver,
based on the discretization of the incompressible Navier–Stokes equations with finite-di↵erence sixth-order schemes on a
cartesian mesh (Laizet & Lamballais, 2009). A second-order Adams-Bashforth scheme was used for the time advancement.
The incompressibility condition is treated with a fractional step method based on the resolution of a Poisson equation in
spectral space, allowing here for the velocity field the use of periodic boundary conditions in the two lateral directions y
and z. A constant flow is imposed at the inlet of the computational domain and a simple convection equation is solved at
the exit. Using the concept of the modified wavenumber, the divergence-free condition is ensured up to machine accuracy.
The pressure field is staggered from the velocity field by half a mesh to avoid spurious oscillations. The modelling of
circular cylinder of diameter D inside the computational domain was performed here with a simple Immersed Boundary
Method (IBM). It is based on a direct forcing to ensure zero velocities boundary condition at the wall and inside the
solid body. We performed the DNS at Reynolds number Re = 100 on a domain extending over 20D ⇥ 20D ⇥ 0.5D with
241⇥145⇥8 points in the streamwise, perpendicular and spanwise directions, respectively. This reduced spanwise length
corresponds to the minimum domain size usable with Incompact3d and led to a three dimensional wake flow simulation
with a very short periodicity in the spanwise direction. We highlight the fact that the third dimension is here only for
a practical numerical reason. Incompact3d cannot be used without this spanwise direction. However, no 3-dimensional
structure are present here. This low Reynolds choice was made to reduce the computational cost and to simulate a longer
time series, necessary for the POD analysis. N = 10, 000 snapshots are saved to observe 100 vortex shedding cycles.

In addition, a large-eddy numerical simulation (LES) was performed with Incompact3d. This code solved incom-
pressible Navier–Stokes equations on a grid stretched along the y direction in nonstaggered configuration. It uses the
customized IBM technique of Gautier et al. (2014) to avoid discontinuities on the velocity field, leading to the creation
of spurious oscillations when high-order centred schemes are used. Except the grid stretching and the resolution, the
simulation configuration is similar to that described in Parnaudeau et al. (2008). The subgrid-scale model proposed by
Smagorinsky (1963) was combined with a fixed filter length which is estimated as the cubic root of the mesh volume.
The subgrid parametrization is a classic Smagorinsky subgrid model with the constant Cs = 0.1 as suggested by Ouvrard
et al. (2010). To provide long time integration data, this LES was carried out with the low spatial resolution configuration
used by Parnaudeau et al. (2008). The LES was computed on a domain size of 20D ⇥ 20D ⇥ ⇡D with 481 ⇥ 481 ⇥ 48
points in the streamwise, perpendicular and spanwise directions, respectively. We extracted from this simulation 1, 460
equidistant snapshots over 73 vortex shedding cycles.
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Case Re (Lx ⇥ Ly ⇥ Lz)/D nx ⇥ ny ⇥ nz Stretching Snapshots Sheddings

DNS 100 20⇥ 12⇥ 0.5 241⇥ 145⇥ 8 None 10,000 100
LES 3900 20⇥ 20⇥ ⇡ 481⇥ 481⇥ 48 Along y 1,460 73

Table 1 – Summary of simulations and of extracted data.
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Figure 1 – Spanwise vorticity component in a circular cylinder wake flow at Reynolds number, from top to
bottom, Re = 100 (DNS) and Re = 3900 (LES) respectively.

In the following (with the exception of §5.1), non-dimensional quantities are considered, and calculated using the
cylinder diameter D and the inflow velocity U0. Dimensionless quantities will be identified by lower-case symbols, e.g.
(x, y, z) for the coordinate system and t for the time. In this frame reference, the inflow velocity vector at x = 0 is
(u, v, w) = (1, 0, 0) and the cylinder is located at (x, y, z) = (5, 0, z). Details of the three cases are provided in table 1.
Figure 1 shows the spanwise vorticity component in the plane z = 0 for the DNS at Reynolds number Re = 100 and the
LES at Reynolds number Re = 3900 respectively. At Reynolds number Re = 100 and due to the quasi two-dimensional
configuration of the simulation, there are only few small-scale features. Most of the energy is gathered in the large-scale
vortical structures. In this regime two topos modes are su�cient to reliably describe the flow. At Reynolds number
Re = 3900, a sustained turbulence can be observed in the far wake of the cylinder and in the recirculation zone just
behind the cylinder. The boundary layer on the body is laminar and transition to turbulence takes place in the shear
layers. The near wake flow is mostly driven by those two shear layers (Ma et al., 2000). Their oscillations trigger the Von
Karman vortex shedding and determine the size of the recirculation area. For this wake flow regime a higher number of
modes must be retained. Figure 2 provides a test of the LES accuracy. There, we plotted the mean stream component
of the velocity just after the cylinder in order to measure the length of the recirculation zone. To define it we here rely
on the so-called bubble length. It is the distance between the base of the cylinder and the point with null longitudinal
mean velocity (u = 0) on the centreline of the flow (y=0). Figure 2 shows a bubble length of about 1.7. This value is
larger than experimental measurements (Parnaudeau et al., 2008) as expected with the classical Smagorinsky subgrid
model (Chandramouli et al., 2016).

5 Di↵usion modes results

We now apply the novel POD modelling, based on a stochastic small-scale representation as presented in §3, to the
cylinder flow configuration which is described in §4. The reduced-order dynamics of the cylinder wake flow is known to
be sensitive to the unresolved small-scale velocity component. In §5.1, the small-scale energy and anisotropy are linked
to small-scale di↵usion modes. Assessment of the stochastic modelling is then performed in the following at the Reynolds
number Re = 100 and Re = 3900, respectively. In §5.2, contributions of small-scale di↵usion modes to large-scale flows

7



5.5 6 7.2083 8 9 10

-0.5

0

0.5

1

Figure 2 – Mean stream velocity component in a circular cylinder wake flow at Reynolds number Re = 3900 :
(black crosses), PIV measurements (Parnaudeau et al., 2008) ; (blue line), LES used in this paper.

are described and interpreted to determine which physical mechanisms of the wake flow are concerned. In §5.3, we
assess the performance of the subgrid term that was introduced by the stochastic representation of the small-scales by
comparing the chronos trajectories to the reference.

5.1 Estimation and decomposition of the turbulent velocity components

It can be noticed in the decomposition (3.4.1), that the di↵usion modes zi(x) are d ⇥ d symmetric matrices (with
zi = 0 for i > 0 in the stationary case) at all spatial points. They can be diagonalized in a local orthonormal basis. Let
us note however this decomposition does not ensure that a(x, t) =

Pn
k=0 bk(t)zk(x) is positive definite since bi(t) takes

positive and negative values. In practice, though the stationary coe�cient dominates largely the other coe�cients (which
gives a positive definite estimation), we would have to project the variance tensor on the manifold of positive definite
matrices. In the following section, to analyse the small-scale energy and anisotropy we visualize the absolute values of
the eigenvalues associated with the matrix modes, zi. Due to chronos normalization, the variance tensor di↵usion modes
must be also normalized by the chronos’ square root eigenvalues

p
�i, as :

ã(x, t) =
nX

k=0

bk(t)p
�k

⇣p
�kzk(x)

⌘
and

1
T

Z T

0

✓
bkp
�k

◆2

= 1 (no sum on k). (5.1.1)

We note this normalization puts an even stronger emphasis on the stationary dissipation zero-mode. Then, by (2.1.2)
the corrective drift reads

w? �w =
nX

k=0

bk(t)p
�k

(vc)k with (vc)k = �1
2
r ·

⇣p
�kzk

⌘T

(no sum on k). (5.1.2)

Before dealing with chronos reconstruction, we propose in §5.2 a new type of POD data analysis involving the
information contained in the residual velocity. Algorithm 1 summarizes the steps of our data analysis, including the
POD, the di↵usion modes and the corrective drift computation.

5.2 Small-scale energy density, stationarity and anisotropy

The turbulent kinetic energy density (TKE) was computed by the sum of the di↵usion modes eigenvalues, since
small-scale TKE is represented (up to a time scale) by the norm of that tensor. The bigger the TKE, the more important
the di↵usion of the resolved velocity by the small-scale velocity. The di↵usion mode energies are plotted in figure 3 (a-c)
for the circular cylinder wake flow at Re = 100, with two POD modes and in the plane z = 0. The mode z0 yields
regions of high TKE in the transitional region just downstream the recirculation zone , i.e. for 7.5  x  12. The other
di↵usion modes z1 and z2 work together since the two first chronos b1 and b2 are similar up to a phase di↵erence. These
di↵usion modes are twice weaker than the stationary mode z0. Their spatial patterns are more complex, although the
large di↵usion is still confined in the transitional region.

To measure small-scale anisotropy, we computed the ratio between largest and smallest eigenvalues, corresponding
to the condition number of the local small-scale velocity variances (see Algorithm 1). The bigger this quantity the more
aligned toward the first local proper direction the small-scale velocity is, i.e. the more anisotropic the small-scale velocity
and the di↵usion of the resolved velocity are. Figure 4 shows the colormap of this quantity for the circular cylinder wake
flow at Re = 100. In regions where the unresolved velocity component is largely anisotropic, the small-scale velocity is
mainly directed towards the eigenvector which is associated with the largest eigenvalue of the small-scale variance tensor.
The small-scale component imposes a di↵usion of the resolved velocity in the same direction. The streamlines in figure 4
show the principal local di↵usion directions defined by the largest eigenvectors. The orthogonal to the streamlines would
depict the directions of least di↵usion of the large-scale velocity by the small-scale component. These directions can be
interpreted as those of lowest small-scale uncertainty. The streamlines clearly show the vortex formation region with
the symmetric vortex rolling zone. The two pivotal locations at y = ±0.5 just before station x = 6 where both shear
layers start to roll into vortices are precisely indicated by high values of the small-scale anisotropy. The centreline of the
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Algorithm 1 POD and di↵usion modes data analysis

function stochastic POD analysis(n,v(x, t0), ...,v(x, tN )))

1. Usual POD

Resolved velocity component

w(x, t) = bi(t)�i(x). (5.1.3)

2. Optimal time step

1

�t
= 2max

i6n
(fmax (bi)) . (5.1.4)

3. Di↵usion modes analysis : study of the residual velocity component influence
— Residual velocity component

v �w. (5.1.5)

Decomposition of the residual velocity influence
— for j = 0 to n do

Component of the residual velocity influence associated with the time variability of the chronos bj
(note that b0 = �0 = 1)
— Di↵usion mode computation

Projection of the squared residues on the resolved chronos bj

zj(x) =
�t

N + 1

NX

k=0

bj(tk)

�j
(v �w)(x, tk)((v �w)(x, tk))

T (no sum on j). (5.1.6)

— Analysis of the di↵usion of the resolved velocity w by the residual velocity
— Local diagonalization of the symmetric matrix zi(x)

p
�jzj(x) = P j(x)⇤

(j)(x)P T

j (x) (no sum on j), (5.1.7)

with summation neither on j nor on p

P j(x)P j(x)
T = P j(x)

TP j(x) = Id and ⇤(j)
pq (x) = �pq⇤

(j)
pp (x). (5.1.8)

— Inhomogeneity of the turbulent di↵usion of the resolved velocity
(proportional to the small-scale kinetic energy)

dX

p=1

���⇤(j)
pp (x)

��� (5.1.9)

— Anisotropy of the turbulent di↵usion of the resolved velocity
(equal to the anisotropy of the small-scale kinetic energy)

maxp
���⇤(j)

pp (x)
���

minp
���⇤(j)

pp (x)
���

(no sum on p). (5.1.10)

— Corrective drift

(vc)j(x) = �1

2
r ·

⇣p
�jzj

⌘T

(x) (no sum on j). (5.1.11)

— Vorticity of the corrective drift

r⇥ (vc)j (5.1.12)

— Divergence of the corrective drift

r · (vc)j (5.1.13)

— end for

end function
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Figure 3 – Local spectral representations of the matrix a in a cylinder wake flow at Re = 100, for n = 2 POD
modes and in the plane z = 0. Turbulent kinetic energy of the di↵usion modes : (a), di↵usion mode z0 ; (b),
di↵usion mode z1 ; (c), di↵usion mode z2 (square root of the sum of the squared eigenvalues).
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(a)

(b)

(c)

Figure 4 – Local spectral representations of the matrix a in a cylinder wake flow at Re = 100, for n = 2
POD modes and in the plane z = 0. Small-scale anisotropy of the di↵usion modes : (a), di↵usion mode z0 ;
(b), di↵usion mode z1 ; (c), di↵usion mode z2 (ratio of the absolute value of the largest eigenvalue to the
absolute value of the smallest eigenvalue). The streamlines represent the first proper di↵usion direction (i.e. the
eigenvectors corresponding to the largest eigenvalues of the small-scale variance tensor).
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recirculation zone (just before x = 6 up to x = 7) is also associated with large anisotropy due to the alternation between
formations of clockwise and anticlockwise vortices. After the transitional region (x � 12), i.e. where regular and aligned
vortices move downstream, the small-scale velocity anisotropy is maximum on the sides of the Karman vortex street
(x = ±1). This is due to the tails of the vortices visible in figure 1. This anisotropy is also visible in the non-stationary
di↵usion modes z1 and z2.

Another interesting feature of the small-scales stochastic representation principle concerns the emergence of the small-
scale e↵ective velocity (2.1.2), also called drift correction, related to the variance tensor inhomogeneity (see Algorithm
1 for the computation). Though at Re = 100, this contribution is weak as the flow is well captured with only two POD
modes, it is nevertheless interesting to observed the velocity component that is induced by the neglected POD modes.
In figure 5 (a-f) we plot the vorticity and divergence of this advection correction term (2.1.2) for the di↵usion modes z0

to z2. The small-scale vorticity induced by the neglected modes is 2 orders of magnitude weaker than the whole flow
vorticity (figure 1), which confirms its minor e↵ect on the large-scale flow. However some interesting patterns emerge
from these figures. In the vorticity map associated to the di↵usion mode z0 (figure 5 a) we observe high divergence zones
located at 6  x  7 with y close to ±0.5. In these regions where both shear layers roll into vortices, the vorticity drift
correction due to the unresolved modes enhances the rolling process. Just downstream, at the boundaries of the shedding
zone, elongated vorticity patterns can be observed. In the divergence map associated to the di↵usion mode z0 (figure 5 b)
we observe high divergence elongated zones located at 7  x  9 corresponding the trajectories of the launched vortices
along which their sizes are increasing. Convergence zones are also shown at the same stations but between and on both
sides of the divergence regions. Such flow corrections, albeit weak, take place in the region of the flow where physical
mechanisms that give rise to vortex shedding are active and may have significant contributions if the flow is sensitive in
these regions. One interesting feature, here, is the presence of high values of vorticity, corresponding to the maximum of
anisotropy, at the two pivotal locations of the shear layers rolling into vortices. The non-stationary corrective advection is
even weaker than the stationary one. The vorticity plots figure 5 (c,e) unveil elongated vortices outside the recirculation
zone but also relatively circular ones in the transitional region near the x axis. In the divergence fields figure 5 (c,e),
large spots of convergence and divergence zones – odd with respect to the x axis – appear in the end of the recirculation
zone and in the transitional region.

Next it is of particular interest to analyse how the proposed small-scale stochastic modelling behaves with a more
turbulent wake flow. So we consider the cylinder wake flow at Reynolds number Re = 3900.

Figure 6 is a mapping of three-dimensional iso-surfaces of the energy density for the di↵usion modes z0, z1, z2, z3,
and z4, in a cylinder wake flow at Re = 3900. We observe that the turbulent energy of the di↵usion zero-mode is about
three times larger than for the nonstationary modes. These spatial small-scale energy distributions show that the largest
magnitudes are reached at the end of the recirculation region and further downstream in the transitional region.

Let us now examine the small-scale anisotropy spatial distribution together with the arrows of the principal local
di↵usion directions plotted in figure 7. Figures 7 (a,b) indicate that the stationary component of the turbulent di↵usion
of the resolved velocity is isotropic (i.e. shows a low anisotropy) in the centre of the Karman vortex street and further
downstream whereas this stationary di↵usion is anisotropic in the sides of the recirculation zone and of the Karman
vortex street. There, the turbulent di↵usion mostly acts along the plane perpendicular to the cylinder. The anisotropy
maximums (highlighted by green surfaces in figures 7 a-b) reveal the two pivotal regions where the shear layers start to
roll into vortices.

For z1 and z2 di↵usion modes the structures of the non-stationary anisotropy are more complex (see figures 7 c,e),
although large values are mainly confined inside the Karman vortex street. The associated non-stationary turbulent
di↵usion is preferentially in the spanwise direction. This behaviour can be related to the three-dimensionalization of the
wake flow especially taking place along the spanwise direction in the transitional region. Our analysis gives an additional
comprehension of this phenomena. In particular, the associated spanwise turbulent viscosity coe�cient is found to be
non-stationary.

In figures 8 (a,b), respectively the vorticity norm and the divergence of the stationary drift correction are plotted.
Like for the Re = 100 case, stationary vorticity and divergence corrections are observed near the shear layers, outside
and at the end of the recirculation zone, and just downstream in the launching area. Here again, high magnitudes of
vorticity just downstream the maximum of anisotropy are associated with the two pivotal regions of the shear layers
rolling into vortices. Nevertheless, the corrective vorticity is here stronger (one order of magnitude weaker than the
global vorticity field). Other corrective vorticity structures can be observed at the end of the recirculation zone on the
non-stationary modes z1 and z2. The vorticity involved in those modes is about twice weaker than for the stationary
di↵usion mode. We identify 3 and 4 spanwise vortices in the corrective vorticity fields 1

2r⇥(r · z1)
T and 1

2r⇥· (r · z2)
T

respectively. As in the laminar case, divergence structures can be observed at the end of the recirculation zone and just
downstream in the launching area. Again, these structures are odd with respect to the x axis. Along the spanwise
direction, periodic structures appear. Downstream no significant corrective velocities structures are observed, rather
indicating a homogeneous character of the small-scale velocity and of the turbulent di↵usion.

The di↵usion modes analysis developed in the present paper identifies critical regions of the wake flow : the anisotropy
mainly exhibits the pivotal location of the shear layers which are associated with large-scale vorticity corrections by the
small-scale unresolved velocity and large-scale divergence corrections also take place in the vortex formation zone. For the
wake flow considered, the results indicate that far enough downstream and outside the Karman vortex street boundaries an
eddy viscosity assumption is likely to be valid. However in the near wake or close to the Karman vortex street boundaries,
such an assumption is too strong and corrective advection e↵ects as well as structured energy dissipation e↵ects must
be taken into account. These findings support the recent results of Chandramouli et al. (2016) who demonstrated the
significant contributions of such novel stochastic small-scale modelling in the context of coarse-grid large eddy simulation
of a wake flow.
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Figure 5 – Spanwise vorticity (Left) and divergence (Right) of the drift correction � 1
2 (r · a)T in a cylinder

wake flow at Re = 100, for n = 2 POD modes : (a,b), di↵usion mode z0 ; (c,d), di↵usion mode z1 ; (e,f),
di↵usion mode z2.
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Figure 6 – Local spectral representation of the matrix a in a cylinder wake flow at Re = 3900 (LES), for n = 4
POD modes : Small-scale turbulent kinetic energy isosurfaces of the di↵usion modes z0 to z4, respectively. At
places where the energy is high, the unresolved velocity and the di↵usion are strong. The green isosurfaces are
associated with higher values than the yellow isosurfaces (0.007) and the blue isosurface (0.08) corresponds to
a higher value than the green isosurfaces (0.03).
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(a) (b)

(c) (d)

(e) (f)

Figure 7 – Local spectral representation of the matrix a in a cylinder wake flow at Re = 3900 (LES), for n = 4
POD modes : Top (left) and side view (right) of the small-scale anisotropy isosurfaces of di↵usion modes z0

(a,b) , z1 (c,d) and z2 (e,f), respectively. This is the anisotropy of both the small-scale velocity statistics and of
the di↵usion of the large-scale velocity. The green surface (� = 6) is associated with a higher anisotropy than
the yellow surface (� = 3). The red cones represent the preferential di↵usion directions (i.e. the eigenvectors
corresponding to the largest eigenvalues of the small-scale variance tensor). For the di↵usion modes z1 (c,d)
and z2 (e,f), these direction fields are spatially smoothed for an easier visualisation.
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Figure 8 – Vorticity (Left) and divergence (Right) isosurfaces of the drift correction � 1
2 (r · a)T in a cylinder

wake flow at Re = 3900, for n = 4 POD modes : (a,b), Di↵usion mode z0 ; (c,d), Di↵usion mode z1 ; (e,f),
Di↵usion mode z2. In the left column, the green iso-surfaces are associated with a vorticity vector aligned
downward whereas the yellow iso-surfaces are associated with a vorticity vector aligned upward. In the right
column the green surfaces stand for areas with iso-negative divergence (convergent zone) whereas the yellow
iso-surfaces correspond to a positive divergence (divergent zone).
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5.3 Chronos reconstruction

In this section we aim at assessing the performance of the subgrid term introduced by the stochastic representation of
the small-scales. We compare the chronos trajectories that were directly reconstructed from the reduced-order dynamical
system (3.4.3) to the observed chronos. Let us note that almost perfect long time trajectories could be recovered through
data assimilation strategies (D’Adamo et al., 2007; Artana et al., 2012; Cordier et al., 2013; Protas et al., 2015). However
with such techniques it would be di�cult to identify the intrinsic role of the subgrid scheme compared to a least-
squares adaption of all the dynamics coe�cients along the whole sequence. We therefore prefer to rely on a direct
reconstruction strategy in which no identification, like least-squares or data-assimilation estimation procedures of the
dynamical coe�cients, is introduced. Note that such a direct reconstruction requires an additional stabilization, like a
closure model, to ensure the long-term boundedness of the solution. In our model, the stabilization is inherited from the
rigorously derived subgrid terms based on the variance of the unresolved velocity component. In the following, we compare
temporal reconstructions obtained with our stochastic Galerkin model to those provided by di↵erent deterministic POD
models.

The results presented so far on the di↵usion mode analysis did not necessitate any knowledge of the Reynolds number
to compute both the di↵usion and the drift correction of the large-scale by the unresolved small-scale. We now turn to
reduced-order dynamical systems which, in contrast, require the Reynolds value.

The modes energy mean, �i, and the topos, �i, are computed from the whole sequence of snapshots (N = 10, 000
for Re = 100 and N = 1, 460 for Re = 3900). As for the initial condition, we used the referenced values of the chronos,
denoted brefi , computed directly from the snapshots covariance diagonalization. Then, regarding the chronos spectra, an
optimal time sub-sampling �t is chosen, as explained in §3.3. Afterwards, using the residual velocity and the chronos, the
variance tensor, a, is estimated. The coe�cients of the reduced-order dynamical system of chronos (3.4.3) are directly
computed using discrete derivation schemes. The chronos trajectories are simulated with a 4-th order Runge-Kutta
integration method, with bref (t = 0) as initial condition and �t/10 as simulation time step.

Figures 9 and 10 show examples of the reconstruction of the chronos for n = 2 at Reynolds number Re = 100 and
n = 16 at Reynolds number Re = 3900, respectively, for the classical POD method (blue plot) and for the proposed
modelling with respectively a stationary variance tensor (red line in figure 9) and a modal nonstationary variance tensor
defined on the subspace associated with the chronos basis (dashed magenta line in figure 10) respectively. Each plot
is sampled at the frequency 1/�t. At Reynolds number Re = 100, the first two modes carry most of the energy. The
references brefi (black plots) and the chronos obtained from an eddy viscosity model are superimposed for comparison
purposes. The eddy viscosity is optimally fitted by a least squares estimation. It can be observed that our stochastic
model follows the references quite well whereas the deterministic model blows up. Let us point out that here our reduced
models are completely parameter free unlike the eddy viscosity model. Figures 11 and 12 describe the error evolution
along time. Approximating the square of the actual unresolved chronos by the time average of their squares, we defined
the error as follows :

err(t) = T
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, (5.3.1)

which is greater than the minimal error associated with the modal truncation :

err(t) >
 PN

i=n+1 �i

k�0k
2
L2(⌦) +

PN
i=1 �i

!1/2

. (5.3.2)

Equation (5.3.1) defines the criterion error plotted in figures 11 and 12, whereas (5.3.2) constitutes a lower bound
of this error. In figures 11 and 12, we successively displayed the error plots obtained for the standard POD Galerkin
model without subgrid dissipative term, for our model with stationary and nonstationary variance tensors, and finally
for a deterministic modal eddy viscosity model. This subgrid model, proposed in Rempfer & Fasel (1994) consists in
modifying the reduced-order system by adding a strong isotropic di↵usive term (Laplacian) to stabilize the system. This
eddy viscosity is said to be modal since di↵erent viscosity coe�cients are attached to each chronos. Those coe�cients
are estimated by a least squares fitting on the whole data sequence. Modal eddy viscosity in its least squares form
resembles indeed a data assimilation strategy in which the best stationary isotropic dissipative forcing is estimated from
the discrepancy between the model and the data. The same isotropic dissipation is imposed on the whole fluid domain
at every time step. As such this subgrid dissipation is much more di�cult to interpret in terms of local signatures of the
small-scale coherent structures.

In figures 11 and 12, the dashed lines indicate the minimal error associated with the reduced subspace truncation
error. The black solid line corresponds to the error level associated with the temporal mean velocity – i.e. setting all the
chronos to 0. In this case :

err|b=0(t) ⇡
 PN

i=1 �i

k�0k
2
L2(⌦) +

PN
i=1 �i

!1/2

. (5.3.3)
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Figure 9 – Reconstruction of the first two chronos for a wake flow at Reynolds number Re = 100, with n = 2
POD modes and with a stationary variance tensor : (black dots), observed references ; (blue line), standard
POD-Galerkin ; (red line), proposed stochastic representation ; (green line), modal eddy viscosity reduced-order
model. The initial condition, at t = 0, is identical for all methods.
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Figure 10 – Reconstruction of the first ten chronos for a wake flow at Reynolds number Re = 3900 (HR LES),
with n = 16 POD modes and with a variance tensor expressed as a linear function of the chronos and with modal
characteristic times : (black dots), observed references ; (blue line), standard POD-Galerkin ; ( dashed magenta
line), proposed stochastic representation ; (dashed green line), modal eddy viscosity reduced-order model. The
initial condition, at t = 0, is identical for all methods.
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Figure 11 – Normalized reconstruction error for a wake flow at Reynolds number Re = 100, with n = 2 POD
modes : (blue line), standard POD Galerkin (without eddy viscosity) ; (red/magenta lines), proposed model
with a stationary/nonstationary variance tensor, solid and dashed line with single and modal characteristic
time, respectively ; (green lines), solid and dashed with eddy viscosity and modal eddy viscosity reduced-order
model, respectively. The modal eddy viscosity coe�cients are estimated through a least squares fit on the whole
data sequence. The dashed line indicates the error associated with the mode truncation :

PN
i=n+1 �i. The black

solid line is the error when we only consider the temporal mean velocity.

This term does not constitute an upper bound of the error. However, it provides the error level reached by the null model.
In figures 11 and 12, fixing a log-scale for the y axis, we readily observe the exponential divergence of the standard POD
reduced-order model (in blue).

We observe that even at Reynolds number Re = 100 the modal eddy viscosity model does not capture accurately,
on a long time period, the complex non-linear dynamics undergone by the non-resolved modes (figure 11). The eddy
viscosity model over-damped the chronos as shown in figure 9.

For the LES at Reynolds number Re = 3900 (figure 12), we compared the eddy viscosity approaches (modal and
constant) with stationary and nonstationary models of the variance tensors. In this case the variance tensor as well as
the eddy viscosity coe�cients have been estimated with 1, 460 ⇥ �tobs/�t vortex shedding cycles where �tobs is the
initial time step of the data (see table 1) whereas �t is the optimal subsampling time step given by the criterion (3.3.1).
The performances of the modal and single characteristic times attached to the variance tensor have been evaluated
and compared. The error plots are shown in figure 12. The introduction of di↵erent small-scale characteristic time
steps associated with the di↵erent modes significantly improves the results that were obtained for a single common
characteristic time. Both approaches are equivalent for short time period only. The introduction of modal characteristic
times is clearly beneficial in the long run. The nonstationary representation performs better than the stationary one
especially for n = 8 modes. Indeed, due to its non-stationarity the associated reduced system is even better than eddy
viscosity models. Moreover, the piece of information brought by the nonstationary di↵usion modes enables meaningful
analysis of the small-scale contribution (see §5.2). Except for n = 8 modes, the modal eddy viscosity approaches performs
well. The constant eddy viscosity appears to only work when a small number of modes is involved. The (stationary or
nonstationary) variance tensor models that are associated with modal characteristic time scales exhibit nearly the same
stabilizing skills as the eddy viscosity models (again excepting the case n = 8 modes). Both models lead to similar error
levels. Nevertheless, it must be outlined that the two approaches are based on di↵erent assumptions. Eddy viscosity
relies intrinsically on a homogeneous isotropic di↵usion with no preferential direction of energy dissipation. The di↵usion
remains constant whatever the considered region : in the near or far wake regions, and even in the shear layers. However,
as a fixed constant estimated through a mean squares procedure, it provides the optimal amount of missing energy
dissipation (with respect to a spatio-temporal mean of the squared norm) that is required to stabilize the reduced
dynamical system. Conversely, as shown in the previous section, the variance tensor and the associated di↵usion modes
provide a finer representation of the small-scales action in terms of energy dissipation but also in terms of energy
redistribution. As for the simulation of the reduced system, both models often lead to comparable error levels. They
bring stability to the system in a similar way, but the variance tensor models unveil important clues on the small-scale
flow structuration.

6 Conclusion

We investigated the study of reduced-order modelling based on a stochastic representation of the small-scales proposed
by Mémin (2014) and Resseguier et al. (2017a). This principle gives rise naturally to a drift correction generated by the
inhomogeneity of the small-scale velocity variance and to an inhomogeneous di↵usion term. The di↵usion term is closely
related to eddy viscosity assumption. Indeed, for an isotropic divergence-free random field, the stochastic representation
boils down to the classical eddy viscosity assumption. A POD Galerkin projection of the corresponding stochastic Navier-
Stokes equations provides a modified reduced-order dynamical system that includes a linear term gathering the e↵ects
of the e↵ective advection and of the di↵usion exerted by the unresolved small-scale component. This function directly
depends on the small-scale variance that must be specified to close the system.
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Figure 12 – Normalized reconstruction error for a wake flow at Reynolds number Re = 3900 (LES), with (from
left to right and from top to bottom) n = 2, 4, 8 and 16 POD modes : (blue line), standard POD Galerkin
without eddy viscosity ; (red/magenta lines), proposed model with a stationary/nonstationary variance tensor,
solid and dashed line with single and modal characteristic time, respectively ; (green lines), solid and dashed
with eddy viscosity and modal eddy viscosity reduced-order model, respectively. The eddy viscosity coe�cients
are estimated through a least squares fit on the whole data sequence. The variance tensors are also estimated
from a temporal mean on the whole sequence. The dashed line indicates the error associated with the mode
truncation :

PN
i=n+1 �i. The black solid line is the error when we only consider the temporal mean velocity.
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We proposed in this study a modelling based on the decomposition of this variance tensor on the chronos basis. The
estimation has been performed on the residuals between the snapshots’ measurements and their resolved reconstruction
on the topos basis. The coe�cients of this decomposition quoted as the di↵usion modes constitute meaningful features for
the interpretation of the small-scale statistical organization. They allow us to examine in details the principal directions
of the large-scale energy dissipation and also to extract advective structures both generated by the small-scale velocity.

The di↵usion modes analysis has been applied to a circular cylinder wake flow. For this flow configurations in the
laminar and in the subcritical regimes, the anisotropy of the di↵usion modes determine regions of the flow that are key
players. The largest magnitudes of the anisotropy zero-mode (stationary mode) occur both in the vicinity of the pivotal
zone of the shear layers rolling into vortices and also where the drift correction is e↵ective.

Finally, the di↵usion modes were coupled with modal characteristic time scales to provide a subgrid model. For
wake flows, stabilizing skills are comparable to those obtained with optimally identified isotropic eddy viscosity models.
Such a stochastic approach consisting of a rigorously derived subgrid term may easily be applied to other turbulent flow
configurations, for instance boundary layer flows that are known to develop complex multi-scale mechanisms. Moreover,
it will be interesting to see whether our proposed stochastic POD models could be used to design novel physics-based
subgrid scale models for LES approaches.

In order to obtain better chronos reconstruction results than that of an eddy viscosity model, random forcings can
be included – as in equation (2.1.3) – in the stochastic Navier-Stokes representation (2.2.1). This additional complexity
maintains the variability of stable temporal modes. This full stochastic extension will be the subject of a next study. Other
extensions of this methodology include online quantification of model errors for ensemble data assimilation procedures.
The authors are already pursuing these works in the context of reduced order models but also in geophysical fluid
dynamics (Resseguier et al., 2017a,b; Yang & Mémin, 2017).
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