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Abstract :   
 
Ecologists often analyse biomass sampling data that result in many zeros, where remaining samples can 
take any positive real number. Samples are often analysed using a “delta model” that combines two 
separate generalized linear models, GLMs (for encounter probability and positive catch rates), or less 
often using a compound Poisson-gamma (CPG) distribution that is computationally expensive. I discuss 
three theoretical problems with the conventional delta-model: difficulty interpreting covariates for 
encounter-probability; the assumed independence of the two GLMs; and the biologically implausible form 
when eliminating covariates for either GLM. I then derive an alternative “Poisson-link model” that solves 
these problems. To illustrate, I use biomass samples for 113 fish populations to show that the Poisson-
link model improves fit (and decreases residual spatial variation) for >80% of populations relative to the 
conventional delta-model. A simulation experiment illustrates that CPG and Poisson-link models estimate 
covariate effects that are similar and biologically interpretable. I therefore recommend the Poisson-link 
model as useful alternative to the conventional delta-model with similar properties to the CPG distribution. 
 
Résumé : 
 
Les écologistes analysent souvent des données d’échantillonnage de la biomasse qui donnent de 
nombreux zéros, les échantillons restants pouvant prendre n’importe quel nombre réel positif. Les 
échantillons sont souvent analysés en utilisant un « modèle delta » qui combine deux modèles linéaires 
généralisés (MLG) différents (pour la probabilité de rencontre et les taux de prises positifs) ou, moins 
souvent, une distribution Poisson-gamma composite (PGC) plus onéreuse sur le plan computationnel. 
J’aborde trois problèmes théoriques associés au modèle delta classique, soit la difficulté d’interpréter les 
covariables en ce qui concerne la probabilité de rencontres, l’indépendance présumée des deux MLG et 
la forme non plausible du point de vue biologique quand les covariables sont éliminées pour l’un ou l’autre 
des MLG. Je développe ensuite un nouveau « modèle Poisson-lien » qui résout ces problèmes. À des 
fins d’illustration, j’utilise des échantillons de biomasse pour 113 populations de poissons pour démontrer 
que le modèle Poisson-lien améliore le calage (et réduit la variation spatiale résiduelle) pour >80 % des 
populations par rapport au modèle delta classique. Une expérience de simulation illustre le fait que les 
modèles PGC et Poisson-lien estiment les effets de covariables qui sont semblables et permettent une 
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interprétation biologique. Je recommande donc le modèle de Poisson-lien comme solution de rechange 
utile au modèle delta classique avec des propriétés semblables à la distribution PGC. [Traduit par la 
Rédaction] 
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Introduction 33 

 Ecologists often estimate unknown biological rates (e.g., survival, stage-transition 34 

probabilities, per-capita productivity) by fitting ecological models to available data.  35 

Ecologists frequently collect such data from biological surveys, where observers visit a pre-36 

defined site and either record the species they encounter (occupancy data) or measure the 37 

quantity of each species (counts or biomass).  Many common analyses (including species 38 

distribution models, climate envelope analysis, and habitat utilization models) then involve 39 

fitting a regression to available data, often using a generalized linear mixed model.   40 

 Ecological surveys (particularly for marine fishes) will often measure the biomass of a 41 

given species at each site.  For example, this is common in marine fish sampling where 42 

thousands of individual fish can be captured simultaneously by a trawl gear.  In this case, it is 43 

easiest to sort the sample by species, weigh the biomass for each species, and potentially 44 

subsample to determine weight, sex and age (which can then be used to estimate the number 45 

sampled, even though numbers is not directly counted).  Other examples of sampling species 46 

biomass include insect traps and leaf-litter traps (e.g., Clark 2016).  In each case, sampling 47 

yields some proportion of zeros (e.g., where no individuals of a given taxon were 48 

encountered), and also a continuous-valued measure of density (e.g., biomass for samples 49 

where at least one individual of a given taxon was encountered).   50 

 Biomass-sampling data are often analysed using a “delta” (a.k.a. hurdle) model 51 

(Aitchison 1955, Lo et al. 1992, Stefansson 1996) that includes two components:  the 52 

probability of encountering the species, and the expected biomass given that the species is 53 

encountered.  This “delta-model” remains one of the most common types of regression used 54 

by ecologists and fisheries scientists (Maunder and Punt 2004, Zuur et al. 2009).  However, it 55 

has several theoretical and practical draw-backs (as discussed below).  One increasingly 56 

popular alternative to the conventional delta-model is using a compound Poisson-gamma 57 

Page 3 of 42

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

4 

 

(CPG) model (Smyth 1996, Foster and Bravington 2013, Lecomte et al. 2013), which is 58 

derived by assuming that biomass samples capture a Poisson-distributed number of 59 

individuals, where the biomass of each individual follows an independent gamma 60 

distribution.  This CPG model is a special case of the Tweedie distribution (Foster and 61 

Bravington 2013), but it remains computationally expensive to evaluate and therefore is 62 

difficult to combine with other detailed model components (e.g., spatio-temporal variation; 63 

(Cressie and Wikle 2011)).   64 

 In the following, I first describe the most widely-used version of the delta-model in detail, 65 

which involves a logistic regression for encounter probability and a separate generalized 66 

linear model for biomass when the taxon is encountered, and outline three theoretical 67 

problems with using this conventional delta-model.  In response, I then define an alternative 68 

“Poisson-link” model for analysing biomass-sampling data and describe how this Poisson-69 

link model rectifies all three theoretical problems.  I then discuss similarities between the 70 

Poisson-link and CPG models, i.e., that both estimate numbers-density and average weight 71 

via log-linked linear predictors.  Next, I compile biomass-sampling data from 113 fishes from 72 

seven marine ecosystems in North America and Europe and show (1) that the Poisson-link 73 

model does not sacrifice model fit relative to the CPG distribution, and (2) that the Poisson-74 

link model often has better fit and reduces unexplained variation relative the conventional 75 

delta-model.  Finally, I use a simulation-experiment to confirm that the Poisson-link and CPG 76 

distributions both provide a simple interpretation of covariates and estimate covariates 77 

similarly.   78 

Methods 79 

Defining the conventional delta-model 80 

Fisheries scientists have analysed biomass-sampling data using delta-models for nearly thirty 81 

years (Lo et al. 1992, Stefansson 1996).  Historically, these delta-models have been fitted to 82 
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data by estimating parameters for two separate and independent generalized linear models 83 

(GLMs): 84 

1. Encounter probability:  the probability of encountering the species at a given place and 85 

time;  86 

2. Positive catch rates:  the probability density function for catch in biomass given that the 87 

species is encountered. 88 

Predictions from the two GLMs can then be multiplied together to predict local density, and 89 

this in turn is used to predict total abundance across a pre-specified spatial domain. 90 

 The “encounter probability” component of the delta-model defines the probability �� that 91 

catch �� for the �th sample is non-zero: 92 

I��� > 0	~Bernoulli���	 (1a) 

where I��� > 0	 is an indicator function equal to one if �� > 0 and zero otherwise (where all 93 

symbols are summarized in Table 1).  In a generalized linear mixed model (GLMM), �� is 94 

modelled via a link function �, where ����	 is a linear function of fixed and random effects.  95 

The “encounter probability” GLM involves a Bernoulli distribution for each sample, and the 96 

canonical link-function for this distribution is a logit-link.  Presumably for this reason, 97 

researchers have often specified a logit-link with little consideration of alternatives (e.g., 98 

Stefansson 1996, Maunder and Punt 2004, Thorson and Ward 2013):  99 

logit���	 = ����� + ����� (1b) 

where �� and �� are predictors for fixed-effects �� and random effects �� associated with the 100 

�th observation affecting encounter probability �, although other potential link-functions 101 

include the probit and complementary log-log link-functions (Zuur et al. 2009 pg 248).  In the 102 

following, we refer to the logit-link as the “conventional” delta-model due to its widespread 103 

use in fisheries science.   104 
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 The “positive catch rate” component defines the probability density function for catch �� 105 

given that it is nonzero.  In the following, we use a bias-corrected lognormal density function: 106 

��|��� > 0	~Lognormal "log�#�	 − %&'2 , %&'* (2a) 

where log�#�	 and %&'  are the mean and variance of log���	 and we use log�#�	 − +,-'  such that 107 

#� is interpreted as the mean (rather than median) catch �� given that sample � encounters a 108 

given taxon.  The model again specifies a linear predictor for log�#�	:   109 

log�#�	 = �.��� + �.��� + log�/�	 (2b) 

where �. and �. are again fixed and random effects (now affecting positive catch rate #), and 110 

/� is the area-swept during the �th sample (i.e., /� is a linear offset for #�).  Previous research 111 

has often explored the performance of the lognormal vs. gamma distribution (or other 112 

alternatives), and comparisons using simulated data have generally supported to the use of the 113 

Akaike Information Criterion (Akaike 1974) to properly identify the distribution used to 114 

generate simulated data (Dick 2004).   115 

 Given these two model components, population density 0�1, 2	 at location 1 and time 2 116 

can be predicted, 0�1, 2	 = ��1, 2	 × #�1, 2	.   Total abundance, center of distribution, or 117 

effective area occupied can then be easily calculated from predicted population density and 118 

spatial information about the population or sampling domain (Thorson et al. 2016b). 119 

Three “theoretical” problems with conventional delta-models 120 

I note three major draw-backs to using the conventional delta-model: 121 

1. Difficulties in interpreting covariates; 122 

2. Assumed independence between model components; 123 

3. Biologically implausible form when removing covariates. 124 

Drawback #1:  Difficulties in interpreting coefficients 125 
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Using the conventional delta-model, an ecologist can include covariates affecting the logit-126 

encounter probability, logit��	, and/or the log-positive catch rate, log�#	.  For predictors 127 

affecting logit��	, fixed and random-effects then affect the “odds-ratio”, defined as the log-128 

ratio of encounter probability and non-encounter probability, i.e., logit��	 = log 4 �56�7.  129 

However, it is not easy to summarize the average effect of covariates for logit��	 on 130 

population density 0, because this effect depends upon the value of all covariates and 131 

samples.  Furthermore, a random effect �� for logit��	 may have a variance of %8' but there is 132 

no closed-form equation for calculating the resulting variance in population density 9.  I 133 

suspect that many ecologists would prefer to estimate the impact of a covariate affecting 134 

encounter probability (e.g., bottom temperature) on expected population densities, rather than 135 

the “odds ratio”.  Although an ecologist could use predictive sampling to approximate the 136 

variance in population density for any link function, the lack of a closed-form solution still 137 

complicates interpretation for these models.  This drawback would be solved by defining all 138 

covariates via log-link function, in which case an estimated coefficient : for covariate � 139 

indicates that a 0.01 increase in ;� results in a :% increase in predicted population density.  140 

However, defining all covariates via log-link is inconvenient using a conventional delta-141 

model because a log-link for encounter probability � could exceed 1.0 (the upper bound for a 142 

probability).   143 

Drawback #2:  Assumed independence among components 144 

Using the conventional delta-model, the “encounter probability” and “positive catch rate” 145 

components are assumed to be statistically independent, i.e., knowledge about encounter 146 

probability � gives no information about the likely distribution for positive catches #.  This 147 

assumption is contrary to a large body of evidence suggesting (1) that abundant species have 148 

wide ranges, such that frequently encountered species also have higher density throughout 149 

their range (Gaston 1994), and also (2) that an increase in local density will decrease the 150 
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probability of failing to detect a species that is present (Royle and Nichols 2003).  Both 151 

phenomena suggest that a location with increased probability of encounter (higher �) will 152 

tend to have greater catch rates given an encounter (higher #), as has been argued previously 153 

for nonparametric zero-inflated models (Liu and Chan 2011).  As one concrete example, the 154 

conventional delta-model specifies that positive catch rates #� increases linearly with 155 

increased area-swept /� for a given sample, but that increased area-swept has no effect on 156 

encounter probability ��.  This specification is inconvenient, because an increase in area-157 

swept for many species will increase the probability of sampling at least one occupied patch 158 

(Lecomte et al. 2013).  In response, an ecologist could chose to also include area-swept as a 159 

predictor for encounter probability �.  However, there is no way to interpret the estimated 160 

coefficient as a “linear offset” when using the conventional logit-link for encounter 161 

probability (see Drawback #1 above), so this area-swept covariate would then be estimated to 162 

have a nonlinear impact on expected catches.   163 

Drawback #3:  Biologically implausible form when removing covariates 164 

Ecologists often have little data with which to estimate a multitude of potential ecological 165 

processes.  The presence of “tapering effects” (i.e., many ecological processes with gradually 166 

declining effect-sizes for any given system) has driven interest in using model selection to 167 

identify “parsimonious” ecological models (Burnham and Anderson 2002).  Parsimony in this 168 

case is defined as an appropriate number of parameters that minimizes total predictive error 169 

for a given data set (simultaneously low bias and imprecision).  In many cases, parsimony is 170 

achieved by identifying a flexible family of models, where analysts can use model selection 171 

to identify the appropriate degree of model complexity.  This approach is most effective, 172 

however, when the model that eliminates covariates remains biologically plausible (e.g., is 173 

likely to provide a good fit for species on average).  As corollary of Drawback #2, it will 174 

often be more statistically efficient to assume that a covariate associated with high encounter 175 
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probability will also likely be associated with high positive catch rates (and vice versa).  For 176 

example, if the density of rocky substrate is associated with increased encounter probability 177 

for a refuge-seeking fish, then it is also likely associated with increased positive catch rates 178 

because sampling will likely include a greater number of occupied habitat patches.  By 179 

contrast, removing covariates in a delta-model generally involves specifying that a given 180 

covariate affects encounter probability but not positive catch rates (or vice versa).   181 

Solutions from using an alternative “Poisson-link” model 182 

As an alternative to the conventional delta-model, I propose a “Poisson-link” model for 183 

biomass sampling data with many zeros.  This Poisson-link model is derived by defining >� 184 

as the predicted density of individuals or groups at sample �, where the number of observed 185 

individuals is assumed to follow a Poisson process with expectation >�.  The encounter 186 

probability from this Poisson process is then: 187 

�� = 1 − exp�−/� × >�	 (3) 

such that �� → 1 as /�>� → ∞, i.e., an increased area-swept increases the expected number of 188 

individuals observed (Foster and Bravington 2013, Lecomte et al. 2013).  Predicted group 189 

density >� is then modelled via a log-linked linear predictor: 190 

log�>�	 = �C��� + �C��� (4) 

where a 0.1 increase in the right-hand-side of Eq. 4 (due to fixed effects �C��� or random 191 

effects �C���) results in an approximately 10% increase in predicted group density >�.   192 

 I then combine two equations for biomass density 0 to derive an expression for positive 193 

catch rates #, i.e., (1) predicted biomass-density is the product of predicted group density and 194 

predicted biomass per group (0� = >� ×D�, where D is predicted biomass per group of 195 

individuals), and (2) biomass density is the product of encounter probability and positive 196 

catch rates (0� = �� × #�).  After re-arranging, these definitions imply that: 197 
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#� = >��� × D� (5) 

When data are few, predicted biomass per group D can be estimated as a single parameter.  198 

However, a more general treatment involves specifying D via a log-linked linear predictor: 199 

log�D�	 = �E� �� + �E� �� (6) 

where this reduces to constant predicted biomass per group, D� = exp�:E	 when � = F and 200 

� = ∅.   201 

 The probability distribution for biomass sample �� is then calculated for the Poisson-link 202 

model by converting predicted numbers density (>�) to encounter probability (��) using Eq. 3, 203 

converting predicted biomass per group (D�) to positive catch rates (#�) using Eq. 5, and then 204 

applying the same likelihood function as the conventional delta-model (i.e., Eq. 1a and 2a).  205 

Consequently, this likelihood function requires essentially the same computational time as the 206 

conventional delta-model (eq. Eq. 3, 5, and 1a/2a).  Similarly, the Poisson-link model can be 207 

interpreted as a reparameterization of a delta-model, using a complementary log-log link for 208 

encounter probability (Eq. 3) and a biologically interpretable linkage between encounter 209 

probability and positive catch rates (Eq. 5).  However, the Poisson-link model is not identical 210 

to a conventional delta-model using a complementary log-log link because group density > 211 

affects both encounter probability � and positive catch rates #.  In the following, I specify a 212 

lognormal distribution for biomass given encounters for both conventional delta and Poisson-213 

link models, although future studies could use model selection to select among alternative 214 

distribution functions.   215 

 The Poisson-link model responds to all three theoretical problems with the conventional 216 

delta-model: 217 

1. Difficulties in interpreting coefficients: The Poisson-link model simplifies interpretation 218 

of covariates.  In particular, covariates �C and �E both predict changes in log-density, so 219 

e.g., a 0.01 increase in �C�� is associated with approximately a 1% increase in density.  220 
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Similarly, a random effect �H with a standard deviation of 0.01 explains approximately a 221 

1% coefficient of variation in density.  Both fixed- and random-effects therefore have a 222 

similar interpretation in predicting variation in population density, because both affect 223 

density via a log link function.   224 

2. Independence among components: The “Poisson-link” model induces a correlation 225 

between predicted encounter probability � and predicted positive catch rates # that is 226 

interpretable biologically.  When expected counts are low (>/ ≪ 1), an increase in group-227 

density results in a proportional increase in encounter probability (> ∝ �).  In this case, 228 

increasing group-density results in a greater proportion of encounters, where each 229 

encounter is likely to sample a single individual with weight D.  As group-density 230 

becomes large (>/ ≫ 1), encounter probability will plateau (� → 1), and further increases 231 

in group-density are accompanied by an increase in positive catch rates (> ∝ #).  In 232 

summary, encounter probability � and positive catch rates # are correlated via a joint 233 

dependence on group-density > (see Fig. 1).    234 

3. Biologically implausible form when removing covariates:  Finally, the Poisson-link 235 

model by default specifies that a covariate affecting group-density (i.e., �C) influences 236 

predictions of both encounter probability � and positive catch rates #.  To continue our 237 

previous example, a covariate representing the local density of rocky substrate might be 238 

selected for group-density but not for average weight, and this reduction in the number of 239 

estimated parameters still retains a biologically meaningful impact of substrate on both 240 

encounter probability and positive catch rates.  This specification will allow a smaller 241 

number of estimated parameters to explain variation in both encounter probability and 242 

positive catch rates whenever �� and #� are positively correlated in the form predicted by 243 

the Poisson-link model.   244 
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Despite these improvements over the conventional delta-model, the Poisson-link and 245 

conventional delta-model are identical (e.g., have identical maximum likelihood and provide 246 

identical predictions of density) for several potential model configurations.  For example, 247 

delta-model parameters (:� and :.) can be converted to Poisson-link parameters (:C and :E) 248 

and vice-versa when using an intercept-only model (e.g., x is a design matrix and � = ∅) and 249 

a constant area-offset (i.e., /� = / for all observations �) via the relations: 250 

logit65L:�M = 1 − expL−/ × exp�:C	M 
exp�:.	 = exp�:C	1 − expL−/ × exp�:C	M exp�:E	 

(7) 

where these relations are derived from the definition of predicted encounter probability � and 251 

positive catch rate # (see Table 2) and the identical likelihood used in each model (Eq. 1a and 252 

2a).  The conventional delta and Poisson-link models generally differ (i.e., result in different 253 

maximum likelihoods and density predictions) whenever they include either a covariate, 254 

variable area-offset, or random effects.   255 

Comparison with compound Poisson-gamma distribution 256 

The proposed Poisson-link model has many similarities to a compound Poisson-gamma 257 

(CPG) distribution, which is a special case of the Tweedie distribution (Smyth 1996, Lecomte 258 

et al. 2013).  The CPG distribution is derived from the assumption that biomass samples arise 259 

from a Poisson distribution for the number of individuals captured: 260 

N�~OP�11P>�Q� × /�	 (8) 

where Q� is the group-density in the vicinity of sampling (I use different symbols for variables 261 

than the Poisson-link model to indicate that estimated variables may differ between CPG and 262 

Poisson-link models).  The CPG then specifies that the weight R�H of each individual follows 263 

a gamma distribution: 264 
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R�H~S/TT/�U, V�U65	 (9) 

where U is the gamma shape parameter and	V�U65 is the scale parameter, such that total catch 265 

�� = ∑ R�HYZH[5 .  The parameterization used here involves estimating Q�, V�, and U, where Q� 266 

and V�can be specified via a link-function and linear predictors and U is assumed constant for 267 

all samples � (see Foster and Bravington (2013) for further discussion).  The CPG distribution 268 

generates a “power-law” relationship between the expected value, \���	 = ]� , and variance, 269 

^/#���	 = _�]�̀ .  By contrast, the typical Tweedie parameterization directly estimates the 270 

power parameter (1 < b < 2), uses a constant dispersion (_� = _ for all �) and a linear 271 

predictor for log�]	, and has been used extensively elsewhere (Candy 2004, Shono 2008, 272 

Lecomte et al. 2013, Berg et al. 2014).  The CPG is identical to the Tweedie parameterization 273 

given mean ]� = Q�/�V� and dispersion _� = 5cZdZ �cZdZeZ	-fg'6`  (based on Foster and Bravington 274 

(2012) for derivation).   275 

Similar to the Poisson-link model, the CPG distribution (using the Foster and Bravington 276 

(2013) parameterization) specifies a log-link for both group-density and average weight: 277 

log�Q�	 = �c��� + �c��� log�V�	 = �e��� + �e��� 
(10) 

and this results in an identical derivation for expected encounter probability � and positive 278 

catch rates # as the Poisson-link model (Table 2).  The CPG distribution therefore responds to 279 

all three theoretical problems similarly to the Poisson-link model (Foster and Bravington 280 

2013).  The Foster-Bravington parameterization of the CPG distribution then involves 281 

estimating fixed effects �c, �e, and U by finding their values that maximize the likelihood 282 

function.   283 

 However, the CPG likelihood function (Smyth 1996, Dunn and Smyth 2005) is 284 

computationally expensive to evaluate because it involves approximating an integration 285 
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constant R as the sum of an infinite series (Appendix S1), or approximating the CPG 286 

distribution using numerical sampling (e.g., Lauderdale 2012). Approximating the sum of an 287 

infinite series has computational cost determined by the number of terms in the summation, 288 

and numerical sampling requires introducing a large number of discrete-valued random 289 

effects.  In the following, I evaluate the CPG likelihood using an upper limit of 1000 for 290 

calculating R, and confirm that the log-likelihood (given maximum-likelihood estimates of 291 

all parameters) is identical to the value generated by package fishMod (Foster et al. 2016) to 292 

tolerance of 106h.  In practice, approximating this infinite series can be efficiently 293 

implemented by specialized numerical techniques (Dunn and Smyth 2008, Foster and 294 

Bravington 2013), e.g., by analytically determining an efficient lower and upper bound for 295 

the summation.  I encourage further comparison of numerical techniques as a topic for future 296 

research, but claim that the CPG likelihood is computationally expensive relative to the 297 

Poisson-link model because the former requires summing across as many as 50 terms (Foster 298 

and Bravington 2013 pg. 539), while the Poisson-link model requires evaluating only a single 299 

term.   300 

 Unlike the CPG distribution, the “Poisson-link” model permits a fast, closed-form 301 

calculation of the model likelihood (using Eq. 1a, 2a, and 3-6).  Both the CPG and Poisson-302 

link model specify the density of groups (Q and >, respectively for CPG and Poisson-link) 303 

and average weight per group (V and D, respectively) via log-linked linear predictors.  The 304 

main difference, however, is that the proposed Poisson-link specifies a different mean-305 

variance relationship than the CPG model.   306 

Case study data: Bottom trawl survey database 307 

In the following, I first compare the fit of the conventional and alternative Poisson-link 308 

models with the CPG using real-world data and a simple model (estimating annual intercepts 309 

as fixed effects).  I then compare the conventional and alternative Poisson-link models using 310 

Page 14 of 42

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

15 

 

a more complicated model (estimating fixed annual intercepts, plus spatial and spatio-311 

temporal variation), which is computationally infeasible using implementations of the CPG 312 

distribution available in Template Model Builder (Kristensen et al. 2016).   313 

 For each comparison I use bottom-trawl survey data from seven marine ecosystems: 314 

1. Eastern Bering Sea – Survey operated by the Alaska Fisheries Science Center (AFSC) 315 

obtained from a fixed-station design (Lauth and Conner 2016);  316 

2. Gulf of Alaska – Survey operated by the AFSC obtained from a randomized design (Von 317 

Szalay and Raring 2016); 318 

3. Aleutian Islands – Survey operated by the AFSC obtained from a randomized design 319 

(Raring et al. 2016);   320 

4. US West Coast –The West Coast groundfish bottom trawl survey operated by the 321 

Northwest Fisheries Science Center (NWFSC), obtained from a stratified-random design 322 

(Keller et al. 2017); 323 

5. North Sea – The North Sea international bottom trawl survey (NS-IBTS), restricting data 324 

to 1991-2015 obtained using a “Gov” gear in quarter 1 (winter) (ICES 2012); 325 

6. Scottish West Coast – The Scottish West Coast international bottom trawl survey (SWC-326 

IBTS), restricting data to 1991-2015 obtained using a “Gov” gear in quarter 1; 327 

7. Celtic Sea and Bay of Biscay – The French demersal survey (EVHOE) of the Celtic Sea 328 

and Bay of Biscay, operating by the French Research Institute for Exploitation of the Sea 329 

(IFREMER) from 1997-2015 in quarter 4 (fall) (Mahé and Poulard 2005). 330 

8. US survey protocols (#1-4) contain biomass-per-unit-area data (i.e., samples are 331 

standardized to a constant area swept), so I assume that area-swept is constant for these 332 

surveys.  European survey protocols (#5-7) are described in ICES (2012),   Public 333 

databases for surveys #1-4 contain biomass-per-unit-area (i.e., samples are standardized 334 

to a constant area swept), while for those for surveys #5-7 contain raw biomass/numbers 335 
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and a measure of fishing effort (the duration of tows in minutes).  I therefore assume that 336 

“tow duration” is proportional to area swept /� for surveys #5-7, and that area-swept is 337 

constant for surveys #1-4.  Surveys 338 

US survey protocols (#1-4) are described in Stauffer (2004), and publicly available databases 339 

for these surveys contain biomass-per-unit-area (i.e., samples are standardized to a constant 340 

area swept).  I therefore analyse “biomass-per-area” as catch, and fix area swept /� at a 341 

constant value for all samples in these surveys.  European survey protocols (#5-7) are 342 

described in ICES (2012), and the public Datras database for these surveys contains numbers 343 

caught for multiple length bins and a measure of fishing effort (the duration of tows in 344 

minutes) for each sample, as well as records of individual biomass and length.  I calculate a 345 

length-weight key from records of individual biomass and length, use this key to convert 346 

numbers-at-length to biomass-at-length, and then calculate total biomass for each sample.  347 

 For each survey, I restrict data to the twenty most frequently encountered fishes (see Fig. 348 

2 for annual sample sizes).  Surveys #6-7 had sufficient weight-at-length records to calculate 349 

biomass data for fewer than twenty species, so I used biomass data for as many species as 350 

were available.  All surveys are publicly available and can be accessed using R package 351 

FishData (https://github.com/james-thorson/FishData), which in turn uses R package 352 

icesDatras (https://github.com/ices-tools-prod/icesDatras) to download data for surveys #5-7.   353 

Comparison #1:  Annual-intercept models 354 

I first compare the conventional delta-model and Poisson-link model against the compound 355 

Poisson-gamma distribution using a simple model where each model component has a 356 

separate intercept by year.  Parameters for all models are estimated via maximum likelihood 357 

using release number 1.5.0 (https://doi.org/10.5281/zenodo.834777) of package VAST 358 

(www.github.com/james-thorson/VAST; Thorson and Barnett (2017)), which estimates 359 

parameters using Template Model Builder (Kristensen et al. 2016) within the R statistical 360 
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platform (R Core Team 2015).  Model selection is conducted using the marginal Akaike 361 

information criterion, AIC (Akaike 1974) as is widely used in ecology and fisheries 362 

(Burnham and Anderson 2002), based on the marginal log-likelihood and the number of fixed 363 

effects.  I do not attempt to calculate the conditional AIC (Vaida and Blanchard 2005), which 364 

measures complexity by the number of fixed effects plus the effective degrees of freedom for 365 

random effects.  To my knowledge, conditional AIC has not been used in fisheries science, 366 

and I recommend its exploration as a topic for future research.  The likelihood is identical for 367 

conventional delta-model and Poisson-link models (see Eq. 8 and associated text), and 368 

different than that for the compound Poisson-gamma distribution (because the CPG has a 369 

different exponent for Taylor’s power law, see section Comparison with compound Poisson-370 

gamma distribution).  I therefore present the difference in AIC between the Poisson-link 371 

model and the compound Poisson-gamma model.  I present this comparison to determine 372 

whether the Poisson-link model gains computational efficiency while maintaining 373 

comparable model fit to the CPG model.   374 

Comparison #2:  Spatio-temporal model 375 

I next compare the conventional delta-model and Poisson-link models using a spatio-376 

temporal modelling framework that includes both spatial and spatio-temporal variation 377 

among sites 1 and years 2 and also estimates a fixed effect for each year in each model 378 

component.  I do not include the CPG distribution in this comparison, because it is not 379 

computationally feasible to include the CPG within the spatio-temporal modelling framework 380 

in Template Model Builder (although see Arcuti et al. (2013) or Augustin et al. (2013) for a 381 

spatio-temporal implementations using the mgcv package (Wood et al. 2016) in R).  For the 382 

conventional delta-model, I specify: 383 

logit���1, 2		 = :��2	 + i��1	 + j��1, 2	 (11) 

logL#�1, 2	M = :.�2	 + i.�1	 + j.�1, 2	  
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where intercepts :��2	 and :.�2	 for each year are estimated as fixed effects and: 384 

k�~MVN�o, %�p' q	 (12) 

r��2	~MVN�o, %�s' q	  

and where q is the spatial correlation given estimated decorrelation distance t, %�p'  is the 385 

estimated pointwise variance of spatial variation in �, %�s'  is the estimated pointwise variance 386 

of spatio-temporal variation in �, and k. and r.�2	 are defined identically but with separate 387 

estimates of spatial variance %.p'  and spatio-temporal variance %.s'  (Thorson et al. 2015).  For 388 

the alternative Poisson-link model, I specify: 389 

log�>�1, 2		 = :C�2	 + iC�1	 + jC�1, 2	 (13) 

logLD�1, 2	M = :E�2	 + iE�1	 + jE�1, 2	  

where spatial and spatio-temporal terms (e.g., Eq. 12) are defined identically to the 390 

conventional delta-model (but using different subscripts to indicate the difference in 391 

variables).  Parameters for both conventional and alternative models are estimated using 392 

maximum marginal likelihood, using the Laplace approximation to approximate the integral 393 

across the joint probability of fixed and random effects.  Parameter estimation is again 394 

performed using package VAST, using a stochastic partial differential equation (SPDE) 395 

approximation to the multivariate normal distribution used in spatial and spatio-temporal 396 

processes (Lindgren et al. 2011), and model selection is conducted using AIC.   397 

 After estimating parameters, I then evaluate model performance by comparing the 398 

estimated standard deviation of spatial and spatio-temporal variation for “positive catch 399 

rates” # in the conventional delta-model with these standard deviations for “average weight” 400 

D in the Poisson-link model.  I do not compare the variance for encounter probability � 401 

because it is not easily interpretable in the conventional delta model (as explained in the 402 

previous section “Drawback #1:  Difficulties in interpreting coefficients”).  However, this 403 

comparison is appropriate for positive catch rates # because the Poisson-link model 404 
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decomposes variance in log�#	 into three additive components (see the conversion from D 405 

and � to # in Table 2): 406 

Varulog�#	v = Var wlog x>�yz + Varulog�D	v 
= Var wlog x>�yz + %Ep' + %Es'  

(14) 

whereas the conventional model decomposes variance into two components (see Eq. 11): 407 

Varulog�#	v = %.p' + %.s'  (15) 

Therefore, if knowledge of encounter probability � is informative about positive catch rates 408 

#, then this will cause average weight in the alternative model to have lower spatial and/or 409 

spatio-temporal variance than for positive catch rates in the conventional model (i.e., if 410 

Cov 4log�#	, log 4C�77 > 0 then %Ep' + %Es' < %.p' + %.s' ).  Alternatively, if encounter 411 

probability � is statistical independent or negatively associated about positive catch rates #, 412 

then the opposite will occur (i.e., if Cov 4log�#	, log 4C�77 ≤ 0 then %Ep' + %Es' ≥ %.p' + %.s' ). 413 

 I therefore record (1) the proportion of species for each region where the conventional or 414 

alternative model was selected as parsimonious using the Akaike Information Criterion 415 

(AIC); (2) the pointwise (a.k.a. marginal) standard deviation of spatial and spatio-temporal 416 

variance for both model components; (3) the predictive standard deviation of an abundance 417 

index derived from each model (indices are area-weighted following Thorson et al. (2015)).  I 418 

hypothesize that the Poisson-link model will be more parsimonious than the conventional 419 

delta-model for the majority of species.  The pointwise variances %.p'  and %.s'  from the 420 

conventional model and %Ep'  and %Es'  from the alternative model are directly comparable, and 421 

I hypothesize that spatial and spatio-temporal variances for the alternative model will be 422 

lower because the encounter probability � (estimated from proportion of nearby samples that 423 

encounter the species) is informative about local positive catch rates #.   424 
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Simulation experiment 425 

Finally, I conduct a simulation experiment to evaluate relative performance of three 426 

alternative models (conventional delta-model:  Eq. 1-2;  Poisson-link model: Eq. 3-6;  427 

compound Poisson-gamma model: Eq. 8-10) when estimating a covariate.  This experiment 428 

involves the following steps: 429 

1. I obtain data for a single species (arrowtooth flounder in the EBSBTS data; Survey #1 430 

above) including the depth for each sampling location. 431 

2. I fit each of three models to these data, while including as fixed effect both year (as an 432 

annual intercept) and depth (standardized to have a mean of zero and a standard deviation 433 

of one), and while not including any random effects. 434 

3. For each model in Step #2, I generate 100 simulated data sets, using the estimated depth 435 

effect, variance parameters, and simulating new annual intercepts that have the same 436 

mean and standard deviation as the sample mean and standard deviation of estimated 437 

intercepts (from Step #2).  Each simulated data set has same the annual sample size and 438 

sampling locations as the original data set (in Step #1). 439 

4. For each of these 300 simulated data sets, I fit each of the three models (i.e., 900 model 440 

fits total).  For each model fit, I record the estimated depth effect for both model 441 

components.   442 

I assess model performance in two ways.  First, I compare the estimated depth effect when 443 

fitted to real data (in Step #2) among models to explore how interpretable these estimates are.  444 

Second, I compare the estimated and true depth effect from each combination of simulation 445 

model (in Step #2) and estimation model (in Step #4).  Based on previous arguments, I 446 

hypothesize that the Poisson-link and CPG models will have similar performance when fitted 447 

to data generated by either model (i.e., because both specify depth effects via a log-link for 448 

both model components).   449 
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Results 450 

Available data show that the Poisson-link model results in better fit (a higher log-likelihood 451 

of available data) relative to the compound Poisson-gamma (CPG) model using the simple 452 

“annual intercept” structure (Fig. 3).  Both models have the same number of parameters, and 453 

differ in the relationship between mean and variance for positive catch rates in each year.  454 

This suggests that the Poisson-link model improved computational efficiency without 455 

sacrificing fit relative to the CPG for fish biomass-sampling data distribution given this 456 

simple intercept-only model structure.   457 

 The complicated “spatio-temporal” model applied to these same data shows that using a 458 

Poisson-link model also results in better fit that the conventional delta-model for the vast 459 

majority of populations in 6 out of 7 regions (Fig. 4).  Models again have an identical number 460 

of estimated parameters, so a higher log-likelihood also indicates greater parsimony (e.g., 461 

using the Akaike Information Criterion).  The average AIC weight for the Poisson-link model 462 

is >80% for the same 6 regions.  The exception is for the California Current, where each 463 

model is each selected for 10 of 20 species.  In this region, the implied correlation between 464 

encounter probability and positive catch rates apparently does not improve fit relative to 465 

assuming independence between detection probability and positive catch rates.  However, the 466 

implied correlation does improve fit for the majority of populations in other regions. 467 

 The conventional and alternative models have essentially identical estimates of residual 468 

variation in positive catch rates (%& = 1.25	or	1.26), indicating that both models attribute a 469 

roughly identical portion of sampling variance to the combination of spatial and spatio-470 

temporal variation (Fig. 5).  As hypothesized, however, the Poisson-link model results in a 471 

lower standard deviation for spatial and spatio-temporal variation (Fig. 6).  The standard 472 

deviation is not directly comparable for the first-model component between models, because 473 

%.p and %.s (from the conventional model; top row of Fig. 6) affect # via a logit-link function 474 
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while %Cp and %Cs (from the alternative model; middle row of Fig. 6) affect # via a 475 

complementary log-log link function.  However, the standard deviations for the second-476 

component are comparable (both %.p, %.s and %Ep, %Es affect positive catch rates # via log-477 

link function).  For this second component (Fig. 6, bottom row), the delta-model has a 478 

pointwise standard deviation of 1.47, whereas the Poisson-link model has 1.05 for spatial 479 

variation.  Therefore, including local densities and encounter probabilities (>/�	 as a 480 

predictor of # shrinks the magnitude of unexplained spatial variation by 1 − 5.��-5.��- = 47%.  481 

Similarly, the Poisson-link model shrinks the magnitude of unexplained spatio-temporal 482 

variation by 1 − �.��-�.�h- = 29% on average across populations.   483 

 Despite resulting in better fit and also shrinking the magnitude of explained variation in 484 

positive catch rates, the Poisson-link model does not consistently decrease the log-standard 485 

deviation of confidence intervals for estimated abundance indices relative to the conventional 486 

delta-model (Fig. 7).  Across all seven regions, the Poisson-link model has similar or slightly 487 

wider confidence intervals on average (0-4% wider) for all seven regions, and for almost 488 

every stock within each region.  Inspection of residual diagnostics (Supplementary Materials) 489 

shows little difference in fit between models to two species selected for illustration purposes 490 

(arrowtooth flounder, Atheresthes stomias, in the Eastern Bering Sea, and shortraker rockfish, 491 

Sebastes borealis, in the Aleutian Islands). 492 

 Finally, the simulation experiment (Fig. 8) shows that the Poisson-link model estimates a 493 

2.0% increase in group-density and a -0.9% decrease in biomass-per-group when depth 494 

increases by 1% of its standard deviation for arrowtooth flounder in the Eastern Bering Sea 495 

(Fig. 8, vertical dotted lines in middle columns).  The CPG estimates qualitatively similar 496 

depth effects (a 1.3% increase in group-density and a -0.7% decrease in biomass-per-group), 497 

while the depth effect for encounter probability in the conventional delta model (:�) is highly 498 

different.  This difference arises because the conventional delta-model uses a logit-link 499 
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function, and therefore the estimated depth coefficient for the delta-model cannot be used 500 

calculate a single value for the increase in encounter probability per change in depth (instead 501 

the predicted increase in encounter probability with depth changes each year depending on 502 

the intercept for that year).  The simulation experiment also confirms (1) that all three models 503 

generate unbiased estimates of depth effects when the simulation and estimation models 504 

match (Fig. 8 panels a/e/i), and (2) that the Poisson-link and CPG estimation models have 505 

similar performance to one-another, regardless of whether data are generated by using the 506 

Poisson-link or CPG simulation models (Fig. 8 panels e/f/h/i).  Finally, a comparison of 507 

model-selection results from the simulation experiment (results not shown) confirms that AIC 508 

identifies the data-generating model as the most parsimonious estimation model in nearly 509 

100% of simulation replicates.  This result confirms that AIC is a useful metric to evaluate 510 

model performance using real-world data (i.e., in Fig. 3-4).  511 

Discussion 512 

Delta-models using a logit-link for encounter probabilities and a log-link for positive catch 513 

rates have a long history in fisheries science (Stefansson 1996, Maunder and Punt 2004), and 514 

I have presented three theoretical arguments for why this conventional delta-model is 515 

unsatisfactory, namely (1) difficulties in interpreting how covariates for encounter probability 516 

affect population density, (2) the lack of dependence between encounter probability and 517 

positive catch rates, and (3) the biologically implausible form when removing covariates for 518 

one or the other model component.  I have then shown how these three difficulties are 519 

addressed using a new “Poisson-link” model for biomass sampling data that can be 520 

interpreted as a computationally efficient alternative to the compound Poisson-gamma 521 

distribution.  Application to 113 populations in seven marine regions shows that the Poisson-522 

link model substantially improves fit by using knowledge of encounter probabilities to 523 

decrease otherwise-unexplained variation in positive catch rates.  However, this Poisson-link 524 
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model decreases average confidence-interval width for abundance indices in only two of 525 

seven regions.  I therefore conclude that the Poisson-link model is not likely to substantially 526 

increase the information available to stock assessments when used to estimate abundance 527 

indices.  However, improvements in fit, interpretability, and parsimony relative to a 528 

conventional delta-model are still likely to be useful when estimating habitat maps, 529 

estimating habitat associations, and fitting ecological models to samples of fish biomass.   530 

 I envision several useful avenues for future research.  Most obviously, the Poisson-link 531 

model could be compared more exhaustively with the compound Poisson-gamma 532 

distribution. as well as other alternatives (e.g., the Law-of-Leaks “LoL” model, Ancelet 533 

(2010)), including more detailed comparison of the different mean-variance relationships 534 

implied by these potential models.  This comparison could then identify taxa and model-535 

structures where the CPG, LoL, and Poisson-link models are more or less statistically 536 

efficient.  Given the many potential numerical techniques to implement the CPG (Dunn and 537 

Smyth 2005, 2008, Foster and Bravington 2013), one of these will hopefully prove to be 538 

computationally feasible for the spatio-temporal models as explored here.  I note that the 539 

CPG distribution automatically follows Taylor’s rule (i.e., a power law mean-variance 540 

relationship), and therefore has stronger theoretical support for ecological processes.  I also 541 

recommend future research exploring the potential consequences of the ignoring variation 542 

among samples when predicting biomass per group (i.e., fixing D� = D).  This restriction is 543 

particularly appealing when introducing additional model complexity (i.e., modelling 544 

multiple species simultaneously; Thorson et al. (2016a)).  The current application to 113 545 

populations worldwide shows that there is substantial variation in D even after accounting for 546 

the effect of encounter probabilities, but determining the impact of restricting D� = D on 547 

model performance will require further simulation testing.  This simulation experiment could 548 
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presumably be conditioned on the range of spatial and spatio-temporal variances estimated in 549 

this study.  550 

  Finally, the past decade has seen rapid growth in a variety of useful approximations for 551 

otherwise slow or intractable processes that arise in ecology.  Examples include 552 

approximating individual birth-death demographics using Markov chains (Hubbell 2011), 553 

estimating the likelihood of ecological rates given unobserved (latent) variables via the 554 

Laplace approximation (Skaug and Fournier 2006, Kristensen et al. 2016), or approximating 555 

spatial variation and individual movement using finite-element analysis methods (Lindgren et 556 

al. 2011, Thorson et al. 2017).  Collectively, these approximations are useful when they 557 

permit the development of models with increased realism regarding otherwise-neglected 558 

processes in ecological systems (e.g., a “zero-sum” linkage between regional and local 559 

species pools for describing community richness;  Hubbell (2011)).  In this light, the Poisson-560 

link model can be viewed as a computationally-efficient approximation to a common 561 

sampling design, where biomass samples arise from a weighing individuals that vary in 562 

individual biomass.  I recommend ongoing development and testing of efficient 563 

approximations to sampling processes, and hope that these approximations will collectively 564 

allow biological rates (births, deaths, and movement) to be simultaneously estimated for 565 

entire communities occurring on heterogenous landscapes using available data worldwide.  566 

Hopefully this will then allow us to “fill in the missing spaces” where messy or opportunistic 567 

data exist but ecologist have no previously conducted comparative analyses (e.g., in the white 568 

spaces in Fig. 1).     569 
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Table 1 – Names and symbols used in the main text, indicating whether each refers to data 715 

(“Data”), an index (“Index”), a fixed (“Fixed”) or random (“Random”) effect, or a derived 716 

quantity (“DQ”) 717 

Name Symbol Type 

Observed biomass for a survey sample � �� Data 

Area-swept for sample � /� Data 

Measured covariates for sample � �� Data 

Unmeasured variables (treated as random) for sample � �� Data 

Sample index � Index 

Site index 1  

Time index 2  

Dispersion for probability density function for positive catch rates, 

in conventional or Poisson-link delta-models 
%& Fixed 

Shape parameter for variation in individual weight in CPG 

distribution 
U Fixed 

Fixed effects for delta-model ��, �. Fixed 

Fixed effects for Poisson-link model �C, �E Fixed 

Fixed effects for Compound Poisson-Gamma model �c, �e Fixed 

Variance of random effects affecting �� in conventional delta-model %�p' , %�s'  Fixed 
Variance of random effects affecting #� in conventional delta-model %.p' , %.s'  Fixed 
Variance of random effects affecting >� in Poisson-link delta-model %Cp' , %Cs'  Fixed 
Variance of random effects affecting D� in Poisson-link delta-model %Ep' , %Es'  Fixed 

Random effects affecting �� in conventional delta-model i��1	, j��1, 2	 Random 

Random effects affecting #� in conventional delta-model i.�1	, j.�1, 2	 Random 

Random effects affecting >�  in Poisson-link delta-model iC�1	, jC�1, 2	 Random 

Random effects affecting D� in Poisson-link delta-model iE�1	, jE�1, 2	 Random 

Taylor’s power law parameter b DQ 

Predicted number of individuals in compound Poisson-gamma 

(CPG) distribution 
Q� DQ 

Predicted density for sample � 0� DQ 

Predicted group-density for sample � >�  DQ 

Predicted average-weight for each individuals or group for sample � D� DQ 

Predicted encounter probability for sample � �� DQ 

Predicted biomass when a taxon is encountered for sample � #� DQ 

Predicted individual weight in CPG distribution V� DQ 

Mean of Tweedie parameterization for CPG distribution ]� DQ 

Dispersion of Tweedie parameterization of CPG distribution _� DQ 

 718 

 719 
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Table 2 – Comparison of variables for the conventional delta-model, an alternative Poisson-link model, and the compound Poisson-gamma 720 

(CPG) model including how to calculate biomass density for each model.  We also include equations to convert from variables in the alternative 721 

Poisson-link model (> and D) and CPG model (Q and V) to variables in the conventional delta-model model (� and #), calculate the likelihood 722 

function, and simulate data given each model.  The likelihood function is identical between conventional and Poisson-link delta-models, where 723 

we use a bias-corrected lognormal density function in the main text, ���; #�, %&' 	 = 5�Z+,√'� exp�− "�����Z	6����.Z	6
�,-- *-'+,- �.  However, evaluating 724 

the likelihood function for the Poisson-link model requires converting predicted group density >� and biomass-per-group D� to encounter 725 

probability �� and positive catch rates #�.  The likelihood for the compound Poisson-gamma model is from Foster and Bravington (2013), see 726 

their Eq. 6 (after fixing a typo where they were missing a negative sign before their first summand on the right-hand-side of the 2
nd
 row).   727 

 Conventional delta-model Poisson-link delta-model Compound Poisson-gamma model 

Component 

#1 

 

Encounter probability �: logit���	 = ����� + ����� Group density >: log�>�	 = �C��� + �C��� Group density Q: log�Q�	 = �c��� + �c��� 
Component 

#2 

 

Positive catch rates #: log�#�	 = �.��� + �.��� + log�/�	 Average biomass per group D: log�D�	 = �E� �� + �E� �� 
 

or equivalently, positive catch rates: log�#�	 = log�>�	 − log���	 + �.���+ �.��� 
 

Average biomass per group V: log�V�	 = �e��� + �e��� 

Density 

 

 

Biomass density 0: 0� = �� × #� Biomass density 0: 0� = >� × D� Biomass density 0: 0� = Q� × V� 
Predicted 

encounter 

probability 

 

�� = 11 + expL−����� − �����M �� = 1 − exp�−/� × >�	 �� = 1 − exp�−/� × >�	 
Predicted 

positive 
#� = /� × exp��.��� + �.���	 #� = >��� × D� #� = Q��� × V� 
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catch rate 

 

 

 

Likelihood 

function 

 

 

 

 

 

 

 

 

 

Pr�� = ��	= � 1 − �� if	�� = 0�� × ���; #�, %&' 	 if	�� > 0 
Pr�� = ��	= � 1 − �� if	�� = 0�� × ���; #�, %&' 	 if	�� > 0 

Pr�� = ��	
= � exp�−Q�	 if	�� = 0R���, Q�, U	, V�	 × exp x− ��V� − Q� −  P����	y if	�� > 0 

where 	
R���, Q�, U, V�	 =¡Q�H 4��V�7H¢£! Γ�£U	¦

H[5  

Process to 

simulate 

data 

O~§¨#>P©  ����	 
and ��

= � 0 if	O = 0ªN "log�#�	 − %&'2 , %&'* if	O = 1 
O~§¨#>P©  ����	 

and ��
= � 0 if	O = 0ªN "log�#�	 − %&'2 , %&'* if	O = 1 

N�~OP�11P>�Q�	 R�,H~S/TT/�U6', V�U'	 
and 

�� = «¬
­ 0 if	N� = 0
¡R�,HYZ
H[5 if	N� > 0 
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Fig. 1 – Conceptual diagram showing encounter probability � (top panel y-axis) and positive 730 

catch rate # (bottom panel y-axis) as a function of group density > (x-axis) for the Poisson-731 

link model, given different values for average biomass per group D (solid line: D = 1	kg; 732 

dashed line: D = 2	kg) while holding area-swept constant (/ = 1	km'	.  An increased 733 

average weight results in a smaller increase in � with increasing > (with identical form to a 734 

complementary log-log link function), and also a slower convergence to the linear 735 

relationship between numbers density > and positive catch rates #.   736 

   737 

Page 33 of 42

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

34 

 

Fig. 2 – Spatial location of sampling data for four in North America (middle panel) and three 738 

surveys in Europe (top panel), and annual sample size (bottom panel) for all seven bottom 739 

trawl surveys with publicly available Application Programming Interfaces, used for 740 

comparing performance of conventional and “Poisson-link” delta-models (colors are defined 741 

in the legend in the top panel, identical between panels, and can be used to match spatial 742 

coverage to the annual sample size for each survey in the bottom panel).   743 
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Fig. 3 – AIC weight for the “Poisson-link” model compared with a compound Poisson-745 

gamma (CPG) model (where a species with a AIC-weight of 1.0 means that AIC strongly 746 

favors the Poisson-link over the CPG model) for a simple (fixed intercept-only) model 747 

applied to survey biomass-sampling data in seven bottom trawl surveys (see Fig. 2 for spatial 748 

and temporal coverage of each survey), where each panel also lists the average AIC-weight 749 

for the Poisson-link model, and the number of species analysed in that region.   750 

 751 
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Fig. 4 – AIC weight for the “Poisson-link” model compared with a conventional delta-model 753 

for a complicated (fixed intercept, plus random spatial and spatio-temporal effects) model 754 

applied to survey biomass-sampling data in seven bottom trawl surveys (see Fig. 3 caption 755 

for details) 756 

 757 
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Fig. 5 – Distribution of standard deviation estimates of residual variation in positive catch 759 

rates for a complicated (fixed intercept, plus random spatial and spatio-temporal effects) 760 

model for each of 113 stocks (in total across seven surveys), using the conventional delta-761 

model (solid line) or alternative Poisson-link delta-model (dotted line).  I display the average 762 

standard deviation for each model in the top-right corner (“delta”: conventional delta-model;  763 

“Poisson”: Poisson-link delta-model).   764 

 765 
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Fig. 6 – Standard deviation estimates for a complicated (fixed intercept, plus random spatial 767 

and spatio-temporal effects) model (see Fig. 5 caption for plot details), showing spatial 768 

variation (left column) and spatio-temporal variation (right column).  Standard deviations for 769 

encounter probability � (top row) and density in numbers > (middle row) are not directly 770 

comparable (because encounter probability uses a logit-link, while density uses a log-link), 771 

but standard deviations for positive catch rates in the conventional delta-model and average 772 

weight in the Poisson-link delta model (bottom row) are directly comparable (because both 773 

use a log-link).     774 

  775 

Page 38 of 42

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

39 

 

Fig. 7 – Comparison of estimated log-standard deviation of total population-wide abundance 776 

for the conventional delta-model and alternative Poisson-link model for a complicated (fixed 777 

intercept, plus random spatial and spatio-temporal effects) model applied to biomass-778 

sampling data in seven bottom trawl surveys (the solid line shows a 1-1 relationship, 779 

indicating equal precision between models, and dots below the line indicate greater precision 780 

for the Poisson-link model for a given population and year;  the number in the upper-left 781 

corner indicates the average log-ratio between models) 782 

 783 
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Fig. 8 – Comparison of estimated depth-effects (histogram) vs. true value (dotted vertical 785 

lines) when estimating parameters using the delta model (top row, red: :�;  blue: :.), 786 

Poisson-link model (middle row, red: :C; blue: :E), and compound Poisson-gamma (CPG) 787 

model (bottom row, red: :c; blue: :e), applied to data generated using each model (left 788 

column: delta-model; middle column: Poisson-link model;  right column: CPG) fitted to data 789 

for arrowtooth flounder in the Eastern Bering Sea.  Note that the true depth effect (dotted 790 

vertical line) is identical for each panel in a given column (because that these all use the same 791 

operating model to generate data), and that panels along the diagonal involve a correctly 792 

specified estimation model while other panels involve a mis-specified estimation model.   793 

 794 
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Appendix A:  Comparing the Poisson-link delta model with the compound 1 

Poisson-gamma distribution 2 

The Tweedie distribution is sometimes used to analyse biomass sampling data for marine 3 

fishes (Foster and Bravington 2013, Lecomte et al. 2013).  This distribution specifies 4 

expected catch rates � such that catch-rate � follows a stochastic process with expectation 5 

and variance: 6 

���� = � 
���� ∝ �	 

where this formula for the variance is Taylor’s power law and 
 is the power parameter 7 

(Foster and Bravington 2013).  When 1 < 
 < 2, the Tweedie distribution can be derived 8 

from a compound gamma-Poisson (CPG) distribution, where the number of “individuals” 9 

captured is: 10 

�~���������� 
and where the weight of each individual � follows a gamma distribution: 11 

��~�������, �� 
such that total catch � = ∑ �� �!" .  In the main text, I present a reparameterization in terms of 12 

numbers-density �# and expected individual weight $# for each sample �, where gamma shape 13 

parameter � is constant among samples but expected individual weight $# differs among 14 

samples (where $# = ��#).  Following Foster and Bravington (2013), I specify that where 15 

both numbers-density �# and expected individual weight $# are predicted using a log-linked 16 

linear predictor, and where the offset �# affects expected catch in numbers.  I also show that 17 
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this parameterization generates a similar functional form for expected encounter probability % 18 

and positive catch rates % as our alternative Poisson-link model.   19 

 Unfortunately, the CPG likelihood function (Smyth 1996) is expensive to evaluate: 20 

Pr�(# = �� = ) exp�−�#� if	(# = 0��(# , �#, �	, $#� × exp 3− (#$# − �# − 4�5�(#�6 if	(# > 0 
where ��(#, �#, �	, $#� is a integration-constant that requires calculating the sum of an infinite 21 

series: 22 

��(#, �#, �, $#� = 8�#� 9(#$#:�;�! Γ����
>
�!"  

where this likelihood can instead be approximated using Markov-chain sampling of �# (e.g., 23 

Lauderdale 2012).  However, numerical techniques to approximate this likelihood function 24 

are a topic of ongoing research (Dunn and Smyth 2005, 2008).   25 
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