FN Archimer Export Format PT J TI Surface signature of Mediterranean water eddies in a long-term high-resolution simulation BT AF CIANI, Daniele CARTON, Xavier AGUIAR, A. C. Barbosa PELIZ, A. BASHMACHNIKOV, I. IENNA, F. CHAPRON, Bertrand SANTOLERI, R. AS 1:1,2;2:1;3:3;4:4;5:5,6;6:4;7:7;8:2; FF 1:;2:;3:;4:;5:;6:;7:PDG-ODE-LOPS-SIAM;8:; C1 Univ Brest, CNRS, Lab Oceanog Phys & Spatiale, IRD,Ifremer, Brest, France. CNR, ISAC, Rome, Italy. Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England. Univ Lisbon, Inst Dom Luiz, Fac Ciencias, Lisbon, Portugal. St Petersburg State Univ SPbSU, Inst Earth Sci, St Petersburg, Russia. NIERSC, St Petersburg, Russia. C2 UBO, FRANCE IAMC CNR, ITALY MET OFF, UK UNIV LISBON, PORTUGAL UNIV ST PETERSBURG STATE, RUSSIA NIERSC, RUSSIA IFREMER, FRANCE SI BREST SE PDG-ODE-LOPS-SIAM UM LOPS IN WOS Ifremer jusqu'en 2018 copubli-france copubli-europe copubli-univ-france copubli-int-hors-europe IF 2.384 TC 7 UR https://archimer.ifremer.fr/doc/00405/51672/52220.pdf LA English DT Article DE ;Subsurface Anticyclones;Mediterranean water eddies;Satellite detection AB We study the surface signatures of Mediterranean water eddies (Meddies) in the context of a regional, primitive equations model simulation (using the Regional Oceanic Modeling System, ROMS). This model simulation was previously performed to study the mean characteristics and pathways of Meddies during their evolution in the Atlantic Ocean. The advantage of our approach is to take into account different physical mechanisms acting on the evolution of Meddies and their surface signature, having full information on the 3D distribution of all physical variables of interest. The evolution of around 90 long-lived Meddies (whose lifetimes exceeded one year) was investigated. In particular, their surface signature was determined in sea-surface height, temperature and salinity. The Meddy-induced anomalies were studied as a function of the Meddy structure and of the oceanic background. We show that the Meddies can generate positive anomalies in the elevation of the oceanic free-surface and that these anomalies are principally related to the Meddies potential vorticity structure at depth (around 1000 m below the sea-surface). On the contrary, the Meddies thermohaline surface signatures proved to be mostly dominated by local surface conditions and little correlated to the Meddy structure at depth. This work essentially points out that satellite altimetry is the most suitable approach to track subsurface vortices from observations of the sea-surface. PY 2017 PD DEC SO Deep-sea Research Part I-oceanographic Research Papers SN 0967-0637 PU Pergamon-elsevier Science Ltd VL 130 UT 000423246200002 BP 12 EP 29 DI 10.1016/j.dsr.2017.10.001 ID 51672 ER EF