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Weak-turbulence theory is a statistical framework to describe a large ensemble of
nonlinearly interacting waves. The archetypal example of such system is the ocean surface
that is made of interacting surface gravity waves. Here we describe a laboratory experiment
dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic
state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by
exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to
obtain a measurement of the surface elevation that is resolved in both space and time. Fourier
analysis shows that the laboratory spectra are systematically steeper than the theoretical
predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al.,
J. Phys. Oceanogr. 45, 2484 (2015)]. We identify a strong impact of surface dissipation on
the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We
use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to
identify the active nonlinear coupling. These analyses are also performed on the field data by
Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized
by and shown to involve mostly quasiresonances of waves with second- or higher-order
harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the
field data. We discuss temporal scale separation to explain our observations.

DOI: 10.1103/PhysRevFluids.2.114802

I. INTRODUCTION

Weak-turbulence theory (WTT) is a statistical theory that describes the evolution of an ensemble of
interacting nonlinear waves (wave turbulence). Applicable to a wide variety of dispersive waves (for
reviews, see [1–3]), the theory was developed by Zakharov [4] in plasma physics and Hasselmann
in oceanography for the modeling of surface gravity waves [5]. The application of the theory
relies on two asymptotic hypotheses: The domain must be large and nonlinearities weak. Thus,
a scale separation appears between the linear time of the wave T L = 2π/ω and the typical slow
nonlinear time T NL related to the nonlinear wave interactions. As the nonlinearity is weak, only
resonant interactions are able to develop a long time coupling and then transfer energy. The resonant
conditions impose that the wave vector ki and the frequencies ωi follow

k1 = k2 + k3, ω1 = ω2 + ω3 (1)

at the lowest order that involves three-wave interactions. The number N of waves in an interaction
is generally set by the order N − 1 of the nonlinear term in the dynamic equations. Thus, for
surface water waves for which the nonlinear term is quadratic, we expect N = 3. However, N is
also ruled by the existence or the absence of geometrical solutions to the resonant equations. For
freely propagating waves, these solutions can be found by using the linear dispersion relation of the
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waves. For surface gravity waves, the negative curvature of the dispersion relation ω = √
gk does

not allow for resonant waves with N = 3, and N = 4 should be considered:

k1 + k2 = k3 + k4, ω1 + ω2 = ω3 + ω4. (2)

In the following, when using the words “N -wave resonance” we mean a set of Fourier modes (ω,k)
that fulfills the resonance equation (1) or (2) independently of whether the Fourier mode corresponds
to an actual freely propagating wave (i.e., following the linear dispersion relation) or not. In particular,
it may include bound waves generated by quadratic nonlinearities. This is somewhat different from
the meaning used most often in the oceanographic community, namely, what we call a three-wave
interaction involving a bound component is usually referred to as a four-wave interaction.

Weak-turbulence theory relies on these resonant equations and allows one to solve analytically
the temporal evolution of statistical quantities in several physical systems. In the situation of an
out-of-equilibrium and stationary forced system, it leads to the so-called Kolmogorov-Zakharov
power spectrum [1]. For gravity waves, since the dispersion relation follows a unique power law,
solutions can be found as well using dimensional analysis [2]. It leads to the following prediction for
the spectrum of the surface elevation η: Eη(k) ∝ g−1/2P 1/3k−5/2, where k = ‖k‖, g is the gravity,
and P is the average injected power. The exponent 1/3 = 1/(N − 1) is related to the four-wave
resonance. Using the linear dispersion of surface gravity waves ω = √

gk, it is then possible to
express the spectrum in the frequency space Eη(ω) ∝ gP 1/3ω−4.

Although gravity waves are among the pioneering systems for the study of nonlinear wave
interactions, laboratory observations show a strong variability. Unlike capillary wave assemblies for
which the WTT predictions of the spectral exponent seem consistent with the observations [6–10],
spectra of pure gravity waves are often in contradiction with WTT and show a forcing-dependent
power spectrum. The spectral exponent predicted by WTT is actually observed only for strongly
forced systems, which is obviously inconsistent with the major hypothesis of weak nonlinearity
[7,11–13], whereas the exponent is significantly steeper than the prediction in the weak nonlinearity
limit. The main reason that is generally proposed to explain these discrepancies is a failure of the
condition of an asymptotic large system or the presence of overturning waves. As experiments
always have a finite size, a discretization of the k space appears and may not allow one to satisfy
the resonant conditions [14]. These discrete effects can be overcome when nonlinearities increase:
Nonlinearity induces a finite spectral width of the modes and may allow quasiresonant interactions
between waves that are not strictly on the linear dispersion relation [15,16]. However, this situation is
often in contradiction with the second hypothesis of weak nonlinearities if too strong linearities are
required to overcome the discreteness of the modes. A second cause for the observed differences with
the WTT predictions may be attributed to the presence of dissipation in the inertial range where the
energy cascade is operating. It generates a leak of energy and tends to steepen the power spectrum
of the waves and thus decrease the spectral exponent as it has been observed for flexural wave
turbulence [17,18]. It is well known that surface waves are very sensitive to interface pollution that
forms a very thin layer of organic material at the surface (oil, surfactants, etc.). Due to the presence
of an elastic pollution film at the surface, the stress boundary conditions are changed compared to
the ideally clean case and the induced boundary layer is considerably more dissipative [19]. The
pollution layer is deformed by fluctuations of the surface and it is subject to compressive waves
[20]. These waves, referred to as Marangoni waves, are the main cause of dissipation of surface
waves through the boundary layer with a maximal efficiency at frequencies close to 4 Hz, at which a
resonance appears between the dispersion relations of surface gravity waves and Marangoni waves
[19,21]. The addition of these two effects are most likely responsible for the difference between the
observed wave power spectrum and the WTT predictions.

The goal of the present article is thus to investigate directly the wave interactions that are at
the core of the theory. We perform an analysis of high-order correlation similar to that presented
in previous investigations of surface gravity-capillary wave turbulence [22,23]. The experimental
setup is presented in Sec. II. A first analysis of the power spectrum and the effect of the pollution is
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FIG. 1. Picture of the experimental setup. Waves are generated by vertical oscillations of two wedge wave
makers of size 1 × 1 × 1 m3 (visible in the inset). The deformation of the interface is measured in space and
time using three cameras positioned above the surface. The common field of view of the cameras covers a
surface of 2 × 1.5 m2. We seed the surface with polystyrene buoyant particles of 0.7 mm diameter. We perform
cross correlation between the different views in order to reconstruct the interface deformation η(x,y,t) as well
as the velocity field u = (u,v,w) [24]. A set of four capacitive probes are also used to obtain single-point
measurements.

detailed in Sec. III. Then three-wave and four-wave resonant interactions are investigated in Secs. IV
and V, respectively. We summarize in Sec. VI.

II. EXPERIMENTAL SETUP

Figure 1 shows the general setup of the experiment. Gravity waves are generated in a 13-m-diam
circular tank filled with fresh water at a rest height equal to 70 cm. In order to restrict surface
pollution, the water surface is cleaned using a skimmer (see Fig. 2): The upper water layer flows
in a 1-m cylinder connected to an intermediate tank located below the main one. The water is then
pumped through an active carbon filter before being reinjected at the surface of the wave tank. The
filtration is operated during a few hours in order to obtain the cleanest water surface. Waves are
generated using two vertically oscillating wedge wave makers of size of about 1 × 1 × 1 m3 and
placed at roughly 1.5 m from the wall (Fig. 1). They are driven within a range of 2–4 cm in amplitude
and with a randomly modulated oscillation frequency centered around 1 Hz. The modulation follows
a Gaussian distribution of width 0.15 Hz. The curved walls provide an efficient mixing of the waves
and a rather homogeneous state is observed.

Two methods are implemented to measure the surface deformation: a local one with four capacitive
probes and a time- and space-resolved scheme using three cameras located about 4 m above the
free surface. In the latter case, called stereo-PIV in the following, buoyant particles are seeded at
the surface in order to form a random pattern that is recorded simultaneously by the cameras. A
cross correlation between the three cameras at the same time is first computed to reconstruct the
free surface using a stereoscopic algorithm. In a second step, a particle image velocimetry (PIV)
measurement is performed that provides the velocity field in the framework of each camera. We
finally merge all the PIV fields by using the stereoscopic reconstruction that allows us to combine
correctly the velocity components of distinct cameras at the deformed surface of water. In this way
we obtain a complete two-dimensional (2D) resolved velocity field at the free surface (see [24] for
details of the image processing). In the “classical” stereo-PIV technique the velocity is reconstructed
in the bulk of the fluid in a flat plane illuminated by a laser sheet. Here the velocity field is computed
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FIG. 2. Setup used to clean up the free surface. The upper water layer flows in a 1-m cylinder located near
the wall of the circular tank and connected to an intermediate tank located below the main one. The water is
then pumped through an active carbon filter before being reinjected at the surface at a location diametrically
opposite to the skimmer.

at the surface of water, which is not flat, and it makes the reconstruction algorithm quite different.
For simplicity we still refer to our method as stereo-PIV. The main reason for implementing this
global method instead of using only the stereo surface reconstruction is the improvement of the
dynamical range of the measurement by measuring directly the power spectrum of the speed, which
is mathematically shallower than the one computed from the stereo (the former being the spectrum
of a velocity and the latter of the elevation). We found a gain of about one order in magnitude in
energy [24]. The knowledge of the velocity field also allows us to directly measure the nonlinear
advective term as it will be presented below in Sec. III.

The stereoscopic method allows us to reconstruct the free-surface elevation η over a field of view
of about 2 × 1 m2 with a vertical sensibility close to 0.6 mm [24]. The spatial resolution is restricted
by the inhomogeneous seeding of the particles. We used polystyrene particles with a diameter of
0.7 mm. Due to well known capillary effects, a depression of the free surface is created between
particles that generates an attraction that can act over a distance greater than 10 diameters [25,26].
For very weak waves, the particle dispersion by the waves is not efficient enough to balance this
tendency to coalesce and thus we are not able to reduce the PIV correlation window below a size of
30 pixels, which corresponds to a horizontal resolution of 4 cm.

Figure 3(a) shows a snapshot of the spatial reconstruction of η and Fig. 3(b) an example of
the temporal evolution at one location. Figure 3(c) displays the distribution of η normalized
by the standard deviation wave height ση =

√
〈η2〉 = 1.6 cm (assuming 〈η〉 = 0). We observe a

slight deviation from the Gaussian distribution. Our observation is better described by the Tayfun
distribution [27] simplified by Socquet-Juglard et al. [28]:

P (η) = 1 − 7σ 2
η k2

p

8√
2π (1 + 3G + 2G2)

exp

(
− G2

2σ 2
η k2

p

)
,

(3)
G = √

1 + 2kpσηη − 1,

where kp is the wave number of the maximum peak in the power spectrum. This correction suggest the
presence of harmonic waves (second order) over a Gaussian linear field as it is commonly observed
in gravity wave experiments [13,29]. We thus suspect the presence of significant nonlinearities in
our experiment.
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FIG. 3. (a) Snapshot of the 3D reconstruction of the free-surface elevation η(x,y,t). (b) Temporal evolution
of η at one given location in the image. (c) Probability density function of η normalized by the standard deviation
of the wave height ση = 1.6 cm. The black dashed line is the normal distribution. The red dashed line is the
Tayfun distribution, which incorporates nonlinear second-order effects (see the text).

III. SPECTRAL ANALYSIS

A. Single-point spectra and water pollution

We begin with the analysis of the data recorded by the capacitive probes in a large variety of
regimes to investigate the influence of water pollution. A strong sensitivity to the filtering of the
water surface has been found. Figure 4 compares two pictures of the free surface before and after
the filtration under identical forcing conditions. Before the filtration [Fig. 4(a)], the free surface is
smooth. This suggests the presence of a strong dissipation of short waves. Shortly after stopping the
filtration [Fig. 4(b)], the wave field looks very different with numerous short capillary waves riding
on the crest of longer waves.

A quantification of these visual differences is obtained by computing the frequency power
spectrum Eη(ω) = 〈|η(ω)|2〉 estimated from the capacitive probes. Here η(ω) is the Fourier transform
in time over a given time window and the average 〈·〉 is a temporal average over successive time
windows. Figure 5(a) shows two power spectra corresponding to two experiments with similar
steepness (but slightly distinct forcing intensity) in which data were recorded either before (red
curve) or after filtration (blue curve). As expected by the visualization of the free surface, the
power spectrum obtained with a filtered surface shows an exponent close to −5, whereas the
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FIG. 4. Two pictures of the free surface taken prior to the filtration (left) and after filtering for a few hours.
The intensity of the forcing is equivalent for both case. The filtration changes significantly the surface and
capillary waves become present.

exponent is about −8 for polluted water, which corresponds to a much steeper spectrum. Figure 5(b)
shows several measurements of α obtained by fitting a power law in a range of wave vectors
where the spectrum is behaving as a power law. The fitting range is usually quite narrow, between
ω/2π = 2 Hz and ω/2π = 5 Hz at best. The spectral exponent is shown as a function of the
typical wave steepness εp, which is a usual quantification of the intensity of nonlinearities. As
no direct measurement of the wave steepness is possible with a local measurement, an estimation
from the power spectrum is used: εp = 2kpση, where kp is the wave number of the principal
peak of the power spectrum (same definition as in [29]). Good agreement (within 10%) with the
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FIG. 5. (a) Temporal power spectrum Eη(ω) for two experiments with a similar wave steepness. The red
curve is obtained without filtration of the free surface while the blue is obtained after a few hours of filtration.
The exponent of the spectrum changes from about −8 initially to −5 for the cleanest water. (b) Distribution of
the measured spectral exponent α as a function of the typical steepness of the waves εp (changed by tuning the
magnitude of the forcing). Black triangles are previous measurements reported by Deike et al. [12]. The blue
and red squares are, respectively, our measurements with and without filtration. The single purple point is an in
situ measurement of gravity waves in the Black Sea [30].
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direct measurement ε =
√

(∂η/∂x)2 + (∂η/∂y)2 has been checked with the spatial reconstruction:
εp ≈ σε =

√〈ε − 〈ε〉〉2 (where the slope is averaged in time and space to obtain 〈ε〉). Although
both estimates are aimed at quantifying the typical slope, such good quantitative agreement is most
likely a coincidence rather than a general rule. Black triangles are measurements reported by Deike
et al. [12] in a 15 × 10 m2 wave tank (similar size to ours but with a rectangular shape rather than
circular). Blue and red squares are our measurements with and without the filtration. A good match
with the measurements of Deike et al. [12] is observed, showing that the Deike et al. experiments
are also most likely impacted by surface pollution. However, even with the filtration, the theoretical
exponent α = −4 given by WTT is not reached at low wave steepness. This suggests that the
filtration may not be efficient enough and that a residual pollution remains and steepens the spectra.
Nonetheless, the surface dissipation has clearly been strongly reduced by filtration as the spectral
exponent increases when cleaning the water surface. Another possibility is that finite-size effects
may be dominant. Yet these measurements emphasize that great care must be taken in order to
minimize the problem of water pollution that affects the power spectrum in a major way, even for
gravity wave experiments where the large scale of the experiment may lead one to believe in an
insensitivity to surface contamination. Indeed, the maximum dissipation occurs near 3 Hz, which
corresponds to a wavelength of about 15 cm for a linear wave. To obtain one decade in frequency
of waves that are unaffected by this pollution, we would need to force waves at 0.1 Hz with a
wavelength of about 150 m. So even in our large wave tank, we cannot ignore this pollution. This
condition can be fulfilled in nature as shown by the data point [purple in Fig. 5(b)] extracted from
Black Sea data by Leckler et al. The nonlinearity is much lower than in the experiment, but the
value of the exponent is very close to the theoretical value of −4. The larger-scale separation may
be responsible for this better agreement between observation and theory. The surface pollution may
also have been advected away by the wind that was blowing from the shore so that the water surface
could be very clean as well.

B. Full wave-vector frequency spectrum

In the following, only data recorded in a single experiment with a typical wave steepness of
εp = 0.11 will be presented. We use the stereo-PIV technique to measure the velocity of the
water surface resolved in space and time. Figure 6 shows the full power spectrum of the vertical
velocity Ew(k,ω) = 〈|w(k,ω)|2〉. Figure 6(a) shows the power spectrum Ew(k,ω) integrated over
the direction of k. Energy is mainly concentrated along the linear dispersion relation of deep water
gravity waves ω = √

gk (solid line). However, for higher frequencies, a significant part of the energy
lies away from the linear dispersion relation, in particular along the second harmonic ω = √

2gk

(dashed line). This point can be clearly seen in Fig. 6(b), which shows cross sections in the (kx,ky)
plane of the full spectrum Ew(k,ω) at four given frequencies 1.5, 2.2, 3.2, and 4.2 Hz. In addition
to the observation of a quasi-isotropic system, we notice that at 4.2 Hz a major part of the energy is
concentrated on the second harmonic, which seems to indicate a strong level of nonlinearities. This
observation is potentially related to the limited spatial resolution of the measurement. As we study
large values of ω, harmonic waves have a lower k than linear waves. At the highest frequencies, the
size of the correlation box in the stereo-PIV measurement does not allow us to measure linear waves,
whose amplitude is reduced by filtering, while harmonics remain observable because of their larger
wavelengths at the same frequency. Space-time spectra were also observed recently in experiments
[31,32] by using arrays of local probes and the repeatability of the generation to construct a synthetic
array with sufficient resolution. They observed also energy out of the dispersion relation with the
presence of harmonics. The excitation was rather narrow band and interpreted in the framework of
the nonlinear Schrödinger equation.

In order to perform a quantitative analysis of the strength of the nonlinearities, we com-
pute the nonlinear term uh · ∇η in the kinematic surface condition [a snapshot is shown in
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FIG. 6. (a) Space-time Fourier power spectrum of the vertical velocity of the waves Ew(k,ω) for a typical
experiment where the mean wave steepness is ε = 0.11. The spectrum Ew(k,ω) has been integrated over
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dashed line is its second harmonic. Energy is color coded in logarithmic scale.

Fig. 7(a)]

∂η

∂t
= w − uh · ∇η, (4)

where uh = (u,v) is the horizontal surface velocity. Figure 7(b) shows a computation of the spectral
coherence C between the different terms of Eq. (4) defined as

Cη̇,w(k) = |〈η̇∗(k,t)w(k,t)〉|√
〈|η̇|2〉〈|(w − uh · ∇η)|2〉

, Cη̇,−uh·∇η(k) = |〈η̇∗(k,t)(−uh · ∇η)(k,t)〉|√
〈|η̇|2〉〈|(w − uh · ∇η)|2〉

,

Cη̇,w−uh·∇η(k) = |〈η̇∗(k,t)(w − uh · ∇η)(k,t)〉|√
〈|η̇|2〉〈|(w − uh · ∇η)|2〉

, (5)

where the average 〈·〉 is an average over time and η̇ = ∂η

∂t
.

Using our choice of a common normalization of the coherence allows us to compare directly the
three coherence estimators along the dimension k. The coherence Cη̇,w−uh·∇η (red line) should be
equal to one in a perfect measurement. However, the inevitable presence of noise decreases this level
at high k (where the signal-to-noise ratio is getting lower). We observe that the coherence fraction of
the nonlinear term increases with k up to a maximum around 10% before dropping due to the noise.
The proximity of the black and red curves confirms the weakly nonlinear character of our system,
which is thus expected to be in the range of validity of WTT, as far as the strength of nonlinearity is
concerned.

IV. INVESTIGATION OF THREE-WAVE INTERACTIONS

A. Theoretical analysis

Both temporal and spatiotemporal observed power spectra are inconsistent with the predictions
of WTT possibly due to additional dissipation or finite-size effects as discussed above. Yet if the
theory is applicable to our experiment, resonant interactions should exist and be the main mechanism
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(b) Coherence of the different components of the velocity relation (4) as a function of k. Assuming isotropy, the
coherence is averaged over eight directions of k regularly spread over a circle. The black curve is the coherence
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and −uh · ∇η. The red curve is the coherence Cη̇,w−uh between η̇ and w − uh · ∇η [see (5) for definitions].

to transfer energy. We start our analysis by investigating three-wave interactions. Strictly resonant
theoretical solutions can be found geometrically by using the linear dispersion relation. Figure 8(a)
shows the ensemble of solutions for a given pair (k2,ω2). As expected, the dispersion relation of
ω1 (pink surface) does not intersect with the linear dispersion of ω2 + ω3 (black surface). As it is
well known for pure gravity waves, this means that no exact three-wave solution exists for freely
propagating waves following the linear dispersion relation. However, the analysis of the power
spectrum showed that up to 10% of the energy lies in the second harmonic and some energy is
scattered around the dispersion relation. In the following we consider the correlations between
Fourier modes that may not follow the linear dispersion relation but that are resonant nonetheless,
i.e., that follow the three-wave resonance relations (1). Some of these modes are typically bound
waves that result from the quadratic interaction of two free waves.

We start by including the second harmonic to look for resonant solutions as the red surface
ω1 = √

2gk1 in Fig. 8(a). One observes the existence of an intersection with the black surface
ω2 + ω3, suggesting the possibility of resonant interactions involving waves that do not necessarily
fulfill the linear dispersion relation. Figures 8(b) and 8(c) show two cross sections of Fig. 8(a) at
given planes ky/2π = 0 m−1 and ω/2π = 3.56 Hz, respectively, for a better view of the solutions
(green circles). Among these solutions, one is the special case of a wave interacting with itself to
form its own harmonic, k2 = k3 = k0, so that k2 + k3 = k1 = 2k0 (with similar equations for ω).

We also note that in the vicinity of this bound wave solution, the two dispersion curves (black
and red curves) remain very close to each other. This may allow quasiresonant interactions

k2 + k3 = k1, ω2 + ω3 = ω1 + δω, (6)

where δω is the detuning that will allow resonance if the width 
� of the power spectrum is larger
(
� > δω). From Fig. 6 it can be seen that 
� varies significantly across the Fourier space but it
takes typical values of the order of a few tenths of a hertz, while Fig. 8(b) shows that the distance
between the solid red and black curves remains extremely small across a wide interval around
their intersection (at the center of the figure). From this observation we may expect quasiresonant
interactions over an interval of frequencies of width about 1 Hz. However, 
� is far too small to
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2gk1.

The intersection of the red and the black surface indicates the presence of resonant solutions when the wave
labeled 1 is a second harmonic of the linear dispersion relation and waves 2 and 3 are linear waves. These
are usually known as bound harmonics where k2 + k3 = 2k1. (b) Cross section of the 3D representation for
ky/2π = 0 m−1. The third harmonic ω = √

3gk is added as the red dashed line and the second harmonic
ω3 = √

2gk3 is added as the black dashed line starting from the point (k2,ω2). Exact solutions are indicated by
the green circles. Note that in the vicinity of some solutions (large values of kx on the right-hand side of the
figure), the two dispersion relations remain close for a large range of frequencies, suggesting the possibility of
quasiresonance (see the text). (c) Cross section of (a) for a given frequency ω/2π = 3.56 Hz. Exact solutions
are plotted with green circles.
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FIG. 9. (a) Normalized third-order correlation Cω
3 (ω1,ω2,ω3) for a given wave ω2/2π = 2 Hz. A high

concentration of correlations is present along the resonant line ω1 = ω2 + ω3, suggesting the presence of
three-wave interactions. (b) Bicoherence Bω

3 (ω2,ω3). A red spot is visible around ω2 = ω3 = 2π × 2.5 Hz.

generate resonant interactions between the two linear branches (pink and black lines, separated by
about 1 Hz), in contrast to what has been observed in gravity-capillary waves turbulence [22,23].

The second harmonic ω1 = √
2gk1 and the third harmonic ω1 = √

3gk1 are also shown in Fig. 8(b)
with the black dashed line and the red dashed line, respectively. They show similar features, so one
could expect quasiresonances in between the second and third harmonics.

B. Correlations

Three-wave resonant interactions are investigated using third-order correlations. We start the
analysis in frequency space using the third-order correlation of the vertical velocity

c3
ω(ω1,ω2,ω3) = 〈w∗(ω1)w(ω2)w(ω3)〉 (7)

in order to check the presence of resonant frequency triads satisfying ω1 = ω2 + ω3. Figure 9(a)
shows this correlation estimator for a given frequency ω2/2π = 2 Hz and normalized to ensure
0 � C3

ω � 1 [33]:

C3
ω(ω1,ω2,ω3) = c3

ω(ω1,ω2,ω3)√
〈|w(ω2)w(ω3)|2〉〈|w(ω1)|2〉

. (8)

The resonant line ω1 = ω2 + ω3 is clearly observed above the statistical noise (which level is
about 10−2.5), indicating the presence of three-wave resonances in the system. Figure 9(b) shows the
bicoherence

B3
ω(ω2,ω3) = C3

ω(ω2 + ω3,ω2,ω3), (9)

which corresponds to the extraction of the resonant line of C3
ω. A wide spot of strong correlations

(about 25%) appears when ω2 � 2.5 Hz and ω3 � 2.5 Hz as well. The high correlation values for
similar values of ω2 and ω3 indicate that coupling with harmonic waves may be present close to the
bound waves solutions where ω2 is equal to ω3.

To obtain a more precise view of the coupling we have to extend the analysis in the wave number
and frequency domain in order to distinguish the different branches (linear and harmonic). This can
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be done with the space and time bicoherence

B3
k,ω(k2,k3,ω2,ω3) = 〈w∗(k2,ω2)w(k3,ω3)w(k2 + k3,ω2 + ω3)〉√

〈|w(k2,ω2)w(k3,ω3)|2〉〈|w(k2 + k3,ω2 + ω3)|2〉
. (10)

The large dimensionality of parameter space imposes that the choice of the value of some components
be more easily understandable. To be in the same representation as the theoretical solution presented
in Fig. 8, we impose a wave (k2,ω2) on the linear dispersion relation. In order to improve the
statistical convergence, we average the bicoherence over eight directions of the wave vector k2

(isotropically spread in direction). Figure 10 shows four cross sections of B3
k,ω for |k2|/2π = 4 m−1.

The cross section corresponding to the unidirectional solutions (ky = 0) is plotted in Fig. 10(a) in
the same representation as in Fig. 8(b). Solid and dotted lines represent the linear dispersion relations
and the second harmonic with the same color coding as in Fig. 8. The correlation presents several
areas of high intensity above 10%. Two of them are located near the exact bound wave solution. We
note also that these high correlation regions show a strong spreading lying on the region where the two
dispersion curves (linear and harmonic) remain close. This confirms the presence of quasiresonant
interactions in the system that are of the same order of magnitude as the exact bound solution. It is
noticeable that the exact bound waves solution does not display any specificity as compared to the
approximate resonances. As expected, there is no quasiresonant interaction between the two linear
branches because their separation is stronger than the spectrum width 
k/2π ≈ 0.5 m−1.

Figures 10(b)–10(d) show three cross sections at a given frequencies. Again, we observe that high
correlation regions are located near the intersections of black and red curves (exact resonances). As
seen before in the case of the unidirectional cross section, a spread of the high correlations is present
due to quasiresonant interactions. This leads to a uniform area of correlation that covers an angular
distribution of about 90◦ around the direction of k2. Some other areas of high correlation can be
seen, in particular for negative k3 (black solid curve) or for negative frequencies ω3 [in Fig. 10(a),
correlations around 0–2 Hz]. These results are puzzling since no exact or quasiresonant solutions can
be found to explain their presence. Moreover, the Fourier component at (k1,ω1) has extremely weak
energy in the power spectrum. We suspect an effect of coupling due to partially standing waves.
Indeed, due to the finite size of the container, all waves are not fully freely propagating waves. Part
of the energy is due to standing waves made of the superposition of waves at several wave vectors
(but the same frequency) that are phase matched. This could cause additional spurious resonances
among seemingly nonresonant waves. However, no actual proof can be proposed at this time.

C. Field data from the Black Sea

Due to the data set of in situ stereoscopic measurements in the Black Sea by Leckler et al.
[30], we are able to reproduce and compare the previous correlation analysis with actual sea waves.
Surface gravity waves have been measured using a stereoscopic measurement based on a direct
cross correlation of the sea using natural patterns generated by the surface roughness (ripples) and
impurities under diffuse lightning. The measurement is performed over a field of about 15 × 20 m2

for 30 min. This larger size allowed by nature is thus far enough to diminish strongly the effects of
surface pollution caused by Marangoni waves as discussed above. Figure 11(a) shows a reproduction
of their measured power spectrum Eη(k,ω). Energy is present at frequencies ranging from 0.3 Hz to
roughly 2 Hz. Like for the experiment presented above, the energy is mainly distributed around the
linear dispersion relation, but a small fraction of the energy is on the second harmonic. The main
difference is that waves are quite anisotropic (see the inset, which shows the spatial distribution of
the energy at 1 Hz, showing that only negative kx are present) instead of being in an isotropic system
as in our experiment.

Figure 11(b) displays a cross section of the 3D bicoherence similarly to Fig. 10(a) above at
ky/2π = 0 m−1. Although the estimator is less converged than for the experiment due to a smaller
amount of data, we clearly observe the presence of a high correlation area in the proximity of the
black and the red curve (exact solutions). Like for our experiment, no quasiresonant interactions
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FIG. 10. The 3D bicoherence B
k,ω
3 (k2,k3,ω2,ω3) for a given wave (k2,ω2) (with |k2|/2π = 4 m−1). In order

to allow a direct comparison, the axes are the same as those of Fig. 8 and show k1 = k2 + k3 and ω1 = ω2 + ω3.
The x axis is given by the direction of k2. The black arrows show the wave (k2,ω2). (a) Cross section in the
plane (kx,ky = 0,ω). The red and black curves are similar to the ones shown in Fig. 8. Exact resonances with
harmonics are at the intersection of a black curve and a red one. A high correlation intensity is observed in these
regions, suggesting the occurrence of interaction between linear waves and harmonics. (b)–(d) Cross sections
in the planes corresponding to given values of (b) ω/2π = 4, (c) ω/2π = 5, and (d) ω/2π = 6 Hz. An angular
dispersion of the interactions of about 90◦ is observed.

between the two linear branches (pink and black curves) can be seen. Finally, the main difference
with the experiment is the absence of the unexplained correlations on the negative parts of (k2,ω2).
This absence supports the suggestion that they may be related to standing waves in our experiment
since these are not present in this field data set.
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FIG. 11. (a) Power spectrum Eη(k,ω) of surface gravity waves measured by Leckler et al. [30] in the Black
Sea. The inset shows the cross section of the complete spectrum at a given frequency of 1 Hz. The solid line
is the linear dispersion relation and the dashed line is the second harmonic. (b) Cross section along k2,ω2

(ky/2π = 0m−1) of the 3D bicoherence B
k,ω
3 (k2,k3,ω2,ω3) for a given wave (k2,ω2) computed from the same

data set. The red and black curves are similar to the ones shown in Fig. 8. Exact solutions are in the region
where the black curve intersects the red one. A high correlation intensity is observed at this region, suggesting
the occurrence of quasiresonant interaction between linear waves and harmonic.

V. FOUR-WAVE INTERACTIONS

The previous analysis shows that three-wave coupling exists between linear and harmonic waves,
both in the experiment and in the sea. We now investigate four-wave interactions that are actually
predicted to operate the turbulent cascade by WTT. We compute the fourth-order correlation in
frequency normalized by the power spectrum

C4
ω(ω1,ω2,ω3,ω4) = 〈w∗(ω1)w∗(ω2)w(ω3)w(ω4)〉√

〈|w(ω1)w(ω2)|2〉〈|w(ω3)w(ω4)|2〉
. (11)

Figure 12(a) shows this estimator for two arbitrarily given frequencies ω1/2π = 2.2 Hz and ω3/2π =
3.2 Hz at which a significant value of the spectrum is observed. Unlike the third-order correlation,
their is no clear evidence of a signal on the resonant line for this pair (ω1,ω3). A significant correlation
area is emerging, but only at the highest frequencies (ω2/2π � 5 Hz). Its origin is unclear and may
be due to noise as the spectrum is very weak at these frequencies and mostly at the noise level.

In order to test more resonant configurations beyond this given pair, we compute the tricoherence

T 4
ω (ω1,ω3,ω4) = C4

ω(ω1,ω3 + ω4 − ω1,ω3,ω4)√
〈|w(ω1)w(ω3 + ω4 − ω1)|2〉〈|w(ω3)w(ω4)|2〉

. (12)

We give one value of the frequency ω2 to obtain 2D pictures. Figure 12(b) displays the tricoherence
for ω1/2π = 2.2 Hz. The two red lines are the trivial solutions corresponding to ω3 = ω1 and
ω4 = ω2 (or ω4 = ω1 and ω3 = ω2) and thus their value is not relevant. At low frequencies, where
linear waves exists (with a significant level of energy in the spectrum), there is still no evidence of
four-wave interaction since the observed coherence values are very weak. They are most likely not
converged and they remain close to the statistical background noise. This pattern has been checked
for other given values of the frequency and leads to the conclusion that no four-wave correlations
are observed at our convergence level for this experiment.

We then repeat the same analysis for the Black Sea data set. Figure 13 shows a sample of both the
fourth-order correlation C4

ω and the tricoherence T 4
ω . Although the statistical convergence is not as

good as in the experiment, a line of significant correlation levels shows up in Fig. 13(a), in contrast
with what was observed in the experiment. The tricoherence [Fig. 13(b)] displays a significant value
in a large part of the frequency space. In particular, there is no special accumulation close to the trivial
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FIG. 12. (a) Normalized fourth-order correlations Cω
4 (ω1,ω2,ω3,ω4) for two given waves ω1/2π = 2.2 Hz

and ω3/2π = 3.2 Hz in the experiment. A very weak value of correlations is present on the resonant line
ω1 + ω2 = ω3 + ω4 (dashed line) at the highest frequencies (ω2/2π > 5 Hz). At low frequencies where linear
waves exist, there is no evidence of four-wave interactions at the level of convergence, which is about 10−2.5.
(b) Tricoherence Bω

4 (ω1,ω3,ω4). Like in (a), only a weak correlation is observed at the highest frequencies. The
light blue on the bottom left corner of the figure (ω3/2π < 2.2 Hz) is not statically converged. The two red
lines correspond to the trivial solution ω3 = ω1 and ω4 = ω2 (or ω4 = ω1 and ω3 = ω2).

point ω1 = ω2 = ω3 = ω4 (intersection of the two red lines), which mean that the wave coupling is
not necessarily strongly local. We note some organization with lines, suggesting that a few modes are
more effective (at 0.7 or 1.4 Hz, for instance). Due to the superposition of solutions in the frequency
space, it is not possible to get more information from these plots. The next step is thus to do a space
and time analysis like for the three-wave analysis. Unfortunately, the number of realizations that
permits us to converge a statistical estimator decreases strongly in a full (k,ω) domain due to the
impossibility of performing spatial averaging. Thus, it does not permit us to converge significantly
the space and time tricoherence for which the correlation level is weaker than the one observed in
the three-wave analysis.

VI. DISCUSSION AND SUMMARY

The correlation analysis that we presented confirms the presence of resonant interactions among
pure gravity surface waves. However, the first results do not correspond to the theoretical expectations
of four-wave interactions. Although no three-wave interactions were observed between linear waves
as predicted by the theory, we actually observed three-wave coupling between the linear and harmonic
components. These kinds of coupling are usually known as bound waves, where a wave interacts
with itself to form its own harmonic. However, the resonances are not restricted to strict harmonics
and we observe also quasiresonant interactions that appear to be very active as well. These solutions
enhance the potential efficiency of these interactions among all possible bound waves. The remaining
question is the contribution of the three-wave coupling in the generation of the global energy cascade.
Indeed, despite strong correlations, the energy of the harmonic branch remains low (maximum of
10%). A bound wave resulting from the quadratic interaction of free waves, three-wave interaction
involving a bound wave can appear as a four-free-wave interaction. This is actually the meaning of
the normal-form reduction that was performed in the application of weak-turbulence theory [5,34].
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FIG. 13. (a) Normalized fourth-order correlation Cω
4 (ω1,ω2,ω3,ω4) computed for the in situ data set. Two

arbitrary frequencies are given as ω1/2π = 2.2 Hz and ω3/2π = 3.2 Hz. A significant level of statistically
converged correlation is present along the resonant line ω1 + ω2 = ω3 + ω4 (dashed line). (b) Tricoherence
T ω

4 (ω1,ω3,ω4) for ω1/2π = 1 Hz. The two dark red lines correspond to the trivial solution ω3 = ω1 and ω4 = ω2

(or ω4 = ω1 and ω3 = ω2). A significant level of correlation can be seen out of these trivial lines.

The observed resonant coupling involving the second harmonics and near-resonant bound waves
may be a privileged route for the global four-wave process.

Surprisingly, the fourth-order correlation analysis in our experiment does not show traces of
four-wave interactions that are supposedly at the core of the energy transfers for surface gravity
waves. A turbulentlike spectrum was observed, which suggests that an energy cascade is operating
nonetheless. Two hypotheses may be proposed. The first one is that our convergence level remains
too low to permit the observation of a possible very weak level of four-wave correlations. The second
hypothesis is that the dissipation is too strong and breaks the scale separation that is the core of the
theory. The typical four-wave nonlinear time scale of energy transfers for this experiment can be
roughly estimated as T NL

4w = 1
ε2(4−2)

2π
ω

≈ 7000 2π
ω

[2]. It may become larger than the typical time scale
for the dissipation T d . The latter decreases strongly with the presence of Marangoni waves and it has
been estimated by studying the decrease of the energy when the forcing is stopped. Figure 14 shows
this evolution for four given frequencies. We observe an exponential decrease e−tτ that permits
us to define the dissipation time as T d ≈ τ . We found an order of magnitude T d ≈ 1000 2π

ω
for

the range of our measured waves. The prediction for the three-wave nonlinear time scale gives
T NL

3w = 1
ε2(3−2)

2π
ω

≈ 80 2π
ω

. Thus we have

T L < T NL
3w < T d < T NL

4w (13)

and this supports the situation where only three-wave interactions are observed. From this
observation, we may propose that the additional dissipation does not permit the usual wave resonant
interactions and the cascade may thus be generated through three-wave interactions using the
harmonic branch.

Since the scales are much larger in the ocean, the field measurements are less affected by the
additional dissipation by the Marangoni waves. We then expect to observe classical wave turbulence
through only four-wave interaction for weak enough waves if T NL

4w < T d . Indeed, the four-wave
correlations show a signature of four-wave interactions for the Black Sea data set. The mean level
of these interactions remains lower (about 5%) than the three-wave interactions with the harmonic
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FIG. 14. Time evolution of the power spectrum Eη(ω,t) for four frequencies 1, 2, 3, and 4 Hz. An exponential
decrease is observed (dashed lines) and leads to a typical time scale τ following e−t/τ . We assume that the
dissipative time scale T d is T d ≈ τ .

branch (about 25%) that are also observed in this regime. However, due to the weak energy level
of the harmonic branch, it is possible that a significant part of the transfer occurs through these
four-wave interactions. This observation is in agreement with the exponent of the power spectrum,
which is close to the theoretical prediction while keeping a very weak nonlinearity with εp = 0.02
as shown in Fig. 5. Nevertheless, it should be noted that although the wave steepness is much
lower in the Black Sea than in the experiment (by roughly one order of magnitude), the harmonic
branch remains very visible in the spectrum and the three-wave correlation level remains quite high.
This observation suggests that, for a finite level of nonlinearity, the three-wave resonant coupling
with the harmonic that we describe here may actually be an important mechanism for the energy
redistribution even when four-wave coupling is operating.

To sum up, four-wave interactions seem to exist, but their very low occurrence probability and
their associated long time scale make them very sensitive to the presence of dissipation in the inertial
range. This is especially the case of very weakly nonlinear regimes where the nonlinear interaction
time becomes very high. Our observations suggest an additional, faster, and thus more efficient
three-wave coupling mechanism for the energy transfers. The question is whether these three-wave
interactions can play a role in the turbulence cascade and replace the weak-turbulence four-wave
process.
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