Lagrangian ocean analysis: fundamentals and practices

Type Article
Date 2018-01
Language English
Author(s) Van Sebille Erik1, 2, 3, Griffies Stephen M.4, Abernathey Ryan5, Adams Thomas P.6, Berloff Pavel7, Biastoch Arne8, Blanke Bruno9, Chassignet Eric P.10, Cheng Yu11, Cotter Colin J.7, Deleersnijder Eric12, 13, 14, Doos Kristofer16, Drake Henri F.17, 18, 19, Drijfhout Sybren20, Gary Stefan F.6, Heemink Arnold W.14, Kjellsson Joakim21, 23, Koszalka Inga Monika30, Lange Michael22, Lique CamilleORCID28, Macgilchrist Graeme A.24, Marsh Robert20, Adame C. Gabriela Mayorga25, McAdam Ronan1, 2, Nencioli Francesco26, Paris Claire B.11, Piggott Matthew D., Polton Jeff A.25, Ruehs Siren8, Shah Syed H. A. M.14, 15, Thomas Matthew27, Wang Jinbo28, Wolfram Phillip J.29, Zanna Laure23, Zika Jan D.1, 2, 31
Affiliation(s) 1 : Imperial Coll London, Grantham Inst, London, England.
2 : Imperial Coll London, Dept Phys, London, England.
3 : Univ Utrecht, Inst Marine & Atmospher Res, Utrecht, Netherlands.
4 : NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
5 : Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA.
6 : Scottish Assoc Marine Sci, Oban, Argyll, Scotland.
7 : Imperial Coll London, Dept Math, London, England.
8 : GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany.
9 : CNRS IFREMER IRD UBO, UMR 6523, Lab Oceanograph Phys & Spatiale, Brest, France.
10 : Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA.
11 : Univ Miami, Dept Ocean Sci, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA.
12 : Catholic Univ Louvain, Inst Mech Mat & Civil Engn, Louvain La Neuve, Belgium.
13 : Catholic Univ Louvain, Earth & Life Inst, Louvain La Neuve, Belgium.
14 : Delft Univ Technol, Delft Inst Appl Math, Delft, Netherlands.
15 : Sukkur Inst Business Adm, Dept Matemat, Sukkur, Pakistan.
16 : Stockholm Univ, Bolin Ctr Climate Res, Dept Meteorol, Stockholm, Sweden.
17 : Princeton Univ, Dept Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
18 : MIT, Cambridge, MA 02139 USA.
19 : Woods Hole Oceanog Inst, Joint Program Oceanog, Woods Hole, MA 02543 USA.
20 : Univ Southampton, Southampton, Hants, England.
21 : British Antarct Survey, Cambridge, England.
22 : Imperial Coll London, Dept Earth Sci & Engn, London, England.
23 : Univ Oxford, Dept Phys, Oxford, England.
24 : Univ Oxford, Dept Earth Sci, Oxford, England.
25 : Natl Oceanog Ctr, Liverpool, Merseyside, England.
26 : Plymouth Marine Lab, Remote Sensing Grp, Plymouth, Devon, England.
27 : Yale Univ, Sch Geol & Geophys, New Haven, CT 06520 USA.
28 : CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA.
29 : Los Alamos Natl Lab, Theoret Div Fluid Dynam & Solid Mech, Climate Ocean & Sea Ice Modeling, Los Alamos, NM USA.
30 : Christian Albrechts Univ Kiel, Kiel, Germany.
31 : Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia.
Source Ocean Modelling (1463-5003) (Elsevier Sci Ltd), 2018-01 , Vol. 121 , P. 49-75
DOI 10.1016/j.ocemod.2017.11.008
WOS© Times Cited 269
Keyword(s) Ocean circulation, Lagrangian analysis, Connectivity, Particle tracking, Future modelling

Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.

Full Text
File Pages Size Access
Publisher's official version 92 2 MB Open access
Top of the page

How to cite 

Van Sebille Erik, Griffies Stephen M., Abernathey Ryan, Adams Thomas P., Berloff Pavel, Biastoch Arne, Blanke Bruno, Chassignet Eric P., Cheng Yu, Cotter Colin J., Deleersnijder Eric, Doos Kristofer, Drake Henri F., Drijfhout Sybren, Gary Stefan F., Heemink Arnold W., Kjellsson Joakim, Koszalka Inga Monika, Lange Michael, Lique Camille, Macgilchrist Graeme A., Marsh Robert, Adame C. Gabriela Mayorga, McAdam Ronan, Nencioli Francesco, Paris Claire B., Piggott Matthew D., Polton Jeff A., Ruehs Siren, Shah Syed H. A. M., Thomas Matthew, Wang Jinbo, Wolfram Phillip J., Zanna Laure, Zika Jan D. (2018). Lagrangian ocean analysis: fundamentals and practices. Ocean Modelling, 121, 49-75. Publisher's official version : , Open Access version :