Food-web complexity across hydrothermal vents on the Azores triple junction

Marie Portaila,⁎, Christophe Brandilyb, Cécile Cathalotc, Ana Colaçod, Yves Gélinasa, Bérengère Hussonb, Pierre-Marie Sarradinb, Jozée Sarrazinb

a GEOTOP and Chemistry and Biochemistry Department, Concordia University, Montréal, Canada
b IFREMER, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, F-29280 Plouzané, France
c IFREMER, Centre de Bretagne, REM/GM, Laboratoire Cycles Géochimiques et Ressources, F-29280 Plouzané, France
d MARE, Marine and Environmental Sciences Centre, Universidade dos Açores, Departamento de OceanoGRAFia e Pesca, Horta, Açores, Portugal

ARTICLE INFO

Keywords:
Mid-Atlantic Ridge
Hydrothermal vents
Food webs
Stable isotopes
Functional traits

ABSTRACT

The assessment and comparison of food webs across various hydrothermal vent sites can enhance our understanding of ecological processes involved in the structure and function of biodiversity. The Menez Gwen, Lucky Strike and Rainbow vent fields are located on the Azores triple junction of the Mid-Atlantic Ridge. These fields have distinct depths (from 850 to 2320 m) and geological contexts (basaltic and ultramafic), but share similar faunal assemblages defined by the presence of foundation species that include Bathymodiolus azoricus, alvinocarid shrimp and gastropods. We compared the food webs of 13 faunal assemblages at these three sites using carbon and nitrogen stable isotope analyses (SIA). Results showed that photosynthesis-derived organic matter is a negligible basal source for vent food webs, at all depths. The contribution of methanotrophy versus autotrophy based on Calvin-Benson-Bassham (CBB) or reductive tricarboxylic acid (rTCA) cycles varied between and within vent fields according to the concentrations of reduced compounds (e.g. CH₄, H₂S). Species that were common to vent fields showed high trophic flexibility, suggesting weak trophic links to the metabolism of chemosynthetic primary producers. At the community level, a comparison of SIA-derived metrics between mussel assemblages from two vent fields (Menez Gwen & Lucky Strike) showed that the functional structure of food webs was highly similar in terms of basal niche diversification, functional specialization and redundancy. Coupling SIA to functional trait approaches included more variability within the analyses, but the functional structures were still highly comparable. These results suggest that despite variable environmental conditions (physico-chemical factors and basal sources) and faunal community structure, functional complexity remained relatively constant among mussel assemblages. This functional similarity may be favoured by the propensity of species to adapt to fluid variations and practise trophic flexibility. Furthermore, the different pools of species at vent fields may play similar functions in the community such as the change in composition does not affect the overall functional structure. Finally, the absence of a relationship between the functional structure and taxonomic diversity as well as the high overlap between species’ isotopic niches within communities indicates that co-occurring species may have redundant functions. Therefore, the addition of species within in a functional group does not necessarily lead to more complexity. Overall, this study highlights the complexity of food webs within chemosynthetic communities and emphasizes the need to better characterize species’ ecological niches and biotic interactions.

1. Introduction

Food-web studies — still in their infancy at hydrothermal vents — assess energy transfers within and between ecosystems, species ecological niches, biotic interactions, as well as the relationships between community structure and ecosystem functioning (Govenar, 2012). Vent food webs can be complex. In addition to inputs from the ocean surface (photosynthesis-derived organic matter (OM)), local primary production involves various chemosynthetic pathways (Hügler and Sievert, 2011; Karl, 1995) among which thiotrophy and methanotrophy usually dominate (ex.: Conway, 1994; Levin and Michener, 2002a). Consumers include symbiotic species, detritivores, bacterivores, scavengers, parasites and predators as well as migrant species (Bergquist et al., 2007; Govenar, 2012; Tunnicliffe, 1991). Although some consumers are
highly specialized (Govenar et al., 2015; Levin et al., 2016), the trophic flexibility of many heterotrophic species suggests a high degree of generalism (Bell et al., 2016; Levin et al., 2009; Portail et al., 2016). In deep-sea chemosynthetic ecosystems, predation pressure seems relatively low (Bergquist et al., 2007; Portail et al., 2016; Van Dover and Fry, 1994), and many studies have confirmed that habitat and/or trophic partitioning are important structuring processes at the community scale (Beinart et al., 2012; Cordes et al., 2013c; Govenar et al., 2015; Levesque et al., 2003; Levin et al., 2015, 2013; Portail et al., 2016). Therefore, species coexistence in vent communities is most likely driven by a species sorting model. Accordingly, metacommunity models predict that isolated ecosystems with low diversity and heterogeneous environmental conditions—such as hydrothermal vents—tend to follow niche models in contrast to continuous ecosystems with high diversity and homogeneous environmental conditions—such as deep-sea photosynthesis-based ecosystems—that tend to correspond to a neutral model (Gage, 2004; Gravel et al., 2006). In addition to interspecific competition, positive biotic interactions, such as facilitation and mutualism, are assumed to be well developed in vents, with evidence that foundation species play a major role in structuring communities.

The Azores triple junction (in the northern Mid-Atlantic Ridge (MAR)) hosts several hydrothermal vent fields that are characterized by different geological contexts. The Menez Gwen (MG) and Lucky Strike (LS) vent fields are controlled by magmatic processes and found in a basaltic substrata while Rainbow (RB) is under tectonic control in an ultramafic lithology (review by Fouquet et al., 2013). These geological contexts together with the distinct depths, ranging from 850 to 2320 m, lead to different fluid chemistries in the three fields (Charlou et al., 2002, 2006). Active areas of the vent fields are colonized by two or three types of faunal assemblages defined by the visual dominance of either Bathymodiolus azoricus mussels, alvinocarid shrimps or, more recently discovered, small gastropods (Desbruyères et al., 2000; Desbruyères et al., 2001; Sarrazin et al., in preparation). These faunal assemblages are distributed according to their exposure to fluid flow and site morphology. At LS and MG, swarms of shrimp assemblages surrounding the hot fluids occur in close vicinity to emission sites (~0–1 m), mussels are found at greater distances from the emissions sites (~25 cm to 3 m) on rock surfaces (Cuvelier et al., 2009; Marcon et al., 2013) and gastropods in intermediate habitats on friable substratum (Sarrazin et al., in preparation). Variation in faunal community structure across vent fields can be related to a series of factors including the physical mechanisms that connect or isolate them, local physico-chemical conditions, biological processes as well as habitat instability (see review in Baker et al., 2010). Many of the potential influencing factors are interconnected, making it difficult to discriminate their respective contributions. Environmental factors can be classified as exogenous (e.g. biogeographical barriers, depth, distance) or endogenous (e.g. fluid physico-chemistry, substratum nature) to vents, thus providing a simplified context. Comparisons of similar faunal assemblages across vent fields can be used to discount, at least partially, factors related to the engineering role of foundation species and their positions along the fluid-flux gradient. By doing so, the focus hones in on the role of endogenous factors related to the geological settings of vent fields against all exogenous factors. A recent study, based on this approach, supports the predominant role of exogenous factors in structuring the diversity and species composition of the macrofaunal community associated with B. azoricus (Sarrazin et al., in preparation). Among these factors, depth explains more variance than the geographical distance between vent fields, as previously suggested for other sites of the MAR (Rybakova and Galkin, 2015). To date, trophic studies in northern MAR vents have concentrated mainly on the foundation species, B. azoricus (Colaco et al., 2009; Detree et al., 2016; Martins et al., 2008; Pommudurai et al., 2016; Riou et al., 2010a, 2010b, 2008) and Rimicaris exoculata shrimp (Allen et al., 2001; Pond et al., 1997; Ponsard et al., 2013; Rieley et al., 1999; Zhbinden et al., 2004) whereas studies at the community level are scarce and relatively descriptive (Colaco et al., 2002a, 2007; De Busserolles et al., 2009). Methods that are now available to assess food-web complexity at the community level have never been applied to MAR vents.

Food webs were studied using stable isotope analyses (SIA, e.g. δ^{13}C and δ^{15}N signatures) that are highly valuable to define the “realized” ecological niche of species taking both trophic and habitat variables in consideration (Bearhop et al., 2004; Dubois and Colombo, 2014; Newsome et al., 2007). At the community level, functional metrics extracted from the overall δ^{13}C-δ^{15}N isotopic space are used to address food-web complexity and to estimate niche diversification at the base of the food web, the number of trophic levels, as well as functional diversity, specialization and redundancy (Cujois et al. and Villerég, 2015; Jackson et al., 2011; Layman et al., 2007; Bigolet et al., 2015). In addition, to improve our understanding of the functional structure of communities, coupling SIA to functional trait analyses provides access to additional species functions. At the community level, metrics extracted from the multidimensional space of species functional traits can

![Image](image_url)
Fig. 1. Location of the study sites on the Azores triple junction.
be used to estimate functional richness, evenness and divergence (Villéger et al., 2008). Functional traits can reflect the adaptation of species to their environment as well as their ecological functions that influence in fine ecosystem functions and services (Bremner, 2008; de Bello et al., 2010). This approach is relatively new to marine ecology in general, extremely scarce in the deep sea and almost absent from chemosynthetic ecosystems with, to date, only one study at methane seeps (Levin et al., 2016).

This study aims to assess and compare the functional structure of faunal communities of the northern MAR through an integrated approach based on SIA and functional trait analyses in relation to community structure and environmental condition patterns. The following questions are specifically addressed: (1) what are the basal sources on which species rely in the different faunal assemblages?; (2) what are the species trophic guilds and which inter-specific relationships can be highlighted? and (3) how does functional complexity, based on SIA and functional traits, vary between assemblages?

2. Materials and methods

2.1. Study design

2.1.1. Sampling sites

The BIOBAZ cruise was held in August 2013 on board the oceanographic research vessel Pourquoi pas? equipped with the Victor6000 submersible. Three hydrothermal-vent fields located on the Azores triple junction on the Mid-Atlantic Ridge (MAR) were studied (Fig. 1): Menez Gwen (MG, 37°50.5′N, 31°31.5′W, 850 m), Lucky Strike (LS, 37°17.5′N, 32°16′W, 1700 m) and Rainbow (RB, 36°13.8′N, 33°54.1’W, 2320 m).

Faunal sampling and environmental design followed the strategy described in Sarrazin et al. (2015). Assemblage locations, abbreviations and sampled surfaces are listed in Table 1. Three mussel assemblages characterized by the visual dominance of Bathymodiolus azoricus were studied within each vent field, MG (MGm1, MGm2, MGm3), LS (LSm1, LSm2, LSm3) and RB (RBm1, RBm2, RBm3). The three assemblages were sampled at the same location within MG and LS but were sampled on different edifices within RB due to the sparse distribution of mussels at this vent field. Two gastropod assemblages defined by the visual dominance of Lepetodrilus atlanticus and Protoliria vulvuloides were studied at MG (MGg1 and MGg2, as replicates) and two shrimp swarms defined by the dominance of Rimicaris exoculata were studied at RB (RBs1 and RBs2, two distinct edifices). Samples taken at MG and LS can be considered quantitative because the surfaces sampled can be estimated accurately using imagery (see protocol in Sarrazin et al., 1997), but those from RB were sampled on vertical edifice walls thus preventing precise surface estimation.

On board, faunal samples were sorted over 20 µm, 250 µm and 1 mm sieves. Five individuals of each macrofaunal taxon and pools of 10–20 individuals of the dominant meiofaunal taxa were pre-sorted and frozen (−80 °C) for SIA. The remaining faunal samples were preserved in 96% ethanol and individuals identified back in the laboratory. The distinction between macrofauna and meiofauna was made according to taxonomic groups, not size. Macrofaunal identification generally reached the species level, but meiofaunal identification was often limited to the genus level.

2.1.2. Assemblage description

Environmental conditions and community structure of assemblages, that will be further detailed in Sarrazin et al., (in preparation), are summarized below.

2.1.2.1. Inter-field variability. Environmental variability across assemblages are presented in Table S1 and summarized in Table 2.
not been successfully acquired, trends can be inferred through iron concentrations because iron is known to precipitate hydrogen sulphide into sulphur iron minerals (Charlou et al., 2002; Le Bris and Duperron, 2010; Luther et al., 2001). Therefore, lower hydrogen sulphide availability was expected at RBM compared with MG and LSM. This hypothesis was further supported by the observation of a dense cover of orange ferrous deposits at RBM (pers. obs.) and corroborates previous comparative studies of these vent fields (review by Le Bris and Duperron, 2010). Although MG and LSM have more similar chemical environments, variations between the two were observed, in accordance with those found in the literature (maximal [CH₄] at MG and maximal concentrations of metals at LSM) (Charlou et al., 2002).

2.1.3. Stable isotope analyses

2.1.3.1. Faunal samples. In the laboratory, frozen-preserved individuals were first rinsed in distilled Milli-Q water. For large specimens, muscle tissue and symbiotic organ, if present, were selected. For intermediate-size specimens, gut content was removed and for small specimens, the tissue and symbiotic organ, if present, were selected. For intermediate-size specimens, gut content was removed and for small specimens, the tissue and symbiotic organ, if present, were selected. For intermediate-size specimens, gut content was removed and for small specimens, the tissue and symbiotic organ, if present, were selected.

2.1.3.2. Water samples. δ¹³C analyses of methane and carbon dioxide were carried out on a SSIM-CRDS isotopic analyser (PicarroG2201i) from the head-space phase of the water collected by the PEPITO water sampler a few cm above the faunal assemblages. All values are expressed in δ (‰) notation with respect to VPDB (δ¹³C) and air (δ¹⁵N): ΔX (‰) = [(Rsample/Rstandard) - 1] × 10⁶, where X is either ¹³C or ¹⁵N, Rsample is the ¹³C/¹²C or ¹⁵N/¹⁴N isotope ratio of the sample and Rstandard is the ¹³C/¹²C or ¹⁵N/¹⁴N isotope ratio of the VPDB standard (δ¹³C) or air (δ¹⁵N).

2.2. Basal source context for stable isotope analyses

2.2.1. δ¹³C.

Potential dominant basal sources in the three vent fields are related to four different δ¹³C signals (Table 3) corresponding to photosynthesis-derived OM and local primary producers: autotrophs using the Calvin-Benson-Bassham (CBB) cycle or the reductive tricarboxylic acid (rTCA) cycle as well as methanotrophs. The δ¹³C signatures of local primary producers depend on the isotopic values of their carbon sources and their isotopic fractionation during carbon fixation. Carbon dioxide in the studied assemblages had δ¹³C values that were comparable between vent fields and closely related to values expected for ambient seawater (ΣCO₂ in the ocean: −2 to 2‰) (Zeebe and Wolf-Gladrow, 2001). Therefore, δ¹³C ranges for CBB- and rTCA-autotrophs from the literature can be used. Autotrophs using the CBB cycle (e.g. Gammaproteobacteria, Alphaproteobacteria and Zetaproteobacteria) are associated with depleted δ¹³C (−36 to −30‰) and those using the rTCA cycle (e.g. Epsilonproteobacteria and Deltaproteobacteria) with enriched δ¹³C (−15 to 10‰) (Emerson et al., 2007; Hügler and Sievert, 2011; Kato et al., 2009). While thiotrophy is usually considered as the main metabolism of CBB and rTCA autotrophs, they may utilize other less well-known metabolisms such as hydrogen, ammonium and Fe²⁺ oxidation (Hügler and Sievert, 2011). Some bacteria are also able to use different energy sources, such as the thiotrophic endosymbionts of B. azorius (Gammaproteobacteria) that can use both sulphur (sulphide and thiosulphate) and hydrogen (H₂) (Petersen et al., 2011; Ponnudurai et al., 2016). Methane δ¹³C in the studied assemblages varied with higher methane δ¹³C values at LS compared with MG and RB. Methanotrophic producers usually assimilate methane with little or no carbon-isotope fractionation and are thus defined by the methane δ¹³C value (Alperin et al., 1988; Brooks et al., 1987; Feng et al., 2015; Fisher, 1990; Kennicutt et al., 1992b; Martens et al., 1999).

Table 3

<table>
<thead>
<tr>
<th>Basal source</th>
<th>δ¹³C</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis-derived organic matter</td>
<td>−24 to −22‰</td>
<td>(Gebruk et al., 2000; Khrinappoff et al., 2001)</td>
</tr>
<tr>
<td>δ¹³C(CO₂)</td>
<td>−4 to 2.5‰, n = 25</td>
<td>Our study</td>
</tr>
<tr>
<td>Autotrophs/thiotrophs using the CBB cycle</td>
<td>−36 to −30‰</td>
<td>(Cavanaugh et al., 1992; Conway et al., 1994; Hügler and Sievert, 2011; Sievert et al., 2008; Trask and Van Dover, 1999)</td>
</tr>
<tr>
<td>Autotrophs/thiotrophs using the rTCA cycle</td>
<td>−15 to −10‰</td>
<td>(Hügler and Sievert, 2011; Sievert et al., 2008)</td>
</tr>
<tr>
<td>Methanotrophs (methane δ¹³C)</td>
<td>−12.9 ± 3.4‰, n = 10; MG: −19.4 ± 1.8‰, n = 11; RB: −19.2 ± 3.5‰, n = 4</td>
<td>Our study in accordance with (Charlou et al., 2002)</td>
</tr>
</tbody>
</table>
2.3. Data analyses

2.3.1. Baseline

Due to the δ15N spatial variability of primary producers, faunal δ15N isotope data must be corrected for baseline variations to allow comparisons across assemblages (Post, 2002). While free-living microbes are likely the main basal sources for heterotrophic fauna, they remain difficult to sample. Because B. azoricus was present in all assemblages, it can be used as a δ15N baseline correction when comparing isotopic taxa across assemblages. Despite the presence of multiple baselines, previously introduced (Section 2.2.2), the consistent shift of ~8.5‰ between microbial mats and B. azoricus endosymbionts seem to indicate that these baselines are similarly affected across assemblages. To assess whether B. azoricus represents a good correction factor, correlations between δ15N of B. azoricus and associated heterotrophic fauna were tested. In addition, δ15N relationships between B. azoricus gill and muscle were explored. Differences between endosymbiotic (gill) and aposymbiotic (muscle) tissues may highlight variable fractionation factors of consumers toward sources depending on environmental conditions.

2.3.2. Mixing models

Although stable isotope mixing models are increasingly used to quantify consumer diets, their use was not possible in our study owing to the presence of a large number of potential sources (three main sources associated with four δ13C signals and multiple δ15N baselines). Therefore, only trends of the predominant basal sources within assemblages will be discussed. The only exception was Bathymodiolus azoricus for which a SIAR mixing model (Parnell et al., 2008) was used to estimate the relative contribution of thiotrophy and methanotrophy. Although experimental studies have demonstrated that B. azoricus can feed on particulate organic matter (POM) and that mussels and their symbionts may rely on dissolved organic matter (DOM) (Riou et al., 2010b, 2010c), these strategies are assumed to be secondary (De Buisselolles et al., 2009). POM and DOM are composed of a mixture of photosynthesis-derived and chemosynthesis-derived OM and studies agree on the negligible role of photosynthesis-derived OM to the B. azoricus diet (De Buisselolles et al., 2009; Riou et al., 2010b; Salerno et al., 2005).

2.3.3. Faunal trophic guilds

Trophic guilds were classified into symbiont hosts, bacteriovores, detritivores/scavengers, commensals and predators, with the bacteriovorous trophic guild referring to deposit feeders specialized in the consumption of microbes (Bergquist et al., 2007, Table S2). Trophic guild assignments were based on data from the literature when available. For the other species or families with unknown trophic guilds or multiple guild assignments according to where they have been studied, trophic guild was assigned by comparing stable isotope ratios between species and between species and basal sources. Consumers were identified based on an enrichment (from consumer to source) of 3.4‰ for δ13C and 1‰ for δ15N (Conway et al., 1994), taking into account the intraspecific isotope variability. Discrimination of predators from detritivores/scavengers based on δ15N signatures is not always efficient (Jumars et al., 2015). Species that belong to families with known predator species were classified as predators only when potential prey could be identified.

2.3.4. Food-web metrics

The structure of food-webs at the community level was first described using Layman's community-wide metrics (Layman et al., 2007). A Bayesian approach allowed for the propagation of sampling error whether B. azoricus represents a good correction factor, correlations between δ15N of B. azoricus and associated heterotrophic fauna were tested. In addition, δ15N relationships between B. azoricus gill and muscle were explored. Differences between endosymbiotic (gill) and aposymbiotic (muscle) tissues may highlight variable fractionation factors of consumers toward sources depending on environmental conditions.

Table 4

<table>
<thead>
<tr>
<th>Basal source</th>
<th>δ15N</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthetic-derived</td>
<td>4−6‰</td>
<td>(Gebruk et al., 2000;</td>
</tr>
<tr>
<td>organic matter</td>
<td></td>
<td>Krhipounoff et al., 2001)</td>
</tr>
<tr>
<td>Endosymbionts (B. azoricus</td>
<td></td>
<td>Our study</td>
</tr>
<tr>
<td>gills)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectosymbionts (R. exoculata</td>
<td></td>
<td>Our study</td>
</tr>
<tr>
<td>cephalothorax)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filamentous bacteria</td>
<td></td>
<td>Our study</td>
</tr>
<tr>
<td>(Regiina spp.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Metric Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEA</td>
<td>Small sample-size-corrected standard ellipse areas (SEAa) + Bayesian standard ellipse area (SEAb)</td>
<td>Overall extent of food web</td>
</tr>
<tr>
<td>CR</td>
<td>Carbon range (Δδ15N)</td>
<td>Basal niche</td>
</tr>
<tr>
<td>NR</td>
<td>Nitrogen range (Δδ13C)</td>
<td>Diversification</td>
</tr>
<tr>
<td>CD</td>
<td>Mean distance to the centroid (average Euclidian distance of each species component to the centroid)</td>
<td>Average trophic specialization</td>
</tr>
<tr>
<td>CVNND</td>
<td>Coefficient of variation of the nearest neighbour distance (ratio of the standard deviation to the mean of nearest neighbour distance)</td>
<td>Trophic redundancy</td>
</tr>
</tbody>
</table>
Table 6
Resume of functional metrics with their acronyms and interpretation.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Metric</th>
<th>Interpretation</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRic</td>
<td>Isotopic richness</td>
<td>Global functional richness</td>
<td>Convex hull area without taking into account species biomass</td>
</tr>
<tr>
<td>IDiv</td>
<td>Isotopic divergence</td>
<td>Degree of trophic specialization</td>
<td>Degree to which the distribution of species in an isotopic space maximizes the divergence</td>
</tr>
<tr>
<td>IDis</td>
<td>Isotopic dispersion</td>
<td>Average of trophic specialization</td>
<td>Estimate of the weighted deviation of the mean position of the points relative to the maximum distance from the centre</td>
</tr>
<tr>
<td>IEven</td>
<td>Isotopic evenness</td>
<td>Trophic redundancy</td>
<td>Regularity in distribution of species and their weight along the shortest tree that connects the dots</td>
</tr>
<tr>
<td>IUni</td>
<td>Isotopic uniqueness</td>
<td>Trophic redundancy</td>
<td>Inverse of the average isotopic redundancy where isotopic redundancy reflects the average approximation of species in the isotopic space</td>
</tr>
</tbody>
</table>

Fig. 2. Biplots of carbon (δ^{13}C) and nitrogen (δ^{15}N) signatures (mean ± SD) of consumers and food resources in mussel assemblages from Menez Gwen (MGM1, MGM2, MGM3), Lucky Strike (LSM1, LSM2, LSM3) and Rainbow (RBM1, RBM2, RBM3) vent fields. Isotopic signatures of photosynthesis-derived organic matter (photosynthetic_OM) are shown in green. Local producers δ^{13}C ranges are shown in the three shaded areas; their δ^{15}N signatures are unknown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
related to the estimations of mean stable isotope ratios for community components (Jackson et al., 2011). Carrying over this error provides a measurement of uncertainty and is less affected by variation in the number of community components. To compare metrics among assemblages, the δ^{13}C signature ranges of possible basal sources must be similar (Layman et al., 2007), which is a valid hypothesis here with autotrophs using the CBB or rTCA cycles that characterize the δ^{13}C ranges of basal sources within all assemblages. Layman’s Bayesian metrics are defined in Table 5 with trophic redundancy metrics updated by Brind’Amour and Dubois (2013). Metrics were calculated and compared using the siber.hull.metrics function from the Stable Isotope Analysis in the R package (SIAR; Parnell and Jackson, 2013; Parnell et al., 2010). Standard ellipse areas (SEAs) were calculated and compared using the SIAR and Stable Isotope Bayesian Ellipses packages (SIBER; Jackson et al., 2011).

The food-web structures were also described using functional metrics taking into account the relative biomass of species within communities (Cucherousset and Villéger, 2015; Rigolet et al., 2015). B. azoricus and its commensal polynoid dominate biomass in assemblages but have limited to no trophic links with the rest of the faunal community (De Busserolles et al., 2009). They were thus excluded from our analyses. For each assemblage, the roles of species were weighted by using their respective mean biomass (Table S3) multiplied by their density (Sarrazin et al., in preparation). Functional metrics are defined in Table 6. The confidence interval of each index was calculated using a bootstrap method (nrep = 1000).

2.3.5. Functional structure

While SIA are used to characterize species’ “realized” trophic niches, ecological niches are also shaped by other biological traits that influence the functions of species and in fine ecosystem functioning and services (Brenner, 2008; Clark, 2016; de Bello et al., 2010; de Juan et al., 2015). A functional trait analysis was carried out using qualitative or quantitative variables available at the species level. These traits include carbon source (δ^{13}C as a proxy), trophic level (δ^{15}N), trophic diet (bacterivore, detritivore, carnivore), trophic strategy (suspensivore, depositivore, predator), size (megafauna, macrofauna, meiofauna) and mobility (tube-forming, crawler, swimmer). Building on the most recent analytical and statistical approaches, metrics extracted from the multidimensional space of functional traits at the community-scale were used to compare assemblage functioning (Mouchet et al., 2010). The confidence interval of each index was calculated by a bootstrap method performed on SIA measurements.

![Fig. 3. Biplots of carbon (δ^{13}C) and nitrogen (δ^{15}N) signatures (mean ± SD) of consumers and food resources in gastropod assemblages from Menez Gwen (MG1, MG2) and shrimp assemblages from Rainbow (RB1, RB2) vent-fields. Isotopic signatures of photosynthesis-derived organic matter (photosynthetic_OM) are shown in green. Local producers δ^{13}C ranges are shown in the three shaded areas; their δ^{15}N signatures are unknown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).](image-url)
3. Results

$\delta^{13}C$ and $\delta^{15}N$ ratios of sources and consumers are shown in Fig. 2 for mussel assemblages and in Fig. 3 for the other assemblages (gastropods and shrimp). Within epifaunal assemblages (mussel and gastropods), isotopic data were available for most of the macrofaunal community (from 91% to 100% of the total density) and on dominant meiofaunal taxa: Aphaptapontius sp. copepods at LS and MG, Oncholaimus dyvae nematodes (description in progress, Zeppilli unpublished data.) and ostracods at LS. Species’ trophic guilds known from the literature and isotopic data are listed in Table S2.

3.1. Basal sources

3.1.1. Community-wide description

3.1.1.1. Photosynthetic versus chemosynthetic OM. In all assemblages, photosynthesis-derived organic matter (photosynthetic-OM) was not identified as a dominant source because most taxa had $\delta^{15}N$ lower than this basal source (Figs. 2 and 3). For the few taxa that showed $\delta^{15}N$ enrichment compared to photosynthetic-OM (i.e. RBM, RBG, MG), their $\delta^{13}C$ signatures were strongly enriched compared with this source, suggesting a diet based on local chemosynthetic production.

3.1.1.2. Faunal $\delta^{13}C$. Mean faunal $\delta^{13}C$ values were comparable between samples within an assemblage (MGAM = MGAS2 = MGM3, LSM1 = LSM2 = LSM3, RBM1 = RBM2 = RBM3, MGG1 = MGG2, RB1 = RB2, Table S2) but were significantly different between assemblages (RBG, MGG, RBM, LSM, MGM, p < 0.001). Faunal $\delta^{13}C$ were significantly enriched at RBG (−15.4 ± 3.6‰) and RBM (−17.6 ± 3.2‰) and RBM (−19.4 ± 3.6‰) compared with LSM (−25.4 ± 3.2‰) and MGM (−25.4 ± 3.2‰) (p < 0.05). Contributions of enriched $\delta^{13}C$ sources (methanotrophy and rTCA-autotrophy) compared with the more $\delta^{13}C$ depleted sources (CBB-autotrophy), appeared to be higher in the former group (RBG, MGG, RBM) than in the latter (LSM, MGM). Although contributions of methanotrophy and rTCA-autotrophy cannot be easily distinguished, environmental data (Section 2.2) suggested that enriched faunal $\delta^{13}C$ in RBM are linked to methanotrophy and enriched faunal $\delta^{13}C$ in RBG to rTCA-autotrophy and likely thiotrophy. Among mussel assemblages, higher methane concentrations were observed in RBG than in MGG and LSM and hydrogen sulphide supposedly followed the opposite pattern. Within the RB vent field, [CH$_4$] at RBG was more reduced than at RBM, making it comparable to MGG and LSM, but hydrogen sulphide availability was theoretically higher than that at RBM. In the MG vent field, MGG reached relatively high methane concentrations compared with RBM, suggesting that methanotrophy may be involved in the enrichment of faunal $\delta^{13}C$.

3.1.1.3. Faunal $\delta^{15}N$. Mean faunal $\delta^{15}N$ signatures were not significantly different between samples within an assemblage but the inter-assemblage variability was significant (p < 0.001). The patterns were similar to those of $\delta^{13}C$ with mean faunal $\delta^{15}N$ significantly enriched at RBG (6.0 ± 3.4‰), MGG (4.6 ± 3.3‰) and RBM (3.9 ± 4.1‰) relative to LSM (−0.5 ± 4.6‰) and MGM (−0.9 ± 4.8‰) (p < 0.05). These results may represent inter-assemblage baseline variation (availability and isotopic variability of inorganic nitrogen sources used by primary producers), variable contributions of photosynthetic and chemosynthetic OM between assemblages as well as variable dominance of species trophic levels and specialization on chemosynthetic microbes for detritivores. No relationships between faunal $\delta^{15}N$ and nitrate or ammonium concentrations were observed.

3.1.2. $\delta^{15}N$ baseline variations

3.1.2.1. Bathymodiolus azoricus. Within the RB vent field, there were no significant differences in $\delta^{15}N$ of B. azoricus according to tissues or samples (p > 0.05). Within the MG and LS vent fields, $\delta^{15}N$ of B. azoricus differed between tissues ($\delta^{15}N_{\text{gill}} < \delta^{15}N_{\text{muscle}}$) and samples (p: 0.007; MGG1 = MGG2 = MGG3 < MGM1, p: 0.03; LSM1 = LSM2 < LSM3) with no significant interaction of the two factors (unbalanced two-way ANOVA). Despite these variations, mean $\delta^{15}N$ of B. azoricus differed significantly between assemblages (p < 0.001). B. azoricus showed a $\delta^{15}N$ enrichment at MGM (−2.3 ± 1.6‰), RBG (−2.9 ± 2.8‰) and RBM (−4.5 ± 1.9‰) compared with MGG (−10.1 ± 1.3‰) and LSM (−11.1 ± 1.8‰) assemblages (p < 0.05). Such $\delta^{15}N$ variation across samples and assemblages for an endosymbiotic species may reflect the variability of primary producer $\delta^{15}N$, thus reflecting baseline variation.

3.1.2.2. Baseline. The use of the $\delta^{15}N$ values of B. azoricus as a correction factor for other taxa was tested. The correlation between the mean $\delta^{15}N$ signatures of B. azoricus gills and that of associated fauna per assemblage was significant ($R^2 = 0.90$, p < 0.001, Fig. 4). These results suggest that $\delta^{15}N$ variation in heterotrophic fauna is directly or indirectly related to the local baseline rather than to the relative abundance of photosynthetic-OM, which varies with depth.

3.1.2.2.1. Bathymodiolus azoricus. Within the RB vent field, there were no significant differences in $\delta^{15}N$ of B. azoricus according to tissues or samples (p > 0.05). Within the MG and LS vent fields, $\delta^{15}N$ of B. azoricus differed between tissues ($\delta^{15}N_{\text{gill}} < \delta^{15}N_{\text{muscle}}$) and samples (p: 0.007; MGG1 = MGG2 = MGG3 < MGM1, p: 0.03; LSM1 = LSM2 < LSM3) with no significant interaction of the two factors (unbalanced two-way ANOVA). Despite these variations, mean $\delta^{15}N$ of B. azoricus differed significantly between assemblages (p < 0.001). B. azoricus showed a $\delta^{15}N$ enrichment at MGM (−2.3 ± 1.6‰), RBG (−2.9 ± 2.8‰) and RBM (−4.5 ± 1.9‰) compared with MGG (−10.1 ± 1.3‰) and LSM (−11.1 ± 1.8‰) assemblages (p < 0.05). Such $\delta^{15}N$ variation across samples and assemblages for an endosymbiotic species may reflect the variability of primary producer $\delta^{15}N$, thus reflecting baseline variation.

3.1.2.2. Baseline. The use of the $\delta^{15}N$ values of B. azoricus as a correction factor for other taxa was tested. The correlation between the mean $\delta^{15}N$ signatures of B. azoricus gills and that of associated fauna per assemblage was significant ($R^2 = 0.90$, p < 0.001, Fig. 4). These results suggest that $\delta^{15}N$ variation in heterotrophic fauna is directly or indirectly related to the local baseline rather than to the relative abundance of photosynthetic-OM, which varies with depth.
Heterotrophs mainly rely on free-living basal sources, suggesting that \(\delta^{15}N \) variation between local baselines of assemblages (chemoautotrophic microbial mats and \(B. azoricus \) endosymbionts) may be relatively similar among assemblages. These results are in accordance with the consistent \(\delta^{15}N \) shift observed between \(B. azoricus \) and microbial mats in LS and RB, estimated at 8.5% (Section 2.4.1). In addition, a correlation between \(B. azoricus \) \(\delta^{15}N_{\text{gill}} \) and \(\delta^{15}N_{\text{muscle}} \) based on all \(B. azoricus \) individuals for which isotopic data were available on both tissues simultaneously (44 individuals, from the three vent fields), showed a highly significant relationship \((R^2 = 0.97, p < 0.001, \text{Fig. 5}) \). The relatively low \(\delta^{15}N \) differences between gills and muscles were consistent across assemblages of the three vent fields, suggesting that \(B. azoricus \) isotopic fractionation with respect to endosymbiotic bacteria was similar despite environmental variation. These two correlations found for \(\delta^{15}N \) values thus show that \(B. azoricus \) can be used to correct for faunal \(\delta^{15}N \) baseline variations. To compare \(\delta^{15}N \) of taxa between assemblages, the following correction was used: \(\delta^{15}N_{\text{consumer}} = \delta^{15}N_{B. azoricus} \).

3.1.2.3. Corrected \(\delta^{15}N \). At the assemblage scale, mean faunal \(\delta^{15}N \) values after baseline corrections \((\delta^{15}N_i) \) were still not significantly different between samples within an assemblage but were significantly different between assemblages \((p = 0.001) \). Mean faunal \(\delta^{15}N_i \) values were significantly higher at LSM \((11.4 \pm 4.6\%) \) than at RBs \((8.2 \pm 4.0\%) \), MGM \((6.7 \pm 4.0\%) \) and RBM \((8.6 \pm 3.9\%), p < 0.05 \), MGM was intermediate between these two groups \((9.9 \pm 4.5\%) \). Lower \(\delta^{15}N_i \) indicate that taxa in communities had lower trophic levels and/or greater specialization on chemoautotrophic microbes for detritivores.

3.1.3. Trophic flexibility of shared species

3.1.3.1. Endosymbiotic mussel \(\delta^{13}C \). Within each vent field, the \(\delta^{13}C \) of \(B. azoricus \) did not vary by tissue type (gill vs. muscle) but by sample \((p < 0.001; \text{MGM} < \text{LSM} = \text{RBM}, \text{LSM}2 < \text{LSM}1 < \text{LSM}3, p < 0.001; \text{RBM}2 < \text{RBM}1 < \text{RBM}3, \text{RBM}2 < \text{RB}1 < \text{RB}2 < \text{RB}3, \text{with no significant interaction of the two factors (unbalanced two-way ANOVA). Differences in} B. azoricus \text{ \(\delta^{13}C \) between assemblages were significant} (p < 0.001); B. azoricus \text{ from RB}3 \text{ (23.1} \pm 3.2\%)) \text{ and MGM} \text{ (23.0} \pm 2.6\%) \text{ had enriched} \delta^{13}C \text{ compared with MGM} \text{ (29.7} \pm 0.7\%), \text{LSM} \text{ (29.6} \pm 2.6\%) \text{ and RBs} \text{ (28.7} \pm 0.8\%) \text{ (p < 0.05).}

3.1.3.2. Mixing model SIAR. Estimations of basal source contributions to the \(B. azoricus \) diet within MGM and LSM led to comparable results, with higher contributions of CBB-thiotrophy (80–90%) than methanotrophy (10–20%) (Fig. 6A). Within RBM, the \(B. azoricus \) diet was more balanced, with methanotrophy being slightly dominant (60%) over CBB-thiotrophy (40%). Within MGM and RBs, the few \(B. azoricus \) found had diets different to those found in the mussel-dominant assemblages of their respective vent fields (Fig. 6A, B). \(B. azoricus \) from MGM appeared to benefit from methanotrophy and CBB-thiotrophy in equivalent proportions whereas \(B. azoricus \) from the RBs showed a higher contribution of CBB-thiotrophy (80%) than methanotrophy (20%).

3.1.3.3. Relationship with environmental conditions. A correlation between methane concentrations and the calculated contribution of methanotrophy to the diet of \(B. azoricus \) was significant \((p < 0.01, R^2: 0.88 \text{ for n=5}) \), confirming the flexibility of the \(B. azoricus \) trophic diet according to concentrations of chemical compounds. This result also supports the previous assumptions made at the community level, with enriched mean \(\delta^{13}C \) in MGM being related to higher contributions from methanotrophs than from rTCA thiotrophs, similar to RBM (Section 3.1.1).

Fig. 6. Relative contributions of methanotrophy and thiotrophy using the CBB cycle to the Bathymodiolus azoricus diet within (A) mussel assemblages from Lucky Strike (LSM), Menez Gwen (MGM) and Rainbow (RBM) and (B) gastropod assemblages from Menez Gwen (MGG) and shrimp assemblages from Rainbow (RBS). The mixing model considered a \(\delta^{13}C \) fractionation of 1 ± 0.4% from consumer toward sources.
3.1.3.4. Heterotrophic species. Only a subset of species common to all assemblages was analysed with enough replicates to apply a mean comparison test of their isotopic ratios. Despite some variation between samples at LS1, RB2 and RBS1, δ13C differences between assemblages were significant for all but one species (Table 7). Enriched δ13C signatures were generally associated with MG1 and RB1, followed by RB2 and then MG3 and LS1. This variability was similar to the pattern observed at the community level (Section 3.1.1) and suggested that shared fauna have trophic flexibility according to variation in basal sources. Despite significant differences in species’ δ15N signatures between samples (for 6 out of 11 species), most species still showed significant δ15N differences between assemblages (5 out of 6 species, Table 7). This pattern suggests that species-specific δ15N signatures discriminate RB1 with lower δ15N from MG2 and RB3 and finally MG1 and LS2. Assemblages variability is consistent with the observed community-level pattern (Section 3.1.2) and suggests that fauna common to all assemblages have variable degrees of trophic specialization on chemosynthetic microorganisms.

3.2. Functional complexity

3.2.1. Trophic guilds

Species’ trophic guilds included endosymbiotic species as well as potential bacteriovorous specialists, detritivores/scavengers and predators (Table S2). In the literature, many species and families have been related to distinct trophic guilds according to the study site. Taking into account the potential issues related to SIA that will be discussed below (Section 4.2), potential trophic guilds were assigned to species within assemblages (Fig. 8).

3.2.1.1. Symbiotrophic assignment. Although B. azoricus derives its diet from its chemosynthetic bacterial endosymbionts, the shrimp Rimicaris exoculata may not solely feed on its chemosynthetic bacterial endosymbionts and have been classified as facultative detritivores/scavengers. In our study, R. exoculata sampled in RB2 had similar δ13C and slightly enriched δ15N (2.6‰) compared with the endosymbionts in their cephalothorax cavity, suggesting their predominant role in the shrimp diet. Interestingly, Peltothyrus smaragdina gastropods from RB5 had even more negative δ15N than R. exoculata, highlighting a putative endosymbiotic relationship that has already been demonstrated for other species of the same genus (Table S2).

3.2.1.2. Commensal/parasite assignment. Branchipolynoe seepensis polynoids living inside B. azoricus mussels had δ13C signatures comparable to their host and enriched in 15N by 1–4‰ compared with B. azoricus muscle. A close relationship between B. seepensis and B. azoricus was thus apparent and both direct and indirect contributions of local POM (mixture of photosynthetic-POM, pseudofaeces, autotrophic and heterotrophic free-living microbes), which have enriched δ15N and different δ13C values, can be excluded. Nevertheless, the nature of the interaction between B. seepensis and B. azoricus remains uncertain. B. seepensis has long been considered commensal, but recent studies suggest that B. azoricus gills that host B. seepensis are damaged suggesting a potential semi-parasitic relationship (Table S2). The diet of B. seepensis may consist of predation on B. azoricus tissue or feeding on B. azoricus dead tissue or mucus.

3.2.1.3. Bacterivores versus higher consumers. Variations in B. azoricus δ15N was assumed to reflect those of free-living microbial mats because the heterotrophic fauna community showed similar δ15N variation as observed in B. azoricus (Section 3.1.3). The shift of +8.5‰ observed for chemosynthetic microbial mats compared to B. azoricus muscle (LS1, RBS2) was used to approximate the δ15N signature of microbial mats in all assemblages. δ15N enrichment of up to 3.4‰ is generally used to identify a consumer compared with its food source and was thus used here to distinguish bacterivores from higher consumer taxa. Numerous species appeared as highly specialized bacterivores, but the degree of specialization varied among them and between assemblages for species they had in common. Some species were even related to distinct trophic guilds according to the assembly (P. valvatoides, P. midatlantica, A. lutzi, M. fortunata). Therefore, bacterivory did not appear as a strict trophic strategy but rather as a trophic preference.

3.2.1.4. Predators versus detritivores/scavengers. Predators were identified based on prey identification and behavioural observations. Based on SIA and the identification of potential prey, only a few species appeared to be predators (Fig. 7, Table 8). Among predators, except for B. azoricus larvae PI and Segonzacia mesatlantica, multiple potential prey were identified, that may reflect a generalist rather than a specialist feeding strategy.

Overall, the analysis of trophic guilds showed that detritivores including non-selective feeding strategies and bacteriovorous specialists dominated all assemblages whereas a relatively low number of predators were identified (~ 5 taxa). Inter-assemblage variability of
trophic guild dominance within macrofaunal communities revealed higher dominance of detritivores and “commensal/parasites” in LSM, higher dominance of predators in RBM and MGM with MGG being almost exclusively represented by bacterivores (Fig. 8).

3.2.2. Food-web metrics

Assemblages that benefited from quantitative sampling and for which sampled surfaces were comparable were used to compare the structure of food webs (LSM1, LSM2, LSM3, MGM1, MGM2, MGM3, sampled surface from 300 to 400 cm²). Taxa included in these analyses correspond from 93% to 100% of the macrofaunal community, together with the dominant meiofaunal groups (copepods, nematodes and ostracods at LS and copepods at MG).

3.2.2.1. Layman’s Bayesian metrics. Layman’s Bayesian metrics within the samples of LSM and MG are shown in Fig. 9 (see Table 5 for metric details). The small sample-size-corrected standard ellipse areas and the Bayesian standard ellipse area (SEAb) were comparable among LSM and MGM samples as well as between assemblages. Similarly, none the other metrics (carbon range (CR), nitrogen range (NR), mean distance to the centroid (CD) and coefficient of variation of the nearest neighbour distance (CVNND)) discriminated samples or assemblages. All together, these results suggest that the food web structure is similar between MGM and LSM.

3.2.2.2. Functional metrics, biomass dependent. Illustrations of functional metric calculations are shown in Fig. S2 and the results following bootstrap in Fig. 10 (see Table 6 for metric details). The isotopic richness (IRic) was comparable among samples in LSM and MGM assemblages and the inter-assemblage variability was not
Table 8
Predator/prey interactions identified at the different study sites. Assemblages from Menez Gwen (mussels: MGM and gastropods: MGG), Lucky Strike (mussels: LSM) and Rainbow (mussels: RBM and shrimps: RBS).

<table>
<thead>
<tr>
<th>Ass.</th>
<th>Predator</th>
<th>Potential prey</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGM</td>
<td>Mirocaris fortunata</td>
<td>Lepetodrilus atlanticus, Amphipoda sp., Aplacophora sp.</td>
</tr>
<tr>
<td></td>
<td>Branchiopoda azorica larvae</td>
<td>Leptodrilus atlanticus, Amphipoda sp.</td>
</tr>
<tr>
<td></td>
<td>PII</td>
<td>Aplacophora sp.</td>
</tr>
<tr>
<td>MGG</td>
<td>Mirocaris fortunata</td>
<td>Lepetodrilus atlanticus</td>
</tr>
<tr>
<td>LSM</td>
<td>Mirocaris fortunata</td>
<td>Aplacophora sp.</td>
</tr>
<tr>
<td></td>
<td>Branchiopoda azorica larvae</td>
<td>Almost all fauna except Bathymodiolus azorica and its commensal polychaete</td>
</tr>
<tr>
<td></td>
<td>mesatlantica</td>
<td>Bathymodiolus azorica and detritus including microbial mat (mixotrophy)</td>
</tr>
<tr>
<td></td>
<td>PII</td>
<td>Aplacophora sp.</td>
</tr>
<tr>
<td>RBM</td>
<td>Mirocaris fortunata</td>
<td>Spionidae sp., Amathys latzi</td>
</tr>
<tr>
<td></td>
<td>Lepidopteropaeta journae</td>
<td>Amathys latzi, Aplacoprate markensis, Ophiura sp.</td>
</tr>
<tr>
<td></td>
<td>Bathymodiolus azorica larvae</td>
<td>Aplacophora sp.</td>
</tr>
<tr>
<td>RBS</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 8. Trophic guild dominance within macrofaunal communities of the studied assemblages. Mussel assemblages from Lucky Strike (LSM1, LSM2, LSM3), Menez Gwen (MGM1, MGM2, MGM3) and Rainbow (RB M1, RB M2, RB M3) as well as gastropod assemblages from Menez Gwen (MGG1, MGG2).

Significant. The isotopic divergence (DDiv) showed significant differences among LSM and MGM samples (LSM1 < LSM2, LSM3 and MGM1 < MGM2, p < 0.05), but the inter-assemblage variability was not significant. The isotopic dispersion (DDIs) showed significant differences among LSM samples (LSM1 < LSM2, p < 0.05), but the inter-assemblage variability was not significant. The isotopic evenness (IDEve) showed significant differences among LSM samples (LSM1 < LSM2, LSM3 and MGM1 < MGM2, p < 0.05), but the inter-assemblage variability was not significant. The isotopic uniqueness (UNI) showed significant differences among LSM and MGM samples (LSM1 < LSM2, LSM3 and MGM1 < MGM2), but the inter-assemblage variability was not significant. These results suggested some variance across assemblage samples but, similar to Layman’s metrics, showed a similar food-web structures between MGM and LSM.

3.2.3. Functional traits

Metrics of the functional complexity are shown in Fig. 11. The overall functional richness (FRic) showed significant differences among LSM and MGM samples (LSM1 > LSM2, LSM3 > LSM2 and MGM1 > MGM3, p < 0.05) and the difference between MGM and LSM assemblages was not significant. The functional dispersion (FDIs) showed significant differences among LSM and MGM samples (LSM1 > LSM2, LSM2 and MGM1 > MGM3, p < 0.05) and the difference between assemblages was significant, with LSM having higher functional dispersion than MGM (p < 0.05). The functional evenness (FEve) showed significant differences among LSM and MGM samples (LSM1, LSM2 > LSM3 and MGM2 > MGM1 > MGM3, p < 0.05), but the difference between MGM and LSM assemblages was not significant. Therefore, while some differences emerged among samples, no distinction at the assemblage-scale emerged with the exception of FDIs.

4. Discussion

This food web study offers the opportunity to address the functioning of the northern MAR vent communities at the regional scale where both exogenous and endogenous factors can affect ecological processes and the structure of faunal communities.

4.1. Basal sources

The three vent fields studied here are located along a bathymetric gradient (850–2320 m depth) that drives many of the exogenous factors that may influence the functioning of these vent ecosystems, including trophic inputs from photosynthetic primary production. Nevertheless, and consistent with patterns observed in deep-sea chemosynthetic ecosystems (e.g. Carlier et al., 2010; Levin and Michener, 2002b; MacAvoy et al., 2008), photosynthesis-derived organic matter (photosynthetic-OM) proved to be a minor energy source in the food webs of active areas within the three vent fields. Similar conclusions were drawn from previous food-web studies on northern MAR vents (Colaço et al., 2002a, 2007; De Busserolles et al., 2009). In general, vent deep-sea fauna appear to be highly specialized on local chemosynthetic production, even in areas where photosynthetic inputs are exceptionally small (Carney, 1994, 2005; Cordes et al., 2010b; Olu et al., 2010; Sahling et al., 2003).

Local chemosynthetic primary production is thus the predominant source of carbon fueling our MAR vent assemblages. The dominant primary producers sustaining the food webs of the three vent fields were similar (methanotrophs and autotrophs using the CBB and rTCA cycles), but their contributions varied between assemblages and between fields. Sources with enriched δ13C (methanotrophs and autotrophs depending on the rTCA cycle) compared with the depleted signatures (autotrophs depending on the CBB cycle) had higher contributions in assemblages associated with higher fluid–fluid (MG gastropods, RBS shrimp and to a lesser extent RBM mussels) than mussel assemblages from Menez Gwen (MGM1, MGG2).

The enrichment in δ13C in the fauna located closer to fluid emissions is a recurrent observation (Colaço et al., 2002b; De Busserolles et al., 2009; Fisher et al., 1994; Govenar et al., 2015; Levesque et al., 2003; Levin et al., 2009; Limen and Juniper, 2006; O’Brien et al., 2015). According to environmental data and basal source contributions to B. azoricus diet (see below), rTCA-autotrophy and especially thiotrophy were identified as the source of enrichment in RBS, whereas methanotrophy may
explain the enrichment in RBM and MGc. The rTCA cycle rather than CBB is known to be favoured under hypoxic conditions that are typical of RBs habitats, which are located at the interface between cold oxygenated seawater and vent fluid emissions (Campbell et al., 2006; Hügler et al., 2005). Further evidence includes ectosymbiont communities of *Rimicaris exoculata* (dominant species of RBs) that are dominated by thiotrophic *Epsilonproteobacteria* using the rTCA cycle (Hügler et al., 2011). Overall, our results underline the major role of environmental conditions (e.g. reduced compounds and oxygen) on the metabolism of microbial communities, leading to distinct dominant sources at the base of food webs. The contributions of these sources varied between vent fields according to their geological contexts and within vent fields according to fluid intensity. More studies and methods are needed to determine the food-web contributions of autotrophic

![Fig. 9. Food web metrics of mussel assemblages from Menez Gwen and Lucky Strike vent fields. Standard ellipse areas: (A) Solid lines enclose the standard ellipse area (SEAc), containing ca. 40% of the data. (B) Density plots showing the credibility intervals of the Bayesian standard ellipse areas (SEAb). Numbers below boxes give the number of invertebrate species sampled. Bayesian results for the (C) δ^{13}C range, CR, (D) δ^{15}N range, NR (E) mean distance to centroid, CD, and (F) the coefficient of variation of the nearest neighbour distance, CVNND. Black dots are the modes and boxes indicate the 50%, 75% and 95% credibility intervals, from wide to narrow.](image-url)
metabolisms using the CBB and rTCA cycles, especially at RB where, in addition to hydrogen sulphide, the oxidation of iron, and potentially hydrogen may occur (Le Bris and Duperron, 2010; Schmidt et al., 2008).

Contributions of inorganic nitrogen sources to primary production within chemosynthetic food webs remain poorly defined (Portail et al., 2016; Van Dover, 2007). Raw faunal 15N reached depleted values as low as -10% that are assumed to be related to consumption of local inorganic nitrogen sources (Conway et al., 1994; Kennicutt et al., 1992a; Van Dover, 2007). Nitrates and especially ammonium resulting from OM decomposition are usually 15N-depleted compared with oceanic nitrates (Hoch et al., 1992; Lee and Childress, 1996). In addition, inorganic nitrogen assimilation can lead to high isotopic fractionation in consumers with respect to sources (by up to $\sim 30\%$) especially

Fig. 10. Food web metrics of mussel assemblages from Menez Gwen and Lucky Strike vent fields. Tested using the “bootstrap” method, black dots are the modes and boxes indicate the 50%, 75% and 95% credibility intervals, from wide to narrow.
when they display high concentrations (Hoch et al., 1992; Macko et al., 1987).

B. azoricus $\delta^{15}N$ signatures were used as baseline values within assemblages and were shown to vary by up to 10‰ across assemblages. There was no relationship between B. azoricus $\delta^{15}N$ and bioavailable nitrogen source concentrations (i.e. NO$_3^-$, NH$_4^+$). However, dinitrogen (N$_2$) has not been measured. N$_2$ fixation is not assumed to be common in vent ecosystems because this strategy is usually initiated to overcome the limitation of bioavailable forms of nitrogen (Dixon and Kahn, 2004; Howarth et al., 1988). The identification of isotopic values of potential nitrogen sources would greatly benefit vent food web studies.

Heterotrophic fauna are suggested to mainly rely on free-living microbial sources whereas the contribution of endosymbiont pools may not be significant, because predation of endosymbiotic species is often considered to be negligible in vent assemblages (review by Govenar, 2012). Interestingly, chemosynthetic microbial mat samples (Beggiatoa spp. or R. exoculata ectosymbionts) within this study, showed $\delta^{15}N$ enrichment of around 8.5‰ (n = 3) compared with B. azoricus. Such high differences between primary producers within assemblages may result from variable availability and isotopic signatures of nitrogen sources and/or distinct fractionation factors according to environmental conditions. For example, the endosymbionts found in B. azoricus gills are highly isolated from the ambient environment where microbial mats develop. Furthermore, endosymbionts may assimilate isotopically light nitrate or ammonium excreted by their hosts (Bode et al., 2014; Rodrigues et al., 2013) that also may reach relatively high concentrations in mussel beds. The consistent $\delta^{15}N$ shift between microbial mats and endosymbiotic bacteria as well as the significant relationship between $\delta^{15}N$ of B. azoricus and heterotrophic fauna across assemblages suggest that free-living microbes may experience baseline variation similar to that in B. azoricus. These multiple co-occurring baselines are assumed to reflect distinct microhabitats and smaller spatial variation may occur within the free-living compartments according to biogeochemical gradients. Overall, our results provide further support that, in chemosynthetic ecosystems, primary production is tightly linked to local nitrogen sources that are influenced by biogeochemical processes acting at small spatial scales (Bourbonnais et al., 2012; Conway, 1994; Portail et al., 2016).

The presence of species that are common across assemblages raises questions about their reliance on specific basal sources. The $\delta^{13}C$ and corrected $\delta^{15}N$ variability of common species were relatively comparable to patterns observed at the community level, suggesting that these species exhibit high trophic flexibility. Although the presence of a large number of potential sources limited the study to trends of predominant basal sources, stable isotope mixing models were used, knowing that the B. azoricus diet mainly depends on two types of endosymbionts hosted in their gills (thiotrophic Gammaproteobacteria using the CBB cycle and methanotrophic bacteria) (Duperron et al., 2006; Fiala-Medioni et al., 2002; Robinson et al., 1998; Spiridonova et al., 2006; Won et al., 2003). Our results showed a strong relationship between the concentrations of reduced compounds and the contribution of endosymbionts to the B. azoricus diet (i.e. methane concentrations and relative methanotrophic contributions). Previous studies have

Fig. 11. Metrics of the functional complexity in mussel assemblages from Menez Gwen and Lucky Strike vent fields. Tested using the “bootstrap” method, black dots are the modes and boxes indicate the 50%, 75% and 95% credibility intervals, from wider to thinner.
demonstrated high spatial variability of endosymbiont proportions in B. azoricus at multiple scales (inter-fields, intra-field, intra-edifice) (Colaço et al., 2002a; De Busserolles et al., 2009; Fiala-Medioni et al., 2002; Halary et al., 2008; Trask and Van Dover, 1999). Experimentally, the abundance of endosymbionts has been shown to be linked to the presence or absence of substrate (Riou et al., 2010a, 2008). Our study lends further support to the high in situ trophic flexibility of B. azoricus across vent fields that is directly linked to the concentration of reduced compounds. Because SIA integrate diet information according to a time period dependent on tissue turnover, these results suggest that B. azoricus mussels are associated with a relatively constant niche. Although B. azoricus trophic flexibility is assumed to confer advantages for the colonization of a wide range of habitats, once established, these mussels may benefit from relatively stable environmental conditions over relatively long periods. The MAR is a slow and relatively young spreading centre (Desbruyères et al., 2001; Lalou, 1991) and temporal stability of vent communities can last for more than 14 years on the Eifel Tower edifice in LS (Cuvelier et al., 2011). Overall, species shared across assemblages appeared to exhibit high trophic flexibility, adapting to the variation in basal sources. Interestingly, intra-field variability among distinct assemblages of the same edifice can be higher than inter-field variability observed for a single assemblage type. This trophic flexibility suggests weak trophic links to the metabolic diversity of chemosynthetic primary producers, which also may be a key to their adaptation to environmental variability between and within ecosystems. Our study thus lends further support to the hypothesis that exogenous rather than endogenous factors explain the dissimilarity in faunal community structure among northern MAR hydrothermal vents (Sarrazin et al., in preparation).

4.2. Functional complexity

At the community level, detritivores that include non-selective feeding strategies and bacterivorous specialists were identified as dominant whereas predators were poorly represented. Most of the few predators were generalists rather than specialists, as often reported for chemosynthetic ecosystems (Bergquist et al., 2007; Cordes et al., 2010a; Portail et al., 2016). Baseline-corrected δ15N at the community level (representing the mean trophic level) was higher at LSM than at RBM, MG, and RB, with MG and RB being intermediate. Inter-assemblage variability of trophic guilds showed a higher dominance of detritivores and “commensals/parasites” in LSM, a higher dominance of predators in RBM whereas MG and MG as well as RB were almost exclusively composed of bacterivores. Higher fluid fluxes are usually associated with higher chemosynthetic primary production (Guenneneck et al., 1998; LaMontagne et al., 2004; Sievert et al., 2000) and may thus provide more abundant food sources in RBM and MG assemblages, which are located in habitats of high fluid intensity. Furthermore, among heterotrophs, the clear dominance of deposit-feeders compared with filter-feeders, supported the hypothesis that sessile free-living microorganisms are key players in the nutrition of the vent fauna, even in diffuse flow habitats, as previously suggested (Bergquist et al., 2007).

Addressing species trophic guilds and trophic links based on SIA includes several potential biases due to isotope routines, incorporation rates and fractionation factors of consumers (reviewed in Martínez del Río et al., 2009). Furthermore, we identified, within vent assemblages, the presence of multiple δ15N baselines, which may be an additional source of bias. Although most species rely on local production, non-specialized detritivores depending at least partially on photosynthetic-OM may, for example, have δ15N signatures similar to those of predators. Likewise, although most taxa are heterotrophs that rely on free-living chemosynthetic microbial production, the δ15N signatures of species relying at least partially on B. azoricus may be comparable or even depleted relative to primary consumers. For example, the crab Segonzacia mesatlantica is a potential detritivore/scavenger and predator of shrimp, amphipods and mussels (Table S2). In our study, its low δ15N similar to microbial mats appears to reflect a highly specialized bacterivorous diet but also partial predation on B. azoricus tissues or its commensal polynoids. In situ observations of S. mesatlantica feeding on mussels tends to confirm their predation on B. azoricus (J. Sarrazin, personal observations, video Supplemental material 2 of Matabos et al., 2015). Therefore, despite its low δ15N, S. mesatlantica was herein not assigned to a bacterivore specialist but rather to a mixotroph (detritivore/scavenger and predator). In addition, some taxa, known as bacterivores or detritivores, exhibited negligible or very low δ15N enrichment compared with microbial mats, e.g. Aphotopontius sp. copepods, isopods and amphipods. These low δ15N values, relative to other primary consumers, may result either from their belonging to distinct niches in which the δ15N of primary producer may differ or from their weak trophic fractionation factors toward sources (< 3.4‰, Conway et al., 1994). In any case, the δ15N variability among heterotrophic primary consumers can induce a bias in trophic guild assignment, because predators of such depleted consumers (i.e. secondary consumers) can have δ15N signatures comparable to primary consumers. For example, B. azoricus larvae PII had a δ15N signature comparable to that of some bacterivores or detritivores in their assemblages. However, the δ15N of B. azoricus larvae PII may also reflect their predation on bacterivores that have low δ15N. Further, at all sites where copepods where sampled (MG, MG2, and MG3, LSM, and LSM1), B. azoricus larvae PII had similar δ13C and enriched δ15N corresponding to one trophic level (MG: 2.4–4.4‰, LSM: 3.6–5.5‰) with respect to Aphotopontius sp. copepods, thus suggesting a predator-prey link. The observation of B. azoricus larvae PII feeding on living Aphotopontius sp. (Video S1) further supports this predator-prey relationship and a heterotrophic diet in B. azoricus larvae. Without these faunal observations and recurrent SIA shifts between the two species, the larvae would have been classified as bacterivores. Overall, SIA need to be interpreted with caution based on the local δ15N signatures of basal sources, species ecology, in situ observations of faunal interactions and the resulting hypotheses may be further explored using complementary approaches such as fatty acid or amino acid analyses.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.dsr.2017.11.010.

Stable isotope ratios integrate a high degree of heterogeneity reflecting the complexity of ecological networks. Species’ distributions in bidimensional isotopic space (δ13C and δ15N) effectively depend on their trophic diets and habitats, thus theoretically reflecting the concept of species ecological niche (Newsome et al., 2007) or the “realized” species trophic niche (Bearhop et al., 2004; Dubois and Colombo, 2014). Within chemosynthetic ecosystems, we may have the opportunity to assess habitat components even at microscales within assemblages, as demonstrated by the presence of multiple baselines (this study; Portail et al., 2016).

Quantification of the food web complexity based on SIA was addressed in mussel assemblages from the MG and LS vent fields. These assemblages are characterized by distinct environmental conditions (physico-chemical factors and basal sources) and faunal community structure (diversity and composition). Based on the temperature profile in the water column, MG is assumed to belong to a different water mass than LS (Slichter, 2000), affecting hydrodynamics or ambient temperatures for example. The two vent fields are characterized by distinct fluid compositions (Charlou et al., 2002; Le Bris and Duperron, 2010) as evidenced by methane and metal concentrations as well as the expected concentrations of hydrogen sulphide above mussel assemblages. According to these variations in fluid properties, the composition and metabolism of the microbiomes are assumed to differ between MG and LSM (Cerqueira et al., 2017). The composition and diversity of the macrofaunal community in mussel beds are different between the two assemblages. Rarefied alpha diversity (ES215) was two-fold higher at LSM (11.2 ± 0.1) than MG (5.1 ± 0.8) (Sarrazin et al., in preparation). Faunal composition at MG was characterized by a high dominance of P. valvatooides and L. atlantica gastropods whereas LSM was dominated.
by *Branchipolyne scepensis*, dorvilleids, and nemerteans. Composition dissimilarity was estimated at 68% between LSM and MG, and was mainly related to species turnover (50%) whereas nestedness was lower (18%). Despite these abiotic and biotic specificities of the two assemblages between vent fields, the structure of their food webs was similar. Layman’s metrics quantifying the functional diversity, basal source diversification, trophic level length as well as the degree of specialization and redundancy did not differ between LSM and MG. In addition, functional metrics that are biomass-dependant showed that the isotopic divergence, dispersion and redundancy within communities were also highly similar. This similarity in the structure of food webs despite previously introduced abiotic and biotic differences raises the question of the identification of ecological factors involved. The two assemblages were dominated by *B. azoricus* and thus shared the same environmental settings that define the niche of the mussel. Within this environmental setting, the physico-chemical discrepancies related to the nature of the fluid did not seem to influence the functional structure of the assemblages. This functional similarity may be favoured by the high ability of the common fauna to adapt to the spatially and temporally variable nature of fluids. Similarly, the influence of variation in microbial metabolism may also be relatively low because vent fauna appear to benefit from high trophic flexibility (this study; Bell et al., 2016; Levin et al., 2009; Portail et al., 2016). The stability of functional structure in communities that are characterized by distinct taxonomic composition and alpha diversity brings new insights with respect to the pattern described in a previous study using a similar analytical approach of food webs (Portail et al., 2016). In that study, assemblages dominated by the same foundation species in two different ecosystems (i.e. cold seep and hydrothermal vent) had comparable functional structure as well as comparable macrofaunal community composition. Herein, we suggest that the two different pools of species at MG and LSM may play similar roles in the functional structure of the community. Different species may also have redundant functions across vent fields such that the high species turnover between communities is not coupled to functional turnover. Beyond these hypotheses, the influence of diversity on functional structure is relatively ambiguous and unexpected. In ecosystems where species sorting is assumed to play a primary role (Beinart et al., 2012; Cordes et al., 2010c; Govenar et al., 2015; Levesque et al., 2003; Levin et al., 2015, 2013; Portail et al., 2016), the increase in diversity is expected to affect and complexify the functional structure of community. Increase in biodiversity along a gradient of decreasing fluid flow has been associated to the complexification of the food web where high niche partitioning would be required for species coexistence, resulting in high functional diversity and specialization, but low redundancy (Portail et al., 2016). Our results suggest that for common assemblages (herein *B. azoricus*), that have similar fluid-flux settings, other processes may be involved. We suggest that the absence of a relationship between the functional structure and taxonomic diversity indicates that several co-occurring species have redundant functions. Accordingly, many species showed high variability in their isotopic signatures, leading to a great overlap among heterotrophic taxa within a community. Therefore, adding species within in a functional group, may not necessarily lead to more complexity. Interestingly, the highest variation in functional metrics was observed among samples within vent fields rather than between vent fields even though the environment and the structure of the faunal community (composition and diversity) were relatively similar. Trophic and habitat partitioning among functional groups may be of primary interest in the complexification of food webs at small spatial scale within chemosynthetic ecosystems. Accordingly, individuals belonging to the same species showed significant differences in SIA across samples. Environmental gradients in these assemblages are assumed to be relatively substantial and to affect faunal isotopic signatures, as demonstrated for the nitrogen ratios of endofauna from sediment (Portail et al., 2016) and suggested for epifauna from hard substrates with the presence of multiple baselines described in our MAR assemblages. Therefore, although fluid gradients shape the horizontal distribution of faunal assemblages, characterization of vertical gradients within assemblages appear to be an essential key to better assess food web patterns within chemosynthetic communities. Further work is needed to define the microdistribution of individuals within assemblages and their associated microhabitats (i.e. ecological optimum) to better assess species’ ecological niches and biotic interactions.

Functional trait approaches have been developed to assess community patterns based on individual or species functions rather than species identity. Functional traits of species within chemosynthetic ecosystems are poorly known (Levin et al., 2016) and our study represents one of the first attempts to address functional complexity of vent assemblages. Our approach focuses on raw SI ratios (carbon source, trophic level and habitat), qualitative traits extracted from SI interpretation (trophic diet and strategy) as well as other qualitative functional traits of interest (size and mobility). The biomass-dependant functional metrics gave estimations of the functional divergence, dispersion and redundancy within communities. Of the three metrics, only one, i.e. the functional dispersion/specialization, differed significantly between the MG and LS mussel assemblages, with higher values at LS. Beyond δ13C and δ15N, the functional traits analysis highlighted more heterogeneity in trait dominance for trophic guild, trophic strategy, size as well as mobility within LS. Associated with size and mobility, other functions (such as reproduction or dispersion strategies) can be depicted in the analysis and thus contribute to the higher variance observed compared to SIA-based metrics. Although these analyses provide interesting insights, more work is clearly needed to reach quantitative rather than qualitative approaches of species functional traits. Food web studies have contributed substantially our knowledge of chemosynthetic ecosystem functioning, but functional traits should now be considered to reach a comprehensive view of the complexity there.

5. Conclusions

This food web study of MAR hydrothermal vent fields offers the opportunity to assess the functioning of vent communities at the regional scale, where both exogenous and endogenous factors can affect ecological processes. Contribution of photosynthetic-derived OM was negligible in all vent food webs and did not depend on vent-field depths. The dominant sources were related to methanotrophy and autotrophy using both the CBB and rTCA cycles and their contributions varied according to the availability in reduced compounds. Basal source dominance was influenced by environmental conditions, but species common to all assemblages appeared to exhibit high trophic flexibility, suggesting that the metabolic diversity of basal sources may not be a structuring factor. Diet variability was shown to be potentially higher between different assemblages within a given vent field than between common assemblages across vent fields. Further support was thus provided to the hypothesis that exogenous rather than endogenous factors explain the dissimilarity in faunal community structure between northern MAR hydrothermal vents. Food-web structure analysis at the community level showed that despite variation in environmental conditions and community structure, metrics of the functional structure were similar across assemblages. This functional similarity may be favoured by the low influence of the nature of fluids because vent fauna can adapt to several geological contexts and by the low influence of microbial metabolism due to the trophic flexibility of vent heterotrophs. In addition, ecological niches of the distinct species across vent fields may have similar role in the functional structure of the communities. Furthermore, different species may have redundant functions across ecosystems such that the high species turnover between two communities may not be coupled to a functional turnover at the community level. The absence of a relationship between functional and structural diversity, together with the presence of a high overlap between species isotopic niches within communities, also suggest that redundancy among co-occurring species is high. This species redundancy...
highlights that the addition of species within a functional group does not necessarily lead to more complexity. Overall, this study opens a new perspective on complexity within chemosynthetic communities and points to the need to better characterize species’ ecological niches and biotic interactions.

Acknowledgements

We are grateful to the R/V Pourquoi pas? crew for their steadfast collaboration in the success of the BIOMAZ cruise, to the chief scientist of the cruise (Francisco Lalller), to the Victor 6000 submersible pilots for their patience and constant support and to the LEP technical staff for their valuable help both at sea and in the lab. This research received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under the MIDAS project, grant agreement no. 603418. AC was supported by Program Investigador (IF/00029/2014/ CP1230/CT0002) from the Fundação para a Ciência e Tecnologia (FCT). This study also benefited from the support of FCT through the strategic project UID/MAR/04292/2013 granted to MARE. The manuscript was professionally edited by Carolyn Engel-Gautier.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.esd.2017.11.010.

References

Doubois, S., Colombo, F., 2014. How picky can you be? Temporal variations in trophic

