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Figure 1: Sandwell et al., (2014) free-air satellite-derived gravity anomalies showing anomalous tectonic features on the seafloor of the Indian Ocean. The magnetic anomaly plots were derived from The Global Seafloor Fabric and Magnetic Lineation Data Base Project (GSFML). The ocean is the

third largest of the world’s oceans, covering approximately 20% of the earth surface with an average depth of 3.741m and a maximum depth of 7.906m. AP: Agulhas Plateau; AR: Astrid Ridge; BH: Beira High; CKP = Central Kerguelen Plateau; ESB: Eastern Somali Basin; EB: Elan Bank; LP:

Laccadive Plateau; MadR: Madagascar Ridge; MR: Maud Rise; MOZB: Mozambique Basin; MadR: Madagascar Ridge; MP: Mascarene Plateua; MozR: Mozambique Ridge; N: Nazareth Plateau; NNV: Northern Natal VValley, NKP = N Kerguelen Plateau; SB: Saya de Malha Bank; SL is Sri Lanka

and SKP = South Kerguelen Plateau; SNV: South Natal Valley; WSB: Western Somali Basin. Red lines: fracture zones. The North Mozambique Ridge (In red) was found during recent expedition in the Mozambique Basin of MOZ3-5 to consist mainly of sediments muscle on a thinned continental

crust (Lepretre et al., 2017; Moulin et al., submitted). The Southern Mozambique Ridge maybe composed of volcanics (Gohl et al., 2011) probably emplaced at a triple junction. (Mercator projection)



Figure 2: Gravity and bathymetry map of Mozambique Channel, showing the complexity and segmentation of the East
African margin. The top and middle arrows corresponds to the movement of the Madagascar and Antarctica tectonic plates
respectively, and the lower arrow corresponds to a later event involving the drifting of the Falkland and Patagonian plates.
NNV= North Natal Valley; NMR= North Mozambique Ridge; SMR= South Mozambique Ridge; NMadR= North
Madagascar Ridge; SMadR= South Madagascar Ridge. Notice the positions of DSDP 245, 246, 247, 248, 249. In red=
Volcanism . (Mercator projection)
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Figure 3: Gondwana reconstructions models by (Smith and Hallem, 1970; Norton and Sclater, 1979; Sahabi, 1993; Reeves
and de Wit, 2000; Marks and Tikku, 2001; Konig and Jokat, 2006; Eagles and Konig, 2008; Leinweber et al., 2012; Gaina
et al., 2013). The models present different positions for the plates, and result in overlaps, gaps, latitudinal, and angular

differences. (Mercator projection).



Evolution of Plate tectonic studies in the Indian Ocean: Hypothesis, general concepts, technology and data
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Figure 4: Evolution of plate tectonics studies in the Indian Ocean, from 1500s to present day. The land bridge theory and the compression theory were poposed in the1500s and 1800s, respectively. Wegener (1924) proposed the continental drift hypothesis, in
which he stated that all the continents were once compressed together into a single super-continent which he called Pangaea. His ideals were not accepted until Holmes (1944), Harry Hess (1962) and Deitz (1961) elaborated on one of his idea, and showed

that the mantle undergoes thermal convection. The initial reconstruction of the Indian Ocean was based on the shape of the continents (Wegener 1929 and duToit, 1937). Notices the rapid increase in data for the reconstruction from the 1970’s to present age
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Figure 5: Three possible initial fit positions proposed for Madagascar. (i) Green: a position adjacent to East Africa (Kenya and Tanzania),
originally proposed by du Toit (1937) and later favored by Smith and Hallam (1970). (ii) Yellow: a position adjacent to Mozambique proposed

originally by Wegener (1929) and supported by Flores (1970, 1972). (iii) Black; Madagascar staying at its present position since the Paleozoic

(Francis et al., 1966). In blue: Beira High. Arrows: Madagascar’s drift path to present position. (Mercator projection).
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Figure 6: Reconstruction model of Smith and Hallem (1970). Their model presented a good fit of Gondwana, except in Zambezi Basin, where
Antarctica overlaps the Beira High. Their model also leads to ~400km between Madagascar and India. Poles for South American plate provided
by author. The PanAfrican orogeny in figures 6-23 are represented by author.BH: Beira High, LP: Limpopo Basin, NNV: North Natal Basin.

(Mercator projection).
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Figure 7: Reconstruction model of Norton and Sclater (1979). They placed the Mozambique Ridge loosely between Africa and Antarctica,
treating it as a pre-drift structure. The Gondwana sequence in India and Antarctica are misaligned. The model also results in ~260km of gap
between Madagascar and India. Poles for the South American plate provided by Norton and Sclater (1979). BH: Beira High, LP: Limpopo
Basin, NNV: North Natal Basin, ZB: Zambezi Basin. (Mercator projection).
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Figure 8: Reconstruction model of Powells et al. (1980). Based on their observation of the pattern of seafloor spreading between Madagascar
and India, that India-Antarctica-Australia originally farther south than previously proposed by Smith and Hallem. (1970). Their model results
in very large gaps in the initial fit of Gondwana; a 500km gap between India and Madagascar, and 800km gap between Antartica and Africa.

(Mercator projection).
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Figure 9: Reconstruction model of Martin and Hartnady (1986). They proposed the Limpopo Basin to be underlained by oceanic crust or very
highly extended continental crust, and existence of extinct spreading center northern Natal Valley. (Mercator projection).
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Figure 10: Reconstruction model of Sahabi, (1993). He predicted continental origin for the Limpopo Basin, Natal Valley, and the South
Mozambique Ridge, avoiding overlap by Antarctica. However, his model leads to an overlap of Antarctica with the Beira High. The model
aligns the Batsimisaraka Shear Zone, to the Moyar Cauvery Shear Zone. BSZ: Batsimisaraka Shear Zone. BH: Beira High, LP: Limpopo

Basin, NNV: North Natal Basin, ZB: Zambezi Basin. (Mercator projection).
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Figure 11: Reconstruction model of Kovacs et al. (2001). They presented a compilation of magnetic data in the Weddell Sea, in agreement with
Livermore and Hunter (1996) and Marks and Tikku (2002). Their model results in an overlap of Antarctica on NNV and the Mozambique

Ridge. Poles for South American plate provided by author. (Mercator projection).
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Figure 12: Reconstruction model of Marks and Tikku (2002). They proposed the Mozambique Ridge behaved like a microplate with its own
independent motion between anomaly M11 and M2. Their model result overlap of Antarctica across the Mozambique ridge. (Mercator

projection).
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Figure 13: Reconstruction model of Tikku et al. (2002). They suggested a continental origin for the Mozambique Ridge, considering the ridge
as a microplate. They suggested the existence of an active spreading center in the North Natal Valley. Their model leads to a gap of ~800km
between Antarctica and Mozambique. LP: Limpopo Basin, NNV: North Natal Basin. (Mercator projection).
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Figure 14: Reconstruction model of Jokat et al. (2003). They argue that the Karoo and Dronning Maud Land magmatism occurred well before

any new ocean floor was created in the Indian Ocean, and therefore the oldest oceanic in the ocean cannot be related directly to any plume

event. The model results in 150km overlap Antarctica across Africa. ((Mercator projection).
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Figure 15: Reconstruction model of Konig and Jokat (2006). They proposed extinct spreading center in the NNV and discussed the existence
of an independent Mozambique ridge microplate prior to 120 Ma. Their model results in large overlap of the Mozambique Ridge in the Limpopo

Basin in the initial fit of Gondwana. (Mercator projection).
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Figure 16: Reconstruction of model of Eagles and Konig (2008). They assumed oceanic origin for the Mozambique ridge and the Southern
Mozambique plains. The model results in ~700km overlap between India and Antarctica, and a 300km overlap of the Antarctic plate across

Africa. (Mercator projection).
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Figure 17: (a) Reconstruction model of Konig and Jokat (2010). They considered oceanic origin for the Mozambique Ridge, with an emplacement between 140-120Ma. The Figure 17 (b) Flowlines for Antarctica proposed in Konig and Jokat (2010). The flowlines crosses the magnetic spreading
model result in ~90km of overlap between Antarctica and Africa. Mercator projection.

anomalies in the South Natal Valley (SNV). Implying the SNV was generated between Antarctica and Africa
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Figure 18: Reconstruction model of Seton et al. (2012). They adopted a model for Gondwana whereby pre-breakup margin
extension was initiated at 180 Ma as a response to thermal weakening by the eruption of the Karoo flood basalts, and
initiated seafloor spreading at 160Ma along the entire East Africa margin after the cessation of rifting in the Karoo Rift,
about 5 million years before the last confidently dated magnetic anomaly (M25). Following Torsvik et al. (2012), they
reconstructed Antarctica with an overlap on the Beira High, NNV, N Mozambique Ridge, and Limpopo basin Poles for

South American plate provided by Seton et al. (2012). (Mercator projection).
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Figure 19: Reconstruction model of Torsvik et al. (2012). Their model assumes oceanic origin for the Limpopo Basin, Natal

North Valley, and the Mozambique Ridge. Allowing Antarctica to overlap these structures, and results in

~300km of overlap between Antarctica and Africa. Poles for South American plate provided by Torsvik et al. (2012). (Mercator
projection).
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Figure 20: Initial fit of Leinweber and Jokat, (2012). The model is based on interpretation of magnetic anomaly M41 in the
Zambezi Basin, and assumption of an Early Jurassic Gondwana breakup, close time wise to the Karoo magmatic activity
(179-182Ma). Their initial fit of Antarctica with respect to Africa leads to a tight fit, with a resulting ~300km overlap of
Antarctica on Africa inMozambique. They assumed oceanic origin for the Beira High, Limpopo Basin, the North Natal
Valley, and the Mozambique ridge, permitting overlap by Antarctica. Poles for South American plate provided by Leinweber
and Jokat, (2012. (Mercator projection).
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Figure 21: Reconstruction model of Gaina et al. (2013). Following Leinweber and Jokat, (2012), Gaina et al. (2013) assumed
magnetic anomaly M41 (167.5 Ma Gradstein et al., 2012) as the oldest Jurassic anomaly in the Mozambique Channel, and
additionally proposed anomaly M41 in the Somali to achieve a cohesive initial East-West Gondwana drift from Africa. Their
model results in overlap of Antarctica over the Beira High, the Limpopo Basin, the North Mozambique Ridge, and the North
Natal Valley. The model further results in ~200km overlap between India and Antarctic, and ~140km gap between India
and Madagascar. Poles for South American plate provided by Gaina et al. (2013). (Mercator projection).
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Figure 22: Reconstruction of Reeves et al. (2015). Their original model incorporated reconstruction of distinct rotation
poles for several Precambrian cratons and continental fragments. Their fit for India-Madagascar-Sri Lanka-Antarctica was
model after Ghosh et al., (2004). They suggested significant extension of the continental crust about 200Km. To examine
their model on the same scale as the others, the coastline of the plates was used. The model results in ~300km of overlap of
Antarctica on the African plate (in the Limpopo Basin). Notice Antarctica completely overlaps the Beira High, the North
Mozambique Ridge and the North Natal Valley. PSZ: PanAfrican Shear Zone after de Wit et al. (2001). (Mercator
projection).
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Figure 23: Nguyen et al. (2016) adopted the pole of Gaina et al. (2013) for the initial fit of Madagascar relative to Africa,
and Seton et al. (2012) for the rest of the East Gondwana plates. The model results in ~300km overlap of Antarctica over

Africa, and ~140km gap between India and Madagascar. PSZ: PanAfrican Shear Zone. (Mercator projection).
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Figure 24: Reconstruction of Madagascar relative to Africa by Phethean et al., (2016). They proposed new spreading
lineaments in the Somali Basin, based on directional derivatives of free-air gravity anomalies in support of a tight fit of
Madagascar to Africa, with significant crustal extension between the two plates. Their initial fit of Madagascar in their
model is after Revees et al. (2015). The model has consequences on the position of Antarctica and the rest of the East
Gondwana (India, Sri Lanka, Australia) relative to Africa as it may result in overlap of Antarctica over Africa in
Mozambique (see Revees et al. (2015). PSZ: PanAfrican Shear Zone after de Wit et al. (2001). (Mercator projection).
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Figure 25: Map showing comparing the reconstruction models of Sahabi, (1993), Leinweber and Jokat, (2012), Gaina et
al., (2013), Reeves et al., (2015) at the same scales. Notice the large differences in the placement of the plates in terms of
latitude and angle. With regard to the fit between Africa and Antarctica, notice the overlap of Antarctica on the Limpopo
basin in (Reeves et al., 2015; Gaina et al., 2013 and Leinweber and Jokat, 2012). The North Mozambique Ridge (In yellow)
was found during recent expedition in the Mozambique Basin of MOZ3-5 to consist mainly of sediments on a thinned
continental crust (Lepretre et al., 2017; Moulin et al., submitted). The Southern Mozambique Ridge (In black) maybe

composed of volcanics (Gohl et al., 2011) possibly emplaced at a triple junction. (Mercator projection).
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Figure 26: Comparing the evolution partings of Madagascar in (Reeves et al., 2015; Gain et al., 2013; Leinweber and Jokat,
2012; and Sahabi, 1993). The models of Reeves et al., (2015) and Leinweber and Jokat, (2012) starts with an initial overlap
of Madagascar on the African plate before a southward drift to the present position. Notice Leinweber and Jokat, (2012)

start with an initial phase of compression. (Mercator projection).
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Figure 27: Evolution of Antarctica with respect to Africa in (Reeves et al., 2015; Gain et al., 2013; Leinweber and Jokat,

2012; and Sahabi, 1993). Notice the initial relatively zig zag motion in Gaina et al, (2013), and the overlap of the
Antarctic plate and Africa plate in Reeves et al. (2015) Gain et al., (2013), Leinweber and Jokat (2012) calling into

question the nature of the crust underlying this area. (Mercator projection).

27



10°0'0"E 20°0'0"E 30°0'0"E 40°0'0"E 50°0'0"E 60°0'0"E 70°0'0"E
1 1 1 1 1 1
i N
! S t
~
0°0'0"=f - Condh Mafumga b=0°0'0"
0ngo Basin
Basin a
Bas
Tanga
Basin pondava
dsin
Selous o
Basin * D
Angola / “4
10°0'0"S={ Basin SUh'Lrlihu \ I ! -10°0'0"S
Luangwa = 2% A
D Basin Metangula '
Barotse Lukusahi Basin
Basin i
Basi Cabora Bassa
Mana Pools Badhh, -
Ovambo Swer Zgmibgze
Basin
Legend
20°0'0"S=4-+ Juab = - ! I | l20°0'0"S
Bakiri . Waterber:
; % Basin - Karoo and Ferrar intrusives and volcanics
Aranos _ % Karoo_sediment
Basin
»
-~ ds PKirwanveggen
arasb, g'; P —— 925 462,5 0 925 Kilometgrs
Bys| i T e ‘ leimefrontfjella
30°0'0"S =] ) E C:) Vestfjella L-30°00"s
M, §Theron
¢ mountains
D ¢
O &
D G ’
) ] ) ) ) )
10°0'0"E 20°0'0"E 30°0'0"E 40°0'0"E 50°0'0"E 60°0'0"E 70°0'0"E

Figure 28: Reconstruction of Thompson et al. (submitted), showing the main distribution of pre-drift Karoo sediments and

volcanics in Africa, Madagascar, and Antarctica. The Southern Africa continent is characterized by vast network of sills

and dykes (182-183Ma) which are pre-syn-post Karoo magmatism (179-182Ma). This magmatic event was also witnessed

in the Dronning Maud Land of Antarctica (Elliot and Fleming 2000), and the Ferrar Province (Antarctica, Elliot and

Fleming 2000). World Geodectic System 1984. Blue circle shows the possible location of the tripple junction considered for

the plume hypothesis.
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Bristow (1980), showing how early formed picritic magmas would equilibrate with mantle phases at higher pressures than

those magmas formed later in the volcanic event.

29



Table 1. The 40Ar-3°Ar Radiometric Ages for the Karoo Igneous Province in South Africa and Namibia and Correlative Rocks in East Antarctica

Sample Material Total Fusion Plateau Age 39Ar Isochron Age, N 40Ar36A0 J
Age, Ma Ma of Total % Ma Intercept £ 1o
South Africa: Lesotho
OXB-01 basalt 187.5 1865+ 1.9 81 1896432 5 235.14216 0.001686
MLP-172 basalt 1803 1795+2.1 79 181.7£22 3 2809+9.6 0.001680
BUS-18 basalt 184.8 1824417 94 1864426 s 28354283 0.001690
ROM-01 basalt 180.4 180.0+2.1 88 180643 4 253.5+39.7 0.001695
186.8 1844 £ 1.0 69 1819423 3 2982+56 0.001593
BMC-04 basalt 1843 1843%1.7 95 1835+19 5 2922464 0.001686
NN-01 basalt 190.4 1829+2.1 60 184.1£25 3 287.2+109 0.001688
ON-018 basalt 166.7 0.001695
KF-10 Omeg? basalt 1737 1839£1.0 77 1835+1.7 5 302.749.1 0.001653
plagioclase 187.9 183907 93 1838424 6 2947427 0.001496
MF-09 Mosheshb basalt 185.9 0.001358
KRB-7 Moshesh andesite 1832 181.0%1.7 82 1820£32 4 29584279 0.001628
KR-29 Moshesh basalt 190.5 1865 1.1 7 1845432 3 308.9 £70.6 0.001324
South Africa: Lebombo
KVU-5 Jozini rhyolite 180.3 179.7+0.7 98 1800+ 1.8 4 3153491.7 0.001469
KSA-12 Jozini rhyolite 177.7 178.1 £0.6 91 1776%19 6 308.7 4382 0.001430
Sabie basalt 179.0 1812£1.0 79 1826+2.1 4 296.04139 0.001398
KOL-2 Sabie basalt 186.2 183213 83 1814£37 4 306.0+9.5 0.001680
RSV-4 Sabie® basalt 180.8 0.001503
RSV-35 Sabie basalt 188.4 18424 1.0 81 1828449 3 305.6451.7 0.001525
plagioclase 190.4 1842206 76 1829425 6 295.1+34 0.001574
RSS-8  Sabic® basalt 186.7 0.001621
KP-121 Letaba picrite 184.5 1827408 90 1822425 4 356.6431.6 0.001675
KP-111 Letaba picrite 129.5 1419%1.5 62 1398425 3 267.014.1 0.001385
KP-83 Mashikirid nephelinite 2194 0.001382
KP-92 Mashikiri nephelinite 1942 182116 54 181.7£39 2 313.1429.0 0.001436
KOL-17 Mashikiri® nephelinite 2063 0.001599
South Africa: Transvaal Dikes and Sills
TRA-71€ plagioclase 1772 0.001378
TRA-76 plagioclase 180.6 1814+ 1.1 95 1835+ 1.6 7 25724355 0.001391
TRA-84 plagioclase 189.4 1828+ 1.6 68 1824428 4 309.0425.0 0.001470
TRA-95 plagioclase 207.6 1803+ 1.8 65 184.1 £22 4 2948160 0.001353
Namibia: Hardap
HAR-02b basalt 188.4 0.001265
plagioclase 183.4 183.04 0.6 100 1844+18 6 294626 0.001448
HAR-07b basalt 182.7 0.001746
HAR-08 basalt 1774 1842+ 1.0 50 1854419 4 2902437 0.001275
HAR-13 basalt 185.4 186.0+0.8 92 1874420 5 291.0+2.1 0.001605
Namibia: Keetmanshoop
KEE0 lagioclase :g.s 847+05 200130
plagi 4 .7 £0. 95 1838+ 1.7 8 268.1 $37.6 0.001
KEE-05 plagioclase 176.0 181508 50 182928 3 2952485 0.313?
KEE-070 basalt 1850 0.001774
KEE-10 basalt 184.1 1847£0.7 100 1858+20 6 2925438 0.001710
plagioclase 189.0 1805£0.7 90 1818423 4 2947%4.1 0.001591
KEE-1]2 basalt 181.7 0.001255
Antarctica: Kirwan Mountains
LAD-7 plagioclase 1839 180.6 £0.6 89 1820432 5 2919+3.1 0.001
LAG-22 plagioclase 182.1 182.7£06 97 180920 6 2919£09 0.(!)!2%
LAG-31 plagioclase 1834 182806 98 181.5£1.5 7 2932443 0.001640

Figure 30: Radiometric ages of Karoo volcanism presented Duccan et al. (1997) in Africa compared to Antarctica. The ages

suggest contemporanous emplacement.
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Figure 31: Geological map of the Lebombo Monocline by Klausen (2009). Distribution of Karoo sediments (Late
Carboniferous to Middle Jurassic) and overlying volcanic rocks in Klausen (2009), showing the distribution of earliest
nephelinite, overlain by picritic Letaba River basalt formation, and lateral high- to low-(Ti, Zr) transition in Sabie River
basalt Formation. Note northward disappearance of younger lava formations beneath unconformable cover of Cretaceous—
Tertiary sediments. The insert describes the distribution of dykes on the Lebombo. The N-S and NW-SE trending dykes are
Jurassic dykes. The predominant SW—NE dykes are cut by the N-S and NW-SE; therefore older than the Karoo Supergroup.
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Figure 32: (a) Lithotectonic model by Geiger e al. (2004). In their model, Gondwana breakup was preceded by several Karoo

rifting events, but only the Early Jurassic (Toarcian) Andafia rift finally resulted in crustal separation. (b) Generalized

stratigraphic scheme by Hankel (1994) for pre-drift sediments of East Africa and Madagascar showing major subdivisions

and events. Notice the age difference predicted for the start of drifting in the two schemes Toarcian in Geiger and Bajocian

in Hankel (1994).
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as figure 34.
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Figure 35: Structural map of the Limpopo basin after Salman 1985. The nature of the crust underlying the Limpopo basin
remains unknown. Cox (1992) proposed the basin’s development to be related to a plume event that resulted in suppressed
breakup, extensive volcanism, and subaerial spreading. Salman and Abdulla (1995) and Flores (1975), however, interpreted
the basin to be characterized by the existence of a series of parallel, trending fractures issuing ever younger magma from

west to east. The regional low and high are derived from gravity.. Map drawn after Salman, (1985).
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Table 1. Mozambican wells that encountered volcanics®

Name Elevation
(sea level) (m)
2 3 4
Balano 1 -2,861.1 256.1
Domo 1 -2,980.9 57.0
Zandamela 1 -1,770.2 926.0
S.Massinga 1 -4,169.0 27.4
Mambone 1 -3,247.9 353.6
Nhamura 1 -5,140.1 301.2
-5,441.3 27.4
Nhachangue 1 -4,479.6 46.9
NE Palmeira 1 -4,441.2 13.7
NW Macia 1 -2,122.0 152.2
Funhalouro 1 -4,054,1 49,7
Nemo 1x -3,709.4 396.3
Sunray I IA -3,507.0 38.4
Sunray 2 IA -1,105.2 118.8
Sunray 3 -3,552.7 28.0
Sunray 4 IB -1,325.9 19.5
Sunray 7 -2,595.7 463.3
Sunray 12 I -2,159.8 282.8

Thickness Radiometric

age, MM yrs.

(Karroo?)

(PreCambrian)

K/Ar - 285.6%14.3

129.6%4.0

K/Ar - a)116.8%1

Rock type

Basalt

Olivine, basalt
Basalt, rhyolites
Basalt

Basalt, alkali basalt
Dolerite

Dolerite

Olivine basalt

Basalt

Basalt

Weathered basalt,tuffs
Tuffs,alkali basalt
Basalt

Weathered basalt

b)8.4771.0(?)

Weathered basalt
Basalt
Basalt

Tuffs, basalt

Figure 36: Chart of Mozambique well that encountered volcanics by Flores (1984), showing the episodic event of the Karoo volcanism.
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Figure 37: Magnetic anomaly identification in the Riiser-Larsen Sea and Mozambique Basin. (A) Magnetic anomaly
identification in the Riiser-Larsen Sea by Leinweber and Jokat (2012). The lower right inlet shows the tracks of their lines.
The yellow elipse marks anomaly M25 (157Ma), the oldest magnetic anomaly identified in the Riiser Larson Sea. (B)
Magnetic anomaly in the Mozambique Basin. The small inset map in the left bottom shows their lines used. The yellow and
red circle marks magnetic anomaly M25 and M41 (166Ma) respectively, identified by Leinweber and Jokat (2012), who
identified anomaly M41 as the oldest magnetic anomaly in the Riiser Larson Sea. Dash lines indicate the Continent Ocean
Transition Boundary (COTB) by Raillard (1990).
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Figure 38: (a) Free-air satellite-derived gravity anomaly of the Mozambique Channel by Sandwell et al., (2014). The black
line across the Beira High shows the location of the seismic refraction profile 2014001014 of Muller et al. (2016). The north
Mozambique Ridge (in red) discovered in recent expedition in the Mozambique Basin of MOZ3-5 to be compose mainly of
sediment on a thinned continental crust (Lepretre et al., 2017; Moulin et al., submitted). The southern Mozambique Ridge
(in black) maybe composed of volcanics (Gohl et al., 2011) possibly emplaced at a triple junction. (b) The free-air gravity
anomaly along the profile (c) Magnetic anomaly along the profile. The magnetic anomalies were from Leinweber and Jokat
(2012). (d) Wide-angle seismic profile 2014001014 seismic across the Beira High and the Zambezi depression by Muller et
al., (2016). They interpreted the Beira High to be of continental origin, and that the Zambezi depression consists of stretched
continental crust. (Mercator projection figure 11-23).
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Figure 39: Free-air satellite-derived gravity anomaly (Sandwell et al. 2014) of Mozambique and Madagascar. The
Mozambique ridge is formed of several bathymetric plateaus rising up to 3500m from the ocean floor. It has broad, elevated
topography especially on its southern half, falling away steeply into the Mozambique basin to its east (Gohl et al., 2011).
The Madagascar Ridge extends a distance of 1300km from the southern tip of Madagascar, and ~400 km across. The ridge
protrudes at water depth between 2 and 3 km across most of the plateau. (Mercator projection).
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Figure 40: Geology of North Mozambique by Bingen et al. (2009), showing Mozambique Belt, a complex rift-orogenic belt. At least three orogenic episodes are recognized along the belt.
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Figure 41: Synthetic chart of the passive margin of southern Africa: magmatism, oceanic accretions, regional scale deformations and stratigraphic record by Baby (2017).
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Figure 42: Map of seafloor fabric and magnetic anomalies data used in the study in the Somali Basin and East Indian Ocean. The magnetic anomaly plots were derived from EMAG3 and Williams et al. (2013). ZP: Zenith Plateau, NP: Naturaliste Plateau, WZFZ: Wallaby Zenith Fracture Zone.
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