
 
  

  

  

  

 

 



 

 

 

 

 

 

 

 

  



  

  

  

  

  

  



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



  
Figure 1: Sandwell et al., (2014) free-air satellite-derived gravity anomalies showing anomalous tectonic features on the seafloor of the Indian Ocean. The magnetic anomaly plots were derived from The Global Seafloor Fabric and Magnetic Lineation Data Base Project (GSFML). The ocean is the 

third largest of the world’s oceans, covering approximately 20% of the earth surface with an average depth of 3.741m and a maximum depth of 7.906m. AP: Agulhas Plateau; AR: Astrid Ridge; BH: Beira High; CKP = Central Kerguelen Plateau; ESB: Eastern Somali Basin; EB: Elan Bank; LP: 

Laccadive Plateau; MadR: Madagascar Ridge; MR: Maud Rise; MOZB: Mozambique Basin; MadR: Madagascar Ridge; MP: Mascarene Plateua; MozR: Mozambique Ridge; N: Nazareth Plateau; NNV: Northern Natal Valley, NKP = N Kerguelen Plateau; SB: Saya de Malha Bank; SL is Sri Lanka 

and SKP = South Kerguelen Plateau; SNV: South Natal Valley; WSB: Western Somali Basin. Red lines: fracture zones. The North Mozambique Ridge (In red) was found during recent expedition in the Mozambique Basin of MOZ3-5 to consist mainly of sediments muscle on a thinned continental 

crust (Lepretre et al., 2017; Moulin et al., submitted). The Southern Mozambique Ridge maybe composed of volcanics (Gohl et al., 2011) probably emplaced at a triple junction. (Mercator projection)
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Figure 2: Gravity and bathymetry map of Mozambique Channel, showing the complexity and segmentation of the East 

African margin. The top and middle arrows corresponds to the movement of the Madagascar and Antarctica tectonic plates 

respectively, and the lower arrow corresponds to a later event involving the drifting of the Falkland and Patagonian plates. 

NNV= North Natal Valley; NMR= North Mozambique Ridge; SMR= South Mozambique Ridge; NMadR= North 

Madagascar Ridge; SMadR= South Madagascar Ridge. Notice the positions of DSDP 245, 246, 247, 248, 249. In red= 

Volcanism . (Mercator projection) 
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Figure 3: Gondwana reconstructions models by (Smith and Hallem, 1970; Norton and Sclater, 1979; Sahabi, 1993; Reeves 

and de Wit, 2000; Marks and Tikku, 2001; Konig and Jokat, 2006; Eagles and Konig, 2008; Leinweber et al., 2012; Gaina 

et al., 2013). The models present different positions for the plates, and result in overlaps, gaps, latitudinal, and angular 

differences. (Mercator projection).  



 

 

 

Figure 4: Evolution of plate tectonics studies in the Indian Ocean, from 1500s to present day. The land bridge theory and the compression theory were poposed in the1500s and 1800s, respectively. Wegener (1924) proposed the continental drift hypothesis, in 

which he stated that all the continents were once compressed together into a single super-continent which he called Pangaea. His ideals were not accepted until Holmes (1944), Harry Hess (1962) and Deitz (1961) elaborated on one of his idea, and showed 

that the mantle undergoes thermal convection. The initial reconstruction of the Indian Ocean was based on the shape of the continents (Wegener  1929 and duToit, 1937). Notices the rapid increase in data for the reconstruction from the 1970’s to present age 
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Figure 5: Three possible initial fit positions proposed for Madagascar. (i) Green: a position adjacent to East Africa (Kenya and Tanzania), 

originally proposed by du Toit (1937) and later favored by Smith and Hallam (1970).  (ii) Yellow: a position adjacent to Mozambique proposed 

originally by Wegener (1929) and supported by Flores (1970, 1972). (iii) Black; Madagascar staying at its present position since the Paleozoic 

(Francis et al., 1966). In blue: Beira High. Arrows: Madagascar’s drift path to present position. (Mercator projection).  
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Figure 6: Reconstruction model of Smith and Hallem (1970). Their model presented a good fit of Gondwana, except in Zambezi Basin, where 

Antarctica overlaps the Beira High. Their model also leads to ~400km between Madagascar and India. Poles for South American plate provided 

by author. The PanAfrican orogeny in figures 6-23 are represented by author.BH: Beira High, LP: Limpopo Basin, NNV: North Natal Basin. 

(Mercator projection).  
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Figure 7: Reconstruction model of Norton and Sclater (1979). They placed the Mozambique Ridge loosely between Africa and Antarctica, 

treating it as a pre-drift structure.  The Gondwana sequence in India and Antarctica are misaligned. The model also results in ~260km of gap 

between Madagascar and India. Poles for the South American plate provided by Norton and Sclater (1979). BH: Beira High, LP: Limpopo 

Basin, NNV: North Natal Basin,  ZB: Zambezi Basin. (Mercator projection).  
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Figure 8: Reconstruction model of Powells et al. (1980). Based on their observation of the pattern of seafloor spreading between Madagascar 

and India, that India-Antarctica-Australia originally farther south than previously proposed by Smith and Hallem. (1970). Their model results 

in very large gaps in the initial fit of Gondwana; a 500km gap between India and Madagascar, and 800km gap between Antartica and Africa. 

(Mercator projection).  
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Figure 9: Reconstruction model of Martin and Hartnady (1986). They proposed the Limpopo Basin to be underlained by oceanic crust or very 

highly extended continental crust, and existence of extinct spreading center northern Natal Valley. (Mercator projection).  
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Figure 10: Reconstruction model of Sahabi, (1993). He predicted continental origin for the Limpopo Basin, Natal Valley, and the South 

Mozambique Ridge, avoiding overlap by Antarctica. However, his model leads to an overlap of Antarctica with the Beira High. The model 

aligns the Batsimisaraka Shear Zone, to the Moyar Cauvery Shear Zone. BSZ: Batsimisaraka Shear Zone. BH: Beira High, LP: Limpopo 

Basin, NNV: North Natal Basin, ZB: Zambezi Basin. (Mercator projection).  
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Figure 11: Reconstruction model of Kovacs et al. (2001). They presented a compilation of magnetic data in the Weddell Sea, in agreement with 

Livermore and Hunter (1996) and Marks and Tikku (2002). Their model results in an overlap of Antarctica on NNV and the Mozambique 

Ridge. Poles for South American plate provided by author. (Mercator projection).  
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Figure 12: Reconstruction model of Marks and Tikku (2002). They proposed the Mozambique Ridge behaved like a microplate with its own 

independent motion between anomaly M11 and M2. Their model result overlap of Antarctica across the Mozambique ridge. (Mercator 

projection).  
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Figure 13: Reconstruction model of Tikku et al. (2002). They suggested a continental origin for the Mozambique Ridge, considering the ridge 

as a microplate. They suggested the existence of an active spreading center in the North Natal Valley. Their model leads to a gap of ~800km 

between Antarctica and Mozambique. LP: Limpopo Basin, NNV: North Natal Basin.  (Mercator projection).  
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Figure 14: Reconstruction model of Jokat et al. (2003). They argue that the Karoo and Dronning Maud Land magmatism occurred well before 

any new ocean floor was created  in the Indian Ocean, and therefore the oldest oceanic in the ocean cannot be related directly to any plume 

event. The model results in 150km overlap Antarctica across Africa. ((Mercator projection).  
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Figure 15: Reconstruction model of Konig and Jokat (2006).  They proposed extinct spreading center in the NNV and discussed the existence 

of an independent Mozambique ridge microplate prior to 120 Ma. Their model results in large overlap of the Mozambique Ridge in the Limpopo 

Basin in the initial fit of Gondwana. (Mercator projection).  
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Figure 16: Reconstruction of model of Eagles and Konig (2008). They assumed oceanic origin for the Mozambique ridge and the Southern 

Mozambique plains. The model results in ~700km overlap between India and Antarctica, and a 300km overlap of the Antarctic plate across 

Africa. (Mercator projection). 



 

  

   

Figure 17: (a) Reconstruction model of Konig and Jokat (2010). They considered oceanic origin for the Mozambique Ridge, with an emplacement between 140-120Ma. The  Figure 17 (b) Flowlines for Antarctica proposed in Konig and Jokat (2010). The flowlines crosses the magnetic spreading 

model result in ~90km of overlap between Antarctica and Africa. Mercator projection.                                                                                                                                                             anomalies in the South Natal Valley (SNV). Implying the SNV was generated between Antarctica and Africa      
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Figure 18: Reconstruction model of Seton et al. (2012). They adopted a model for Gondwana whereby pre-breakup margin 

extension was initiated at 180 Ma as a response to thermal weakening by the eruption of the Karoo flood basalts, and 

initiated seafloor spreading at 160Ma along the entire East Africa margin after the cessation of rifting in the Karoo Rift, 

about 5 million years before the last confidently dated magnetic anomaly (M25). Following Torsvik et al. (2012), they 

reconstructed Antarctica with an overlap on the Beira High, NNV, N Mozambique Ridge, and Limpopo basin Poles for 

South American plate provided by Seton et al. (2012). (Mercator projection). 
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Figure 19: Reconstruction model of Torsvik et al. (2012). Their model assumes oceanic origin for the Limpopo Basin, Natal 

North Valley, and the Mozambique Ridge. Allowing Antarctica to overlap these structures, and results in  

~300km of overlap between Antarctica and Africa. Poles for South American plate provided by Torsvik et al. (2012). (Mercator 

projection).  
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Figure 20: Initial fit of Leinweber and Jokat, (2012). The model is based on interpretation of magnetic anomaly M41 in the 

Zambezi Basin, and assumption of an Early Jurassic Gondwana breakup, close time wise to the Karoo magmatic activity 

(179-182Ma). Their initial fit of Antarctica with respect to Africa leads to a tight fit, with a resulting ~300km overlap of 

Antarctica on Africa inMozambique. They assumed oceanic origin for the Beira High, Limpopo Basin, the North Natal 

Valley, and the Mozambique ridge, permitting overlap by Antarctica. Poles for South American plate provided by Leinweber 

and Jokat, (2012.  (Mercator projection).  
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Figure 21: Reconstruction model of Gaina et al. (2013). Following Leinweber and Jokat, (2012), Gaina et al. (2013) assumed 

magnetic anomaly M41 (167.5 Ma Gradstein et al., 2012) as the oldest Jurassic anomaly in the Mozambique Channel, and 

additionally proposed anomaly M41 in the Somali to achieve a cohesive initial East-West Gondwana drift from Africa. Their 

model results in overlap of Antarctica over the Beira High, the Limpopo Basin, the North Mozambique Ridge, and the North 

Natal Valley. The model further results in ~200km overlap between India and Antarctic, and ~140km gap between India 

and Madagascar. Poles for South American plate provided by Gaina et al. (2013). (Mercator projection).  
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Figure 22: Reconstruction of Reeves et al. (2015). Their original model incorporated reconstruction of distinct rotation 

poles for several Precambrian cratons and continental fragments. Their fit for India-Madagascar-Sri Lanka-Antarctica was 

model after Ghosh et al., (2004). They suggested significant extension of the continental crust about 200Km. To examine 

their model on the same scale as the others, the coastline of the plates was used. The model results in ~300km of overlap of 

Antarctica on the African plate (in the Limpopo Basin). Notice Antarctica completely overlaps the Beira High, the North 

Mozambique Ridge and the North Natal Valley. PSZ: PanAfrican Shear Zone after de Wit et al. (2001). (Mercator 

projection).  
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Figure 23: Nguyen et al. (2016) adopted the pole of Gaina et al. (2013) for the initial fit of Madagascar relative to Africa, 

and Seton et al. (2012) for the rest of the East Gondwana plates. The model results in ~300km overlap of Antarctica over 

Africa, and ~140km gap between India and Madagascar. PSZ: PanAfrican Shear Zone. (Mercator projection). 
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Figure 24: Reconstruction of Madagascar relative to Africa by Phethean et al., (2016). They proposed new spreading 

lineaments in the Somali Basin, based on directional derivatives of free-air gravity anomalies in support of a tight fit of 

Madagascar to Africa, with significant crustal extension between the two plates. Their initial fit of Madagascar in their 

model is after Revees et al. (2015). The model has consequences on the position of Antarctica and the rest of the East 

Gondwana (India, Sri Lanka, Australia) relative to Africa as it may result in overlap of Antarctica over Africa in 

Mozambique (see Revees et al. (2015). PSZ: PanAfrican Shear Zone after de Wit et al. (2001). (Mercator projection). 
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Figure 25: Map showing comparing the reconstruction models of Sahabi, (1993), Leinweber and Jokat, (2012), Gaina et 

al., (2013), Reeves et al., (2015) at the same scales. Notice the large differences in the placement of the plates in terms of 

latitude and angle. With regard to the fit between Africa and Antarctica, notice the overlap of Antarctica on the Limpopo 

basin in (Reeves et al., 2015; Gaina et al., 2013 and Leinweber and Jokat, 2012). The North Mozambique Ridge (In yellow) 

was found during recent expedition in the Mozambique Basin of MOZ3-5 to consist mainly of sediments on a thinned 

continental crust (Lepretre et al., 2017; Moulin et al., submitted). The Southern Mozambique Ridge (In black) maybe 

composed of volcanics (Gohl et al., 2011) possibly emplaced at a triple junction. (Mercator projection).  
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Figure 26: Comparing the evolution partings of Madagascar in (Reeves et al., 2015; Gain et al., 2013; Leinweber and Jokat, 

2012; and Sahabi, 1993). The models of Reeves et al., (2015) and Leinweber and Jokat, (2012) starts with an initial overlap 

of Madagascar on the African plate before a southward drift to the present position. Notice  Leinweber and Jokat, (2012) 

start with an initial phase of compression. (Mercator projection).  
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Figure 27: Evolution of Antarctica with respect to Africa in (Reeves et al., 2015; Gain et al., 2013; Leinweber and Jokat,  

2012; and Sahabi, 1993). Notice the initial relatively zig zag motion in Gaina et al, (2013), and the overlap of the 

Antarctic plate and Africa plate in Reeves et al. (2015) Gain et al., (2013), Leinweber and Jokat (2012) calling into 

question the nature of the crust underlying this area. (Mercator projection).  
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Figure 28:  Reconstruction of Thompson et al. (submitted), showing the main distribution of pre-drift Karoo sediments and 

volcanics in Africa, Madagascar, and Antarctica. The Southern Africa continent is characterized by vast network of sills 

and dykes (182-183Ma) which are pre-syn-post Karoo magmatism (179-182Ma). This magmatic event was also witnessed 

in the Dronning Maud Land of Antarctica (Elliot and Fleming 2000), and the Ferrar Province (Antarctica, Elliot and 

Fleming 2000). World Geodectic System 1984. Blue circle shows the possible location of the  tripple junction considered for 

the plume hypothesis.  
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Figure 29: (a) Schematic diagram by Bristow (1980), illustrating the geochemical and isotopic relationships of how the 

Lebombo volcanics may have been sourced, and how low-MgO volcanics may have developed. (b) A schematic diagram by 

Bristow (1980), showing how early formed picritic magmas would equilibrate with mantle phases at higher pressures than 

those magmas formed later in the volcanic event.  
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Figure 30: Radiometric ages of Karoo volcanism presented Duccan et al. (1997) in Africa compared to Antarctica. The ages 

suggest contemporanous emplacement.  
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Figure 31: Geological map of the Lebombo Monocline by Klausen (2009). Distribution of Karoo sediments (Late 

Carboniferous to Middle Jurassic) and overlying volcanic rocks in Klausen (2009), showing the distribution of earliest 

nephelinite, overlain by picritic Letaba River basalt formation, and lateral high- to low-(Ti, Zr) transition in Sabie River 

basalt Formation. Note northward disappearance of younger lava formations beneath unconformable cover of Cretaceous–

Tertiary sediments. The insert describes the distribution of dykes on the Lebombo. The N–S and NW–SE trending dykes are 

Jurassic dykes. The predominant SW–NE dykes are cut by the N–S and NW–SE; therefore older than the Karoo Supergroup.   
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Figure 32: (a) Lithotectonic model by Geiger e al. (2004). In their model, Gondwana breakup was preceded by several Karoo 

rifting events, but only the Early Jurassic (Toarcian) Andafia rift finally resulted in crustal separation. (b) Generalized 

stratigraphic scheme by Hankel (1994) for pre-drift sediments of East Africa and Madagascar showing major subdivisions 

and events. Notice the age difference predicted for the start of drifting in the two schemes Toarcian in Geiger and Bajocian 

in Hankel (1994). 



 

    

  

  

  

Figure 33: Lihotectonic chart of Karoo Basins in Africa. The yellow circle correspond to breakup contemporanous with the Karoo magmatic event. The blue circle age of magnetic anomaly M41, and the red circle corresponds to the confidently dated magnetic anomlay in the Somali Basin.  Legend same 

as figure 34. 
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Figure 34: Litotectonic chart of Karoo basins in East Africa and Madagascar Basin.  Notice the different ages predicted for the start of drift in Gondwana; the yellow and blue circles correspond to the predictions of Geiger et al. (2004) and Hankel, (1994), respectively. The red circle correspond 

to the age of the first oceanic crust in Somali Basin.   Legend same as figure 33. 
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Figure 35:  Structural map of the Limpopo basin after Salman 1985. The nature of the crust underlying the Limpopo basin 

remains unknown. Cox (1992) proposed the basin’s development to be related to a plume event that resulted in suppressed 

breakup, extensive volcanism, and subaerial spreading. Salman and Abdulla (1995) and Flores (1975), however, interpreted 

the basin to be characterized by the existence of a series of parallel, trending fractures  issuing ever younger magma from 

west to east. The regional low and high are derived from gravity.. Map drawn after Salman, (1985).  
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Figure 36: Chart of Mozambique well that encountered volcanics by Flores (1984), showing the episodic event of the Karoo volcanism.  
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Figure 37: Magnetic anomaly identification in the Riiser-Larsen Sea and Mozambique Basin. (A) Magnetic anomaly 

identification in the Riiser-Larsen Sea by Leinweber and Jokat (2012). The lower right inlet shows the tracks of their lines. 

The yellow elipse marks anomaly M25 (157Ma), the oldest magnetic anomaly identified in the Riiser Larson Sea. (B) 

Magnetic anomaly in the Mozambique Basin. The small inset map in the left bottom shows their lines used. The yellow and 

red circle marks magnetic anomaly M25 and M41 (166Ma) respectively, identified by Leinweber and Jokat (2012), who 

identified anomaly M41 as the oldest magnetic anomaly in the Riiser Larson Sea. Dash lines indicate the Continent Ocean 

Transition Boundary (COTB) by Raillard (1990).              
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Figure 38: (a) Free-air satellite-derived gravity anomaly of the Mozambique Channel by Sandwell et al., (2014). The black 

line across the Beira High shows the location of the seismic refraction profile 2014001014 of Muller et al. (2016). The north 

Mozambique Ridge (in red) discovered in recent expedition in the Mozambique Basin of MOZ3-5 to be compose mainly of 

sediment on a thinned continental crust (Lepretre et al., 2017; Moulin et al., submitted). The southern Mozambique Ridge 

(in black) maybe composed of volcanics (Gohl et al., 2011) possibly emplaced at a triple junction. (b) The free-air gravity 

anomaly along the profile (c) Magnetic anomaly along the profile. The magnetic anomalies were from Leinweber and Jokat 

(2012). (d) Wide-angle seismic profile 2014001014 seismic across the Beira High and the Zambezi depression by Muller et 

al., (2016). They interpreted the Beira High to be of continental origin, and that the Zambezi  depression consists of  stretched 

continental crust. (Mercator projection figure 11-23).  
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Figure 39: Free-air satellite-derived gravity anomaly (Sandwell et al. 2014) of Mozambique and Madagascar. The 

Mozambique ridge is formed of several bathymetric plateaus rising up to 3500m from the ocean floor. It has broad, elevated 

topography especially on its southern half, falling away steeply into the Mozambique basin to its east (Gohl et al., 2011).  

The Madagascar Ridge extends a distance of 1300km from the southern tip of Madagascar, and ~400 km across. The ridge 

protrudes at water depth between 2 and 3 km across most of the plateau. (Mercator projection).  

  

  

  

  



40  

  

  

 Figure 40:  Geology of North Mozambique by Bingen et al. (2009), showing Mozambique Belt, a  complex rift-orogenic belt. At least three orogenic episodes are recognized along the belt.   
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Figure 41: Synthetic chart of the passive margin of southern Africa: magmatism, oceanic accretions, regional scale deformations and stratigraphic record by Baby (2017).  
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Figure 42: Map of seafloor fabric and magnetic anomalies data used in the study in the Somali Basin and East Indian Ocean. The magnetic anomaly plots were derived from EMAG3 and Williams et al. (2013). ZP: Zenith Plateau, NP: Naturaliste Plateau, WZFZ: Wallaby Zenith Fracture Zone. 

BK: Batavia Knoll, GDK: Gulden Draak Knol,; DHR: Dirck Hartog Ridge, BR: Broken Ridge, FZB: Fracture Zone Bends. (Mercator projection).  
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Figure 43: Map of seafloor fabric and magnetic anomalies data used along the study in the Africa-Antarctic corridor and the Australia-Antartic Basin. (Mercator projection).  



44  

  

  
Figure 44:) Free-air satellite-derived gravity anomalies of the Somali Basin by Sandwell et al. (2014. Magnetic anomalies 

are from Dais et al. (2016) in Somali Basin, and Leinweber and Jokat et al., 2012 for the Zambezi basin. Gravity grid legend 

is same for figures 46-49.. (Mercator projection).  
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Figure 45: Map of satellite-derived free-air gravity data of the Antarctica Africa corridro by Sandwell et al. (2014);  

MozR: Mozambique Ridge; SMR: Madagascar Ridge, NMR: North Mozambique Ridge,; NNV:  

Northern Natal Valley,  SWIR: Southwest Indian Ocean. (Mercator projection).  
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Figure 46: Map of Sandwell et al. (2014) satellite-derived free-air gravity data of the Central Indian Ocean Ages of magnetic 

anomalies are same for figure 45-49. LR: La Réunio, M: Mauritius, MP: Mascarene Plateau, N: Nazareth Plateau, SM: 

Saya de Malha Bank, SP: Seychelles Plateau; SEIR: Southeast Indian Ocean; SWIR: Southwest Indian Ocean. (Mercator 

projection).  
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Figure 47: Free-air satellite-derived gravity anomalies of Eastern Indian Ocean by Sandwell et al. (2014). EP: Exmouth, 

Plateau. ZP: Zenith Plateau, WP: Wallaby Plateau, NP: Naturaliste Plateau, WZFZ: Wallaby-Zenith Fracture Zone. BK:  

Batavia Knoll; GDK: Gulden Draak Knoll; DHR: Dirck Hartog Ridge; BR: Broken Ridge: FZB, Fracture Zone Bends :  

NP: Naturaliste Plateau: ZP: Zenith Plateau, WP; Wallaby Plateau. (Mercator projection). 



 

    

  

  
Figure 48: Free-air satellite-derived gravity anomalies by Sandwell et al. (2014)  (a) Antarctic-Australia Basin (b) Enderby and surrounding basins. Ages of magnetic anomalies are same as in figure 45 BK: 

Batavia Knoll; CKP: Central Kerguelen Plateau; DHR: Dirck Hartog Ridge; GDK: Gulden Draak Knol,  NKP: North Kerguelen Plateau, WP: Wallaby Plateau, NP: Naturaliste Plateau, SKP: South 

Kerguelen Plateu,  NP: Naturaliste Plateau,  ZP: Zenith Platea. (Mercator projection).  
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Figure 49: Chart of event compilation in the Indian Ocean. Notice the lack of conscensus on the age of the �rst oceanic crust in some of the basins (Mozambique basin, Enderby basin, Bay of Bengal etc. 



 

    

                            
Figure 50:  Map Karoo sediments and igneous rockss distribution in Gondwana. World Geodectic System 1984. 
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Figure 51: Litho-stratigraphic and event chart of Karoo basins in Africa. The Karoo basins preserve the sedimentary record from Late Carboniferous–Early Jurassic of the Karoo Supergroup deposited into intracratonic rift 
basins in Gondwana, and the formation of these basins was in�uenced by the pre-existing crustal architecture of the African continent. The deposition of sediments was controlled mainly by tectonic and climatic changes. (51)



 

 

 

  

Figure 52: Litostratigraphic chart of Karoo basins in Africa.  
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Figure 53: Litostratigraphic and event chart of Karoo basins in Africa. 



 

  

  

  

  

  

Figure 54: Lithostratigraphic and event chart in the south Tanzania Basins, the figure shows the general incoherencies in the 

predicted periods of oceanization and breakup in the Somali.  Breakup ages start from as early as Late Triassic to Oxfordian, 

but oceanization is predicted to start with the Toarcian with the deposition of the Andafia beds.  



 

54  

 
Figure 55: Lithostratigraphic and event chart in the Mozambique Basin, the highlights the general incoherencies in the 

predicted periods of oceanization and breakup in the basin. The rifting is predicted to have started in the Late Triassic and 

ended in the Lower Jurassic with the Karoo volcanic event, but Salazar et al. (2013) and others, argue rifting to have 

continued into the Late-Middle Jurassic affecting the Belo Formation 
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Figure 3: Karoo volcanic magma source model by Bristow, (1980)
Figure 7: Seismic analysis of Zambeze Basin by Castelino et al., (2015), showing the location of magnetic anomalies on the
continental Beira High crust.Figure 4: Magnetic anomaly interpretations in the Mozambique and Riiser Larson Sea by Leinweber and Jokat (2012) 

Figure 56: Summary of major lithotectonic events recorded in the Indian Ocean and the Tethys Ocean. The Tethys Ocean existed before the breakup of Gondwana, and its proximity to the Indian Ocean permitted recording of major tectono-magmatic events that a�ected the two ocean. (56)



 

    

 

 

  

Figure 57: Summary of major events recorded Mozambique basin and the Tethys Ocean (in the ophilitic belt of Eastern 

Oman and Western Pakistan from figure 56. Notice the good correlation of the tectonic events with the Indian Ocean, and 

the absence of record of the M41 event in both the Mozambique basin and the Tethys Ocean.  
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Figure 58: Map showing the seismic lines used in the study in the Mozambique Channel. (offshore lines in white)  (Mercator 

projection) 



 

 

Legend figures 59-63 
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Figure 59: Seismic interpretations of lines LINE- 09 and LINE- 10 delineating different identified domains across the Limpopo basin. LINE- 09 was combined with lines B03-A B03-B, and B01-A, and LINE- 10 was similarly combined with lines B02-A and  

B03-B to extend our interpretations onshore and to investigate the trend of the landwarding reflectors, previously interpreted Karoo volcanics and SDR’s (Cox, 1992, Klausen, 2009) . The brown horizon (Pre-drift Karoo sediemnts) continues landwards into intracratonic basins from the uplifted zone where 

it sharply dips into the basin and into the intracratonic basins. The uplifted zone is characterized by flexural uplift and uplift of the basement leading to margin morphology change and erosion of the Maputo sediments.   
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Figure 60: Interpretations on seismic lines LINE-11 and LINE-12. The green horizon lies directly above basement offshore, mostly in the transition zone. It represent the first rift infilling to flexural uplift and early drift sediments in the Limpopo basin. Notice the thickening of the progradational blue horizon 

(The Lower Domo Shales) seaward, and the major fault deformation within the oceanic domain. Line LINE-11 show evidence of recent volcanic activity.  
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Figure 61: Seismic line LINE-13 in the Limpopo basin. Notice in the wedging zone, the trend landward dipping reflectors previously interpreted as Karoo volcanics, and the more recent volcanic activity within the transitional domain; intruding the green, yellow and blue horizons.   
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Figure 62: Seismic lines LINE-03 and LINE-04. Notice the different volcanic episodes on seismic MBGW13-027, and the capping of the brown horizon by ‘’Karoo volcanics’’.  
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Figure 63: Event and chronostratigraphic chart of Natal and Limpopo Basins compared to major global tectonic events.  
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Figure 64: Seismic lines LINE- 01, LINE- 02, and LINE- 05 of the Zambezi  basin delineating the extent of the continental, transitional domains and oceanic domains in the basin.  
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Figure 65: Seismic lines LINE- 06, LINE- 07, and LINE- 08 of Zambezi basin, showing margin structuration and delimitation  
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Figure 66: Map of Limpopo-Natal Basin showing the structure of the margin and the delineation of the different domains 

(Oceanic, continental, and thinned continental crust).  
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Figure 67: Basement geology of Antarctica compiled from (Rediel et al., 2013: Boger, 2011: Gosh et al., 2004: 

Kelly et al., 2002 – see Plate 1 supplementary material). Base on geochronological properties and similar 

orogenic history, the area marked Zone 1 (Blue rectangle ) is related to the Kaapval craton of Southern Africa, 

Zone 2 ( Red rectangle) is related to the Eastern Ghats craton of Eastern India, and Zone 3 (Yellow rectangle) 

is related to the Australian plate. The trace of the Beardmore, Mawson, Mesoproterozoic A, D, E, and the 

accreted pre and post Gondwana sediments in Antarctica and Australia is After Boger (2011). World Geodectic 

System 1984 figures 68-74.  



68  

  

 (a)    

  



69  

  

  

Figure 68: (a) Geological map of Africa compiled from (Foster et al., 2015: Rekha et al., 2014: Jacobs et al., 

2008: Guiraud et al., 2005: Dewaele, 2003: Daly et al., 1989. The zone 1 (blue rectangle figure 67), marks a 

domain of similar geochronological properties with Antarctica. (b) Zoom on figure 5a showing the domain of 

shared geological history with the Antarctica plate. The archean Kaapvaal Craton bear similar geochemical 

signatures similar to archean Grunnehogna Craton, most likely forming a single craton. The Namaqua-Natal 

belt formed during the Namaquan Orogeny (1.1-10Ga), and is regarded as an extension of the Mesoproterozoic 

Maud Belt (1.1Ga) in Antarctica.  
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Figure 69: Geology of India basement compiled from (Tucker et al., 2014; Rajaprian et al., 2014; Dasgupta et 

al., 2013; Ghosh et al., 2004; and www.portal.gsi.gov.in/portal 11/07/2016 . The marked area zone 2 (figure 67),  

indicates area of similar geological similarities with Antarctica. Rocks of the Ghats share similar 

geochronological properties with rocks of Enderby Land in East Antarctica. The Dharwar Craton of India 

shares similar geochemical and geochronological properties with the archean rocks of earstern Madagascar. 

 

http://www.portal.gsi.gov.in/portal%2011/07/2016
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Figure 70: Basement geology of the Australian modified (after Borg and DePaolo, 1991 and Boger, 2011). 

Zone 3 indicates area of sheared geological similarities with Antarctica. The Mawson and Beadmore cratons of 

Antarctica continue into the Gawler and Curnamon blocks in Antarctica respectively, bearing similar 

geochemical and geochronologically characteristics.   
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Figure 71: Geology of Madagascar compiled from (Tucker et al., 2014: Rekha et al., 2014: Rasoamalala et al., 

2013; de Wit et al. 2003; Nesen et al., 198;: Courrier and Lafont, 1987; Besairie and Collignon, 1972). The 

Western Dharwar craton Of Madagascar shares similar geochemical and geochronological properties with the 

Dharwar craton in India. The Batsimisaraka shear zone in  Rekha et al., 2014, is argued by Tucker et al., 2014 

not to be evident.  

  

  

Figure. 72: Geological map of the Falkland Plateau compiled from (Lock, 1978; Martin et al., 1981; Marshall, 

1994; Curtis and Hyam, 1998). DSDP Hole 330 was bottomed in Precambrian rocks (554± 66Ma  

Lorenzo and Mutter, 1988) correlative with the Pan-African ~650-500Ma Cape basement of Southern Africa.  
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Figure 73: Basement geology map of Sri Lanka (modified after Koner et al., 2003; Bingen et al., 2009; Kelly et 

al., 2002; and Tucker et al., 2014– see Plate 6 supplementary material).   
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Figure.74 Comparing the kinematic models of Nguyen et al. (2016), Klimbe and Franke (2016), Davis et al. (2016),                        

Reeves et al. (2015), Gaina et al. (2013), Leinweber and Jokat, (2012), Seton et al. (2012), Torsvik et al. (2012) and                         

Sahabi (1993). The red, ash, blue, yellow and deep blue polygons represents overlap, Neoproterozoic terrain,                     

Mesoproterozoic accreted terrain, Late Archean rocks, Paleo-Meso Archean rocks respectively.. The blue circle compares the 

geology of the India-Madagascar-Sri Lanka-Africa domain. Leinweber and Jokat (2012), Reeves et al. (2015), Davis et al. 

(2016) are  model after the geochronological studies of Ghosh et al., 2004. In these models, the Agavo Ifanadiana shear zone 

(Madagascar) is aligned with the Moyar shear zone (West India). This results in overlap between India and Antarctica. Gaina 

et al. (2013) and Sahabi (1993) on the other hand, fit the Batsimisaraka shear zone to the Moyar shear zone avoiding the 

overlap, but inaccurately fit Mesoproterozoic rocks to Archean rocks. The models of Seton et al. (2012) and Torsvik et al. 

(2012) result in misalignment of Archean rocks of the Napier complex (Antarctica) and the Eastern Ghat craton (East India), 

and the conjugate Gondwanaian rifts basins. Sahabi (1993) and Davis et al. (2016), on the other hand presents  alignment of 

Archean rocks of the Napier complex and the Ghat craton and a good alignment of the Gondwanian rifts basins. Klimbe and 

Franke (2016) prefer a more southward position of Madagascar leading to huge gap of about 1000km between Antarctic and 

Africa taken into consideration current information and observations we have gathered on the surrounding plates. (Mercator 

projection). 
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Figure 75: Comparism (zoom) of India and Antarctica with referencee to Africa for the models of Nguyen et al. 

(2016), Reeves et al. (2015), Gaina et al. (2013), Leinweber and Jokat (2012), Seton et al. (2012), and Sahabi 

(1993). The models of Nguyen et al. (2016), Gaina et al. (2013) and Seton et al. (2012) result in misalignment 

of Archean rocks of the Napier complex and the Ghat craton, and the Gondwanaian rifts basins. Reeves et al. 

(2015), Leinweber and Jokat (2012) and Sahabi (1990), on the other hand results in a perfect alignment of 

Archean rocks of the Napier complex and the Ghat craton, and Gondwana rifts basins. Notice the large overlaps 

in Nguyen et al. (2016), Reeves et al. (2015), Gaina et al. (2013) and Leinweber and Jokat, (2012). The pink 

color represent gap between the plates. (Mercator projection). 
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Figure 76: Comparing reconstruction of Madagascar and India with referencee to Africa in  

Nguyen et al. (2016), Reeves et al. (2015), Gaina et al. (2013) and Leinweber and Jokat (2012) Seton et al, 

(2012), and Sahabi (1993).  In Reeves et al. (2015) and Leinweber and Jokat (2012), the Agavo Ifanadiana 

shear zone is aligned with the Moyar shear zone, resulting in Mesoproterozoic rocks of Ikalamavony in 

Madagascar fitted with Archean rocks Dharwar craton in India. Nguyen et al. (2016), Gaina et al, (2013) and 

Seton et al. (2012), on the other hand results in about ~140km gap between India and Madagasca, and fits 

Mesoproterozoic rocks to Archean rocks between the two plates. The pink color represent gap betweeen the 

plates. (Mercator projection). 
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Figure 77: Comparing the fits between Antarctica with respect to Africa, and the consequence on the Beira 

High continental crust and the Limpopo basin. The yellow line crossing the Beira High continental block shows 

the location of the seismic refraction profile 2014001014 of the MOCOM-Cruise (See figure 11). Notice all the 

models except Sahabi, (1993) overlap on the Beira high, the North Natal Valley, a part or the total Limpopo 

Basin and the North Mozambique ridge. The North Mozambique Ridge (NMR, in red) consist mainly of 

sediments muscle on a thinned continental crust (Lepretre et al., 2017; Moulin et al., submitted). The Southern 

Mozambique Ridge (SMR, in black) maybe composed of volcanics (Gohl et al., 2011). (Mercator projection). 
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Figure 78: Comparing the proposed fit for the Falkland-Patagonia in the reconstruction of Martin and 

Hartnady (1986) and Martin et al. 1982 (green) and the models Leinweber and Jokat (2012) and Konig and  

Jokat (2006) (orange) relative to African plate. Notice Leinweber and Jokat (2012) and Konig and Jokat (2006) 

(orange) significantly overlap the North Natal Valley, which is underlain by continental crust (Moulin et al., 

submitted). Red line: refraction profile M7 Pamela Moz3-5 of Lepretre et al. (2017); Blue line the limit of the 

South Tegula Ridge. SMR= South Mozambique Ridge. (Mercator projection). 
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Figure 79: Map showing our reconstruction of Antarctica with respect to Africa.  . Notice the Antarctica plate 

do not overlap the Beira High continental crust, and the extent of the Archean Kaapval and Grunneghona 

Craton. The two cratons bears strong geochemical signatures with each other. The reconstruction of the 

Falkland Plateau to Africa shows the similarities between the geology of the Pan-African basement and the 

rocks of the Maurice Ewing Bank. Green line: refraction profile M7 Pamela Moz3-5 of Lepretre et al. (2017);  

Blue line the limit of the South Tegula Ridge. (Mercator projection) 
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Figure 80: Map showing our reconstruction of India and Antarctica (with respect to Africa).  The Archean 

rocks of the Napier complex in Antarctica and the Eastern Ghats craton share similarly geochemical 

characteristics. The Rayner Complex extends from Enderby Land (Antarctica) into the Mesoproterozoic rocks 

of the Eastern Ghats Granulite in India. Notice the alignment of the conjugate Carboniferous-

PermoCretaceous rift basins of Godavari and Mahanadi in India, and the Lambert and Robert rift valleys in 

Antarctic. The ~120km overlap between India and Antarctica (red area) within Southern Bangladesh is 

explained by the not clearly defined limits of the India plate within the region, and the characterization of the 

region by Large compressional deformation. (Mercator projection) 



84  

  

  

Figure 81: Map showing our reconstruction of Australia and Antarctica (with respect to Africa). Notice the 

alignment of the Beardmore and Curnamona cratons, and the continuation of the Mesoproretozoic rocks 

(Boger, 2011) between Antarctica and Australia. (Mercator projection). 
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Figure 82: Map showing our reconstruction of Madagascar with respect to Africa  The continuation of the 

Vohibory Pan-African shear zone to the Pan-African shear zone in Tanzania (de Wit et al., 2001; Reeves and 

de Wit., 2000), the Brava fault in Kenya to continue with the Andreaparaty shear zone in Madagascar, and the 

Belet Uen fault to be continues with the fault lying to the northern fringe of Madagascar.  (Mercator 

projection). 
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Figure 83: Map showing our reconstruction of India and Madagascar. Note the correspondence of Eastern 

Dharwar craton of India and  the Western Dharwar craton of Madagascar. We fit the Precambrian shear zones 

of Agavo Ifadiana shear zone of Madagascar to the Palghat shear zones of India. This results in alignment of 

Archean and Mesoproterozoic rocks in both in Madagascar and India. (Mercator projection). 
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Figure 84: Our proposed initial fit of Gondwana. This new model shows the full extent of the Dharwar craton 

traced from the India plate into Madagascar and possibly into the Bur Acaba of Africa and beyond. It permits a 

very good alignment of the Beardmore and Mawson cratons in Antarctica and Australia, and allows a good 

trace of Mesoproterozoic rocks of Antarctica and Australia to be traced into each other. It also grants a perfect 

alignment of Archean rocks of the Napier complex and the Ghat craton, and a good alignment of Gondwana 

rifts basins. LB: Elan Bank. (Mercator projection). 
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Figure. 85: Zoom on figure 22, showing perfect alignment of Precambrian shear zones of the Agavo Ifadiana 

shear zones of Madagascar, to the Palghat shear zones of India respectively. It also shows the full extent of the 

Pan-African orogenic event and the Karoo volcanism in Gondwana. (Mercator projection). 
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Figure. 86: New reconstruction model showing the main distribution of Karoo sediments and volcanics in Africa, 

Madagascar, and Antarctica. The Southern Africa continent is characterized by vast network of sills and dykes 

which are pre-syn-post Karoo volcanism.   
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Figure 87: Reconstruction of the Indian Ocean at anomaly during the mid-late Jurassic, East -West Gondwana 

separated. The break-up of Gondwana was accompanied by active seafloor spreading in the Western Somalia 

and Mozambique Basins with the formation of first oceanic crust at M25 (157Ma). LB: Elan Bank. (Mercator 

projection). 
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Figure: 88: Reconstruction of the Indian Ocean at anomaly at M22 (48.57Ma). (Mercator projection).  
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Figure 89: Reconstruction of the Indian Ocean at anomaly at M15 (135.96Ma). (Mercator projection).  
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Figure 90: Reconstruction of the Indian Ocean at anomaly at M10r (128.93Ma). This period saw large scale 

plate reorganisation in the Indian Ocean, leading to the formation of Curvier, Perth and Gascogne basins on 

the northwestern Australian margin (Veevers et al., 1988), and breakup of the South Atlantic Ocean the 

formation of the first oceanic crust in the North Natal Valley. EB: Elan Bank (Mercator projection). 
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Figure 91:  Reconstruction of the Indian Ocean at anomaly at M5 (126.57Ma). (Mercator projection).  
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Figure 92: Reconstruction of the Indian Ocean at anomaly at M0r (120.6Ma). The Madagascar-Greater India-

Sri Lanka block stopped its southward drift from Africa at M0. The accretion in the Curvier, Perth and 

Gascogne basins also stopped at M0. The South Mozambique Ridge, Maud Rise, Aqulhas Plateau, and northern 

part of the Astrid Ridge these four ridges overlap at the Southern Mozambique Ridge at M0, which means they 

may hve emplaced during tht time, possibly due to anormalous volcanism. The North Kerguelen Plateau may 

have been initiated around this time. (Mercator projection). 
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Figure 93: Reconstruction of the Indian Ocean at anomaly C34 (83Ma). Breakup and first oceanic recorded 

between Madgascar and India, and Australia and Antarctica. Anomalous oceanic plateaus (Conrad Rise, Crozet 

Ridge, Del Cano Rise and the South Madagascar Ridge) became emplaced during this period. The Del Cano 

Rise is a companion feature of  the southern Madagascar according to Goslin et al., 1981. The Middle Kerguelen 

Plateau and the Broken Ridge were emplaced around this time. AP: Agulhas Plateau; BR: Broken Ridge; CB: 

Crozet Bank; CKP: Central Kerguelen Plateau; DCR: Del Cano Rise; LR: Chagos- Laccadive; LA: La Réunion; 

M: Mauritius; MP: Mascarene Plateua; N: Nazareth Plateau; SB: Saya de Malha Bank; NKP: North 

Kerguelen Plateau; South Kerguelen Plateau; SP: Seychelles Plateau. (Mercator projection). 
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Figure 94: Reconstruction of the Indian Ocean at anomaly C28 (62.49Ma). The Mascarene Basin stopped its 

accretion at C27, and a ridge jump initiated seafloor spreading between Seychelles and India at C27. The 

Chagos- Laccadive (LR), the Ninetyeast Ridges, North Kerguelen Plateau may have been emplaced during this 

period. AP: Agulhas Plateau; BR: Broken Ridge; CB: Crozet Bank; CKP: Central Kerguelen Plateau; DCR: 

Del Cano Rise; LR: La Réunion; M: Mauritius; MP: Mascarene Plateua; N: Nazareth Plateau; SB: Saya de 

Malha Bank; NKP: North Kerguelen Plateau; South Kerguelen Plateau; SP: Seychelles Plateau. (Mercator 

projection). 
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Figure 95: Reconstruction of the Indian Ocean at anomaly C18 (39.5Ma).  formation of first oceanic crust 

between Arabia and Africa. AP: Agulhas Plateau; BR: Broken Ridge; CB: Crozet Bank; CKP: Central 

Kerguelen Plateau; DCR: Del Cano Rise; LR: Chagos- Laccadive; LA: La Réunion; M: Mauritius; MP: 

Mascarene Plateua; N: Nazareth Plateau; SB: Saya de Malha Bank; NKP: North Kerguelen Plateau; South 

Kerguelen Plateau; SP: Seychelles Plateau. (Mercator projection) 

- 
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Figure 96: Map showing the evolution of the Madagascar in our model from fit to present position. (Mercator 

projection). 
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Figure 97: (a) Map showing the evolution of the Antarctica in our model from fit to present position. (b) 

Comparism of the evolution of the Antarctica and Madagascar in our model (Mercator projection).  
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Figure 98: (a) Map showing the evolution of Madagascar in (Reeves et al., 2015; Gain et al., 2013; Leinweber 

and Jokat, 2012; and Sahabi, 1993), compared in (b) with the evolution of Madagascar in our model. The black 

arrows indicate the direction of movement of the plates through time. Reeves et al., 2015 closest tour model. 

(Mercator projection). 
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Figure 99: (a) Map showing the evolution of Antarctica in (Reeves et al., 2015; Gain et al., 2013; Leinweber 

and Jokat, 2012; and Sahabi, 1993), compared in (b) with the evolution of Antrctica in our model. The black 

arrows indicate the direction of movement of the plates through time in published models. Sahabi, 1993, closest 

to our model. (Mercator projection). 



 

                 
Figure 100: Reinterpretation of the lithostratigraphic and event chart in the Mozambique Basin (figure 55). We propose rifting may have continued until late-Middle Jurassic. This implies the Belo formation 

maybe is a synrift formation, as has previously proposed by [(Salazar et al., 2013 See figure 101)], and oceanization did not occur with the Karoo magmatic event (182-186), but was initiated  around anomaly 

M25 in the early-Upper Jurassic (157Ma).  106  
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Figure 101:2D seismic reflection interpretation offshore Zambezi Basin by (Salazar et al., 2013). Notice the Karoo and the 

Belo Formation are interpreted as syn-rift formation. The insert above: location of the seismic lines use in their study.    
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Figure 102: Reinterpretation of the lithostratigraphic and event chart in the South Tanzania Basin (figure 56). The rifting may 

have started in Triassic and ended in the Callovian, initiating breakup and oceanization onwards.  
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Figure 103: Labails et al. (2010), observed in the Central Atlantic a major change in direction of plate propagation from NW-SE 

to WNW-ESE. Notice the huge change in direction of propagation between BSMA and anomaly M25 (b and c).  
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Figure 104:.(a) (c) Sandwell et al. (2014) free-air satellite-derived gravity anomaly of the Mascarene showing clear fracture zones 

between Madagascar and India. (b) Satellite-derived gravity anomaly of the Mascarene Basin The red lineindicate major fracture 

along which the India plate moved. (c) Reconstruction of Madagascar and India by Aswhal et al. (2016).  They found Archaean 

zircons in Miocene oceanic hotspot rocks and establish ancient continental crust beneath Mauritius. They proposed the Mauritius 

continental plate bewteen Madagascar and India. 
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Figure 105:Map showing the reconstruction of India to Madagascar and the possible position of the Archaean zircons . The clear fracture zones between India and Madagascar indicates that the two plates separated from each other. Hence, the retrieve Archean rocks could well be fragments 

of India as it continued it drifting from Madagascar. (Mercator projection). 
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Table 1: Poles Antactica-Africa  

Age  Latitude  Longitude  Rotation  Source  

Ano18    13.6  -41.4  7.47  Bernard et al. (2005)  

Ano23   8.5  -40.8  10.01  Bernard et al. (2005)  

Ano28    11.3  -49.6  11.11  Bernard et al. (2005)  

Ano32   -1.2  -42.4  12.38  Bernard et al. (2005)  

Ano34   -1.3  -34.7  17.78  Bernard et al. (2005)  

M0   11.72991  154.0759  -42.51146  This study  

M5n   12.68688  154.0827  -44.66053  This study  

M10r   9.705075  152.8902  -46.33414  This study  

M15n   9.864203  153.7544  -50.71872  This study  

M22n   8.271569  152.2943  -53.09270  This study  

M25n   8.428259  152.0446  -55.43329      This study  

Fit    8.969426  151.6038  -58.75505      This study  

  

Table 2: Poles Madagascar-Africa  

Age  Latitude  Longitude  Rotation  Source  

Initial fit  9.384853  117.2845  -15.40567      This study  

M25n  5.161909  110.0051  -12.69742  This study  

M22n  2.188300  102.7732  -10.97189      This study  

M15n   4.675859  97.03268  -8.123477  This study  

M10r   3.488152  -98.77951  6.404223  This study  

M5n   8.683980  -107.8003  5.789815  This study  
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M0r  0.000  0.000  0.000    

  

Table 3: Poles India-Africa  

Age  Latitude  Longitude  Rotation  Source  

Ano5   22.1900  33.4100  -4.7100  Eagles and Hoang (2013).  

Aoo18   16.2000  48.4700  -25.2400  Eagles and Hoang (2013).  

Ano21   17.8400  44.4200  -25.7700  Eagles and Hoang (2013).  

Ano22   18.1100  42.3000  -27.2100  Eagles and Hoang (2013).  

Ano24   18.4800  37.8600  -29.9500  Eagles and Hoang (2013).  

Ano25   18.5300  33.6600  -34.4300  Eagles and Hoang (2013).  

Ano26   19.1200  31.6200  -35.9000  Eagles and Hoang (2013).  

Ano27   20.1500  28.4900  -38.0500  Eagles and Hoang (2013).  

Ano28   21.6700  25.8200  -39.8000  Eagles and Hoang (2013).  

Ano31   22.6100  24.0400  -45.1600  Eagles and Hoang (2013).  

Ano32   22.4900  24.2200  -47.5200  Eagles and Hoang (2013).  

Ano34   22.4300  24.9600  -53.6300  Eagles and Hoang (2013).  

M0r    22.22783  24.40480  -56.71661      This study  

M5n    22.16459  29.60182  -60.14409      This study  

M10r   23.17356  30.41119  -60.07137  This study  

M15n   25.46677  32.16216  -59.68924  This study  

M22n   26.59191  35.30000  -59.83694      This study  

M25n   28.44201  36.86446  -59.31655  This study  

Fit   31.31943  38.96307  -58.86290  This study  
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Table 4: Poles Australia-Africa  

Age  Latitude  Longitude  Rotation  Source  

AnoO   O.000  O.000  O.000  This study  

Ano18   16.30318  50.92139  -22.41163  This study  

Ano28   10.92827  61.22190  -26.94301  This study  

Ano34   16.90723  75.47579  -27.48594  This study  

M0   24.73430  107.5313  -41.06655  This study  

M5n   26.15952  109.5644  -42.60602  This study  

M10r   23.21838  111.0177  -44.40272  This study  

M15n   24.13406  115.6568  -47.28139  This study  

M22n   22.52906  116.5607  -49.91948  This study  

M25n   22.88478  118.0439  -51.93749  This study  

Fit   23.67146  119.8226  -54.90728      This study  

  

Table 5: Poles Sri Lanka-Africa.  

Age  Latitude  Longitude  Rotation  Source  

M0r   10.11700  42.55943  -81.32627  This study  

M5n   10.18472  45.66046  -85.58115  This study  

M10r   10.99839  46.09781  -85.72527      This study  

M15n   12.82913  47.08052  -85.77724      This study  

M22n   2.044542  52.97449  -52.31302      This study  

M25n   15.41446  49.81841  -86.50547      This study  

Fit   17.65087  50.91434  -86.33724      This study  

From anomaly C34 Sri Lanka together with India.  

Table 6: Poles Seychelles-Africa.  
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Age  Latitude  Longitude  Rotation  Source  

M0r   2.905783  -136.6054  45.91607  This study  

M5n   2.311616  -133.3757  51.06846  This study  

M10r   1.266099  -132.3603  51.14625  This study  

M15n   1.030455  49.95525  -51.10443  This study  

M22n   2.044542  52.97449  -52.31302      This study  

M25n   3.771343  55.01324  -52.15144      This study  

Fit   6.548114  57.69930  -52.07016  This study  

Seychelles move India after the separation of India and Madagascar until the final drift at anomaly 

C28.                               

Table 7: Poles Falkland-Africa  

Age  Latitude  Longitude  Rotation  Source  

Fit  46.92559        -33.09283         57.66492      This study  
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APPENDIX FIGURES  

  

                            Figure 1: Reconstruction model of Powells and Veevers (1987). Mercator projection. 
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Figure 2: Reconstruction model of Powells and Veevers (1988). Mercator projection. 
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Figure 3: Reconstruction model of Tikku and Cande (1999). Mercator projection 

 
 

Figure 4: Reconstruction model of Tikku and Cande  (2000). Mercator projection.  
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                 Figure 5: (a) and (b) Gradstein et al. (2012) Paleogene Time Scale. (c) and (d) Gradstein et al. (2012) Cretaceous Time 

Scale. (e) and (f) Jurssic Time Scale.  
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