Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

Holding J. M. ^{1, *}, Duarte C. M. ^{1, 2, 3}, Sanz-Martin M. ^{1, 4}, Mesa E. ⁵, Arrieta J. M. ^{1, 2}, Chierici M. ⁶, Hendriks I. E. ¹, Garcia-Corral L. S. ^{1, 7}, Regaudie-De-Gioux Aurore ^{1, 8}, Delgado A. ⁵, Reigstad M. ³, Wassmann P. ³, Agusti S. ^{1, 2, 3}

¹ IMEDEA CSIC UIB Inst Mediterraneo Estudios Avanza, Dept Global Change Res, Esporles 07190, Mallorca, Spain.

² King Abdullah Univ Sci & Technol, Red Sea Res Ctr, Thuwal 239556900, Saudi Arabia.

³ Univ Tromso, Dept Arctic & Marine Biol, N-9037 Tromso, Norway.

⁴ Univ Barcelona, Fac Geol, Dept Geol Dinam Geofis & Paleontol, E-08028 Barcelona, Spain.

⁵ Univ Granada, CSIC, Inst Andaluz Ciencias Tierra, Lab Biogeoquim Isotopos Estables, Granada 18100, Spain.

⁶ FRAM High North Res Ctr Climate & Environm, Inst Marine Res, N-9296 Tromso, Norway.

⁷ Univ Western Australia, UWA Oceans Inst, Crawley, WA 6009, Australia.

⁸ Univ Sao Paulo, Ctr Biol Marinha, BR-11600000 Sao Paulo, Brazil.

* Corresponding author : J. M. Holding, email address : johnna.holding@imedea.uib-csic.es

Abstract :

The Arctic Ocean is warming at two to three times the global rate(1) and is perceived to be a bellwether for ocean acidification(2,3). Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs(4), and higher temperatures should lead to increased rates of planktonic primary production(5). Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145-2,099 mu atm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

publisher-authenticated version is available on the publisher Web site.

Primary production in the Arctic Ocean supports significant fisheries⁶ and 39 renders it an important sink for anthropogenic carbon², however climate change has the 40 41 potential to alter these capacities. Accelerated ice-loss is opening surface area across the Arctic resulting in observations of increased rates primary production⁷. The reduced 42 salinity caused by melting ice combined with increasing temperatures however, increases 43 stratification restricting turbulent nutrient supply to surface layers.⁸ Ice-loss also increases 44 45 surface area for air-sea CO₂ exchange causing and uptake from the atmosphere into surface waters with already low pCO_2^{9} , and ice-melt introduces freshwater with low 46 alkalinity and dissolved inorganic carbon further lowering carbon content of surface 47

waters¹⁰. The surface waters of the Arctic Ocean are largely undersaturated with respect 48 to CO_2 throughout spring and summer². In the European sector of the Arctic Ocean 49 50 (Barents-Greenland Sea/Fram Strait), pCO₂ varies seasonally more than 200 µatm, with values as low as 100 µatm in spring months¹¹ due to strong net community production 51 associated with the spring bloom of ice algae followed by that of planktonic algae in open 52 waters^{12,13}. Hence, increased CO_2 may stimulate primary production during spring and 53 favor a greater CO_2 sinking capacity in the future^{2,9} resulting in a feedback between 54 increased CO₂ and primary production, which biogeochemical models do not currently 55 consider (e.g. 3,14). 56

57 Predicting future primary production in a changing Arctic is not straightforward; 58 models diverge strongly on their predictions depending on the region and drivers for change (i.e. sea ice, light, nutrients, warming, etc.)¹⁵, and modelling studies including 59 rising CO₂ concentrations are rare¹⁵. Experimental research from the European Arctic 60 61 suggests that increasing CO₂ concentrations enhance primary production in nutrient replete conditions¹⁶, although this response is likely species-specific due to varying 62 efficiencies of cellular carbon concentration mechanisms¹⁷. However, the response to 63 increased CO₂ when combined with warming may deviate from the expected additive 64 65 effect•.

Here we seek to determine if there is an interaction of increased CO₂
concentration and temperature on planktonic GPP throughout the spring and summer in
the European Arctic region. Based on metabolic theory, we would expect a positive effect
of both warming and higher CO₂ (a main substrate for autotrophic growth) on GPP

rates^{5,18}. Although, previous studies have not found a strong effect of warming on GPP rates in the European Arctic^{13,19}, as such the effects of warming and increased CO₂ on primary production could cancel each other leading to no increase in GPP in warmer, high-CO₂ conditions, signalling a temperature dependence for CO₂ fertilization in Arctic planktonic autotrophs. Nevertheless, the effect of enhanced CO₂ on primary production is likely dependant on the availability of nutrients²⁰.

76 In order to test our hypotheses, we examined *in situ* relationships of GPP, pCO₂, 77 and nutrients using data from four oceanographic cruises in the European Sector of the 78 Arctic Ocean. We exposed a spring bloom and a summer post bloom plankton community (inorganic nitrogen: 0.71 and 0.04 µmol N L⁻¹ respectively) to increased CO₂ 79 80 concentrations. In the later we bubbled CO_2 at concentrations ranging from 145 to 2099 81 µatm in three-controlled temperature treatments (1, 6, & 10°C). We exposed the spring 82 community to 5 fixed CO₂ treatments ranging from 143 to 1097 µatm over 24 hours. We 83 did not include temperature treatments in spring experiment as temperatures in the spring 84 are not expected to change with climate warming as long as sea-ice is present. Over the 85 course of the experiments we monitored the evolution of GPP, chlorophyll a, nutrients, 86 and carbonate system parameters (See Supplementary Table S2).

Examination of *in situ* data revealed that GPP and pCO_2 are positively related, with GPP increasing at the 1.50 ± 0.46 power of pCO_2 (Figure 1a; Supplementary Table S1). However, temperature is also strongly related with pCO_2 (Figure 1b; Supplementary Table S1), as CO_2 is more soluble at higher temperatures, confounding the relationship of GPP and CO_2 *in situ*. To test for an interaction we with temperature we standardized

92	pCO_2 to 1°C, the approximate mean temperature in the data set, so as to remove the
93	thermodynamic effect of temperature from pCO_2 . We found a stronger relationship of
94	GPP with pCO_2 at 1°C—increasing at 1.83 ± 0.54 power of pCO_2 (Figure 1c;
95	Supplementary Table S1)—suggesting that an interaction with temperature blurs the
96	relationship between GPP and pCO_2 in situ. Whereas GPP and chlorophyll a
97	concentration were independent of nutrient concentration ($p > 0.05$, Supplementary
98	Figure S2), pCO_2 showed a strong positive relationship with nutrient concentrations
99	(Supplementary Figure S3), illustrating that CO_2 drawdown is directly connected with
100	nutrient uptake. The intercepts of the pCO_2 -nutrient relationships (141.9 ±8.9 and 157.9
101	$\pm 8.2 \mu$ atm <i>p</i> CO ₂ for <i>p</i> CO ₂ -phosphate and <i>p</i> CO ₂ -nitrate, respectively, Supplementary
102	Figure S3) indicate a threshold pCO_2 of about 150 µatm below which nutrient limitation
103	will preclude GPP from responding to CO ₂ increase.

104	Controlled temperature treatments with the summer community reveal that GPP
105	increases with pCO_2 , but only significantly in the 1 and 6°C temperature treatments
106	specifically, GPP increased as the 1.40 ± 0.36 power of pCO_2 at 1°C, almost twice that of
107	the slope at 6°C (0.87 \pm 0.37), while no relationship was observed at 10°C. (Figure 2a;
108	Supplementary Table S3). Subsequent analysis of covariance revealed that the
109	relationship between GPP and pCO_2 was significantly affected by an interaction with
110	temperature, whereas GPP was not significantly affected by temperature alone
111	(Supplementary Table S4). Finally, in the spring experiment GPP doubled from an <i>in situ</i>
112	pCO_2 of 143 to 225 µatm. While fertilization did not increase further beyond this
113	threshold (Figure 2b, Supplementary Table S5),

114 The maximum pCO_2 and temperature tested exceed the range currently recorded 115 in the European sector of the Arctic, while the minimum values tested were above reported minima (45 to 700 μ atm pCO₂²¹ and -1.85 to 7 °C¹³). This is consistent with 116 117 the intent to explore future scenarios, where warmer, high CO_2 waters are expected, and 118 highlights the importance of assessing the consistency between results obtained 119 experimentally with those derived from *in situ* empirical relationships. While experiments 120 may be limited in terms of size and time scales for response as well as their ability to properly mimic environments exposed to multiple, interacting drivers²² \cdot , inferences 121 122 drawn from field surveys are correlative and do not necessarily support mechanistic 123 cause-effect interpretations as variables may suffer from co-linearity. Integrating both 124 experimental approaches and field observations provides confidence in inferences and enhances predictive power of modelled relationships 22 . 125

126 Comparison of relationships between GPP and pCO_2 derived in situ and 127 experimentally is, however, confounded by the vast difference in the pCO_2 and 128 temperature ranges; the range of pCO_2 in situ (135-386 µatm) is much narrower than in 129 experiments (143-2099 µatm), and temperature in situ (-1.5-7.0 °C) did not reach 10°C, 130 the highest experimental temperature. Nonetheless, examination of the consistency of 131 relationships derived *in situ* and experimentally within the same temperature boundaries 132 revealed that in situ data indeed falls within the confidence limits of the experimentally-133 derived relationship of GPP and pCO_2 (Figure 3). We did not include spring experimental results in this combined analysis as GPP was measured using the ¹⁸O technique while 134 135 GPP *in situ* and in the summer experiment were measured using the Winkler technique 136 (See Supplementary Methods). The observation that experimental and *in situ*

137	relationships are consistent in both magnitude and direction provides robust evidence of
138	the strong control of CO_2 over primary production in the European Arctic Ocean when
139	inorganic nutrients are not yet depleted and temperature remains below 6 °C.

140 Similar to previous research⁴, our results demonstrate that CO₂ limits primary production, an idea that has been largely ignored in the past due to high concentrations of 141 142 dissolved inorganic carbon relative to other nutrients in the photic layer. Although 143 inorganic carbon in the ocean exists mainly as bicarbonate (HCO_3) , passive uptake of 144 uncharged CO₂ molecules is generally preferred over uptake of bicarbonate, which requires active transport across membranes and conversion to CO₂ to be used for 145 photosynthesis, an energy consuming process 23 . Thus it would be expected that 146 147 increased concentrations of CO₂ would exert a fertilizing effect on marine 148 phytoplankton. Results from the spring experiment indeed suggest that phytoplankton 149 may suffer from CO_2 limitation when pCO_2 concentrations in the photic zone are low, as is the case in the marginal ice zone (MIZ) during the spring bloom¹¹. Results *in situ* 150 151 however, demonstrate that this limitation may only act within a low range of CO_2 152 concentrations until a threshold of about 150 µatm, below which nutrient depletion would 153 outweigh CO₂ limitation. Surface water in the European Arctic in the spring is deplete in CO₂ due to strong net community production during the bloom^{2,13} \cdot and freshening by 154 sea-ice melting¹⁰, resulting in the lowest pCO_2 values reported anywhere in the 155 ocean¹¹, with values as low as 135 μ atm found in our field survey, and 45 μ atm reported 156 in the literature 21 . 157

158 Results from the summer experiment add that CO₂ limitation of Arctic GPP 159 declines with increasing temperature, suggesting that CO₂ limitation is particularly acute 160 at low temperatures. This finding is in agreement with recent experiments using cultured diatoms²⁴, and can be explained by the rapid increase in seawater density across the 161 162 range (-1°C to 7°C) present in Arctic waters, as increasing density at low temperature 163 leads to reduced diffusion rates of limiting substrates, enhancing resource limitation of planktonic osmotrophs²⁵. Although focused on bacteria, the Pomeroy-Wiebe 164 hypothesis²⁵, argues that polar osmotrophs require higher resource concentrations due to 165 166 reduced diffusion rates at low temperature and decreased fluidity over the cell membrane 167 causing a reduced affinity for substrates. Hence, CO₂ limitation of primary production is, 168 as observed here, expected to be highest at low pCO_2 and low temperatures.

169 In this study, both in situ and experimental results point to a temperature-170 dependence of CO_2 -fertilization on planktonic primary production in the European 171 Arctic. In particular, our results imply that increasing CO_2 concentrations will have a 172 fertilizing effect on primary producers when nutrients are available and pCO_2 limiting, 173 but that effect will decline with increasing temperature. During spring in the Marginal Ice 174 Zone (MIZ) density changes stabilize the water column as sea ice melts, allowing for nutrient replete conditions conducive to forming phytoplankton blooms resulting in mass 175 176 CO_2 drawdown in the surface layers. According to our results, with just a moderate 83 μ atm increase in *p*CO₂ in the MIZ during the spring, the rate of GPP (in μ mol O₂ day⁻¹) 177 178 could as much as double, intensifying the bloom and leading to enhanced vertical export. 179 During summer, when regenerated production and heterotrophic communities dominate 180 in the MIZ, CO₂ fertilization may only affect areas where nutrients are still available and

181	temperatures remain below 6°C, increasing primary production at a rate between 0.9 and
182	1.4 μ mol O ₂ μ g Chl a^{-1} day ⁻¹ per μ atm CO ₂ . That is until increasing temperatures due to
183	climate warming reduces any fertilization effect. In the annually ice-free ocean,
184	characterized by high primary productivity due to extensive vertical mixing and light
185	availability, warming will likely preclude any fertilizing effect of increased CO ₂ on
186	primary productivity all together. Thus, the area prone to a CO ₂ fertilization response will
187	likely be restricted to the MIZ, which will migrate poleward, following the ice edge, to
188	occupy a diminishing fraction of the Arctic Ocean with climate warming and be replaced
189	by an annually ice-free ocean ^{$26,27$} . Furthermore, CO ₂ limitation is unlikely to affect the
190	southern sector of the European Arctic due to the invasion of the Arctic by increasingly
191	warmer and CO ₂ -rich Atlantic waters through the two-branched inflow of Atlantic Water
192	along the Barrents Sea and the Fram Strait ²⁸ .

193 While our study conducted in the European sector of the Arctic, cannot be readily 194 extrapolated to other regions, this region is responsible for approximately 50% of annual Arctic Ocean production⁷ with a spring bloom estimated to account for ca. 26% of the 195 196 annual primary production in the European Arctic • and a productive season that lasts well into August¹³. Consequently, elevated CO₂ derived from increasing atmospheric 197 198 concentrations of CO₂ which propels an increase in GPP at low temperatures during the 199 late stages of the bloom may have a key impact on the entire ecosystem and carbon 200 budget, with feedback effects not yet considered in future scenarios of the Arctic.

201 References

- Trenberth, K. E. *et al.* in *Clim. Chang.* 2007 *Phys. Sci. Basis. Contrib. Work. Gr. I to Fourth Assess. Rep. Intergov. Panel Clim. Chang.* (Solomon, S. et al.)
 (Cambridge University Press, 2007).
- Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks.
 Biogeosciences 6, 2433–2459 (2009).
- Steinacher, M., Joos, F., Frölicher, T. L., Plattner, G.-K. & Doney, S. C. Imminent
 ocean acidification in the Arctic projected with the NCAR global coupled carbon
 cycle-climate model. *Biogeosciences* 6, 515–533 (2009).
- 4. Hein, M. & Sand-Jensen, K. CO2 increases oceanic primary production. *Nature*388, 526–527 (1997).
- 5. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Towards a
 metabolic theory of ecology. *Ecology* 85, 1771–1789 (2004).
- Watson, R., Zeller, D. & Pauly, D. Primary productivity demands of global fishing
 fleets. *Fish Fish.* (2013). doi:10.1111/faf.12013
- Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. *Geophys. Res. Lett.* 35, 1–6 (2008).
- Wassmann, P., Carroll, J. & Bellerby, R. Carbon flux and ecosystem feedback in the northern Barents Sea in an era of climate change: An introduction. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 55, 2143–2153 (2008).
- Bates, N. R., Moran, S. B., Hansell, D. A. & Mathis, J. T. An increasing CO2 sink
 in the Arctic Ocean due to sea-ice loss. *Geophys. Res. Lett.* 33, L23609 (2006).
- Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. & Christensen, P. B. Inorganic
 carbon transport during sea ice growth and decay: A carbon pump in polar seas. *J. Geophys. Res.* 112, C03016 (2007).
- Takahashi, T. *et al.* Global sea–air CO2 flux based on climatological surface ocean
 pCO2, and seasonal biological and temperature effects. *Deep Sea Res. Part II Top. Stud. Oceanogr.* 49, 1601–1622 (2002).
- 230 12. Arrigo, K. R. *et al.* Massive Phytoplankton Blooms Under Arctic Sea Ice. 336, 1408 (2012).

232 233	13.	Vaquer-Sunyer, R. <i>et al.</i> Seasonal patterns in Arctic planktonic metabolism (Fram Strait – Svalbard region). <i>Biogeosciences</i> 10 , 1451–1469 (2013).
234 235 236	14.	Popova, E. E., Yool, A., Aksenov, Y., Coward, A. C. & Anderson, T. R. Regional variability of acidification in the Arctic: a sea of contrasts. <i>Biogeosciences</i> 11 , 293–308 (2014).
237 238 239	15.	Popova, E. E. <i>et al.</i> What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. <i>J. Geophys. Res.</i> 117, C00D12 (2012).
240 241	16.	Engel, A. <i>et al.</i> CO2 increases 14C primary production in an Arctic plankton community. <i>Biogeosciences</i> 10 , 1291–1308 (2013).
242 243	17.	Rost, B., Riebesell, U., Burkhardt, S. & Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. <i>Limnol. Oceanogr.</i> 48 , 55–67 (2003).
244 245	18.	Riebesell, U., Wolf-Gladrow, D. & Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. <i>Nature</i> 361 , 249–251 (1993).
246 247	19.	Holding, J. M. <i>et al.</i> Experimentally determined temperature thresholds for Arctic plankton community metabolism. <i>Biogeosciences</i> 10 , 357–370 (2013).
248 249 250	20.	Tremblay, JE., Michel, C., Hobson, K. A., Gosselin, M. & Price, N. M. Bloom dynamics in early opening waters of the Arctic Ocean. <i>Limnol. Oceanogr.</i> 51 , 900–912 (2006).
251 252	21.	Bakker, D. C. E. <i>et al.</i> An update to the Surface Ocean CO ₂ Atlas (SOCAT version 2). <i>Earth Syst. Sci. Data</i> 6 , 69–90 (2014).
253 254 255	22.	Dunne, J. A., Saleska, S. R., Fischer, M. L. & Harte, J. Integrating experimental and gradient methods in ecological climate change research. <i>Ecology</i> 85 , 904–916 (2004).
256 257	23.	Reinfelder, J. R. Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton. <i>Ann. Rev. Mar. Sci.</i> 3 , 291–315 (2011).
258 259 260	24.	Sett, S. <i>et al.</i> Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2. <i>PLoS One</i> 9 , e88308 (2014).
261 262 263	25.	Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. <i>Aquat. Microb. Ecol.</i> 23 , 187–204 (2001).

- 264 26. Wassmann, P. Arctic marine ecosystems in an era of rapid climate change. *Prog.*265 *Oceanogr.* 90, 1–17 (2011).
 266 27. Slagstad, D., Ellingsen, I. H. & Wassmann, P. Evaluating primary and secondary
- 266 27. Slagstad, D., Ellingsen, I. H. & Wassmann, P. Evaluating primary and secondary
 267 production in an Arctic Ocean void of summer sea ice: An experimental simulation
 268 approach. *Prog. Oceanogr.* 90, 117–131 (2011).
- 269 28. Lien, V. S., Vikebø, F. B. & Skagseth, O. One mechanism contributing to co270 variability of the Atlantic inflow branches to the Arctic. *Nat. Commun.* 4, 1488
 271 (2013).
- 272
- 273 * Correspondence should be directed to J.M. Holding: johnna.holding@imedea.uib 274 csic.es
- 275

276 Acknowledgements

- 277 This research was supported by the Arctic Tipping Points project (<u>www.eu-atp.org</u>),
- funded by the Framework Program 7 of the European Union (no. 226248), the ATOS and
- 279 ARCTICMET projects, funded by the Spanish Ministry of Economy and
- 280 Competitiveness (no. POL2006-00550/CTM and CTM2011-15792-E, respectively), and
- the CARBONBRIDGE project funded by the Norwegian Research Council (no. 226415).
- 282 We thank M. Alvarez-Rodriguez for providing *p*CO₂ estimates from cruises, P. Carrillo
- and A. Dorrsett for help with carbonate system analyses, R. Gutiérrez for chlorophyll a
- analyses, J.C. Alonso and S. Kristiansen for nutrient analyses, E. Halvorsen for logistical
- support, the captain and crew of the R/V Viking Explorer, the R/V Helmer Hanssen, and
- the University Center in Svalbard (UNIS) for accommodation, laboratory space, and
- technical support. J.H. was supported by a JAE fellowship (CSIC, Spain).

289 Author contributions

290 C.D., JA., I.H., M.S-M., M.R., P.W. and S.A., were responsible for experimental design.

- J.A. lead and oversaw the summer experiment. M.S-M. was responsible for running the
- spring experiment, M.C. for carbonate system measurements during spring 2014
- 293 experiment and cruise, and E.M. and A.D. were responsible for ¹⁸O measurements. L.G-
- 294 C., M.S-M. and A. R-de-G. contributed metabolism data from oceanographic cruises.
- J.H. was responsible for running the summer experiment as well as all data-analysis and
- writing of the manuscript. All authors contributed to the writing and editing of the
- 297 manuscript especially C.D.

298 **Competing financial interests**

- Authors declare no competing interests as defined by Nature Publishing Group, or other
- 300 interests that might be perceived to influence the results and/or discussion reported in this
- 301 article

303 Figure legends

304	Figure 1. Gross primary production (GPP; μ mol O ₂ μ g Chl a^{-1} day ⁻¹) and p CO ₂ (μ atm)
305	measured during four spring-summer cruises in the European Arctic Ocean. GPP
306	increases with pCO_2 (a). However, pCO_2 and temperature (°C) are strongly related in a
307	half-logarithmic relationship (b). When pCO_2 is standardized to 1°C (See Supplementary
308	Methods), the power relationship between GPP and pCO_2 steepens (c). Black lines
309	represent significant regression relationships (Supplementary Table 2).
310	Figure 2. Power relationships of gross primary production (GPP; μ mol O ₂ μ g Chl a^{-1}
311	day ⁻¹) and pCO_2 (µatm) across the experimental range (a). Blue, green, and red points
312	represent 1, 6, and 10°C temperature treatments respectively. Solid lines represent
313	significant regression relationships (p>0.05) and dashed lines non-significant trends for
314	respective temperature treatments (for regression parameters and R^2 see Supplementary
315	Table S3). GPP (μ mol O ₂ μ g Chl a^{-1} day ⁻¹) in spring bloom experiment increases
316	compared to control 143 µatm treatment in all treatments besides 571 µatm (b). Letters
317	inside bars indicate groups that are significantly different according to a Tukey's HSD
318	post hoc test.

Figure 3. Power relationship of combined *in situ* (•) and experimental (\circ) gross primary production (GPP; µmol O₂ µg Chl a^{-1} day⁻¹) and *in situ* and experimental *p*CO₂ (µatm) values. Solid line represents the relationship of the experimental data from the1°C and 6°C temperature treatments (GPP= -4.44(±1.64) * *p*CO₂^{1.04(±0.26)}; R²= 0.40; p=0.0005),

- 323 and the dashed blue and red curves represent the 95 % confidence limits for the
- 324 regression equation and regression estimates, respectively.

Figure 2

