

Geophysical Research Letters

Supporting Information for

Deepwater circulation variation in the South China Sea since the Last Glacial

Maximum

Xufeng Zheng^a, ShuhJi Kao^b, Zhong Chen^a, Laurie Menviel^c, Han Chen^d, Yan Du^e, Shiming Wan^f, Hong Yan^g, Zhonghui Liu^h, Liwei Zheng^b, Shuhong Wang^a, Dawei Li^b, Xu Zhangⁱ

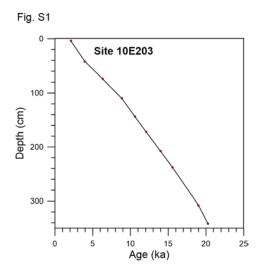
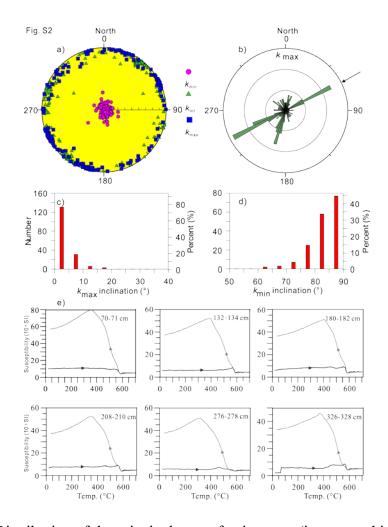
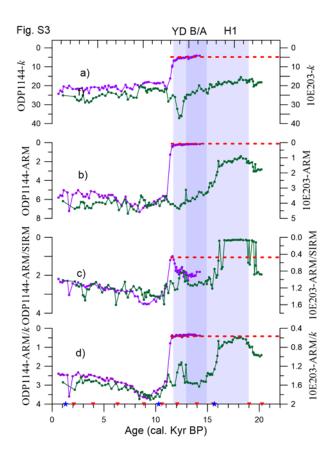
- a. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- b. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- c. Climate Change Research Centre, ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, Australia
- d. Island Research Center, State Oceanic Administration, Fuzhou, China
- e. State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- **f.** Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences (CAS) 7 Nanhai Road, Qingdao, 266071, China
- g. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- h. Department of Earth Sciences, University of Hong Kong, Hong Kong, China
- i. Alfred-Wegener-Institut, Helmholtz-Zentrumfür Polar- und Meeresforschung, Am AltenHafen 26,27568Bremerhaven, Germany

Contents of this file

Figures S1 to S5

Table S1

Captions for Datasets S1

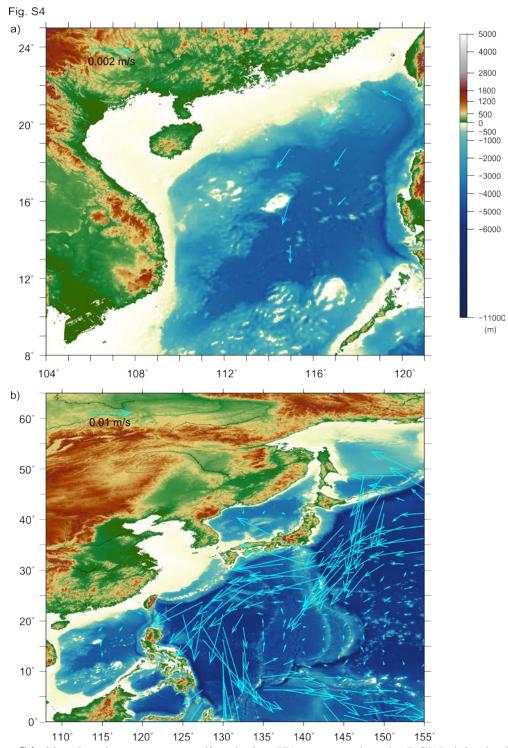

Figure S1. Age-depth model of core 10E203

Figure S2. a) Distribution of the principal axes of anisotropy (in geographic coordinates): k_{\min} (pink circles), k_{\inf} (green triangles) and k_{\max} (blue squares), **b**) rose diagram of the azimuth of k_{\max} , **c**) statistical results of the inclination of k_{\max} , **d**) statistical results of the inclination of k_{\min} , **e**) six representative thermomagnetic curves obtained from different depths (the heating curve in black and the cooling curve in gray).

Figure S3. Comparison of the temporal variations in **a**) k, and **b**) ARM, **c**) ARM/SIRM, and **d**) ARM/k ratio of core 10E203 (green circle) and site ODP1144 (violet circle) [$Hu\ et\ al.$, 2012], the red inverted triangles, blue star represent 14 C dating points for core 10E203 and site ODP1144, respectively.

Figure S4: Simulated current anomalies during H1 compared to the LGM **a**) in the SCS and **b**) North Pacific averaged over 1443 to 1992 m water depth.

Section	Depth (cm)	Number	Mean chRM declination	Mean chRM inclination	Calibrated angle
1	0~28	6	331°	38°	29°
2	28~124	28	202°	35°	158°
3	124~232	26	205°	29°	155°
4	232~344	34	252°	24°	108°

Table S1 Summary of mean characteristic remanent magnetization parameters for each section and calibrated angle.

Data Set S1. Paleomagnetic and anisotropy of magnetic susceptibility data of core 10E203