## **Supplementary Figure 1:**



LGM-Holocene depth profiles in the Atlantic Ocean showing an opposite sense of change above and below around 2.2km in various proxies: a)  $Cd_W$  of benthic foraminifera<sup>1</sup>, b)  $\delta^{13}C$  measured on *Cibicidoides*<sup>1</sup>, c) Authigenic Nd isotope signal<sup>2</sup>, d)  $^{231}Pa/^{230}Th$  data<sup>3</sup>.

## **Supplementary Figure 2:**



Stratigraphic alignment of SHAK03-6K to the NGRIP dust record<sup>4</sup> (above) on GICCO5 age model<sup>5,6</sup> and the Hulu speleothem  $\delta^{18}$ O record<sup>7</sup> (below). Tie points are indicated by the vertical dashed lines.

## **Supplementary Figure 3:**



Upper panel: Stratigraphic alignment of top) SHAK10-10K; middle) SHAK14-4G and bottom) SHAK05-3K on to the master core, SHAK03-6K. Lower panel: Agedepth profile for SHAK03-6K. Black squares and line indicate depths and calendar ages at the stratigraphic tie points. Grey line represents the calendar ages obtained using Bchron (95% confidence shaded grey).

| Supplementary Table 1: Locations of cores in this study |  |
|---------------------------------------------------------|--|
|---------------------------------------------------------|--|

| Core name        | Location       | Latitude    | Longitude   | Water Depth |
|------------------|----------------|-------------|-------------|-------------|
| MD09 3257        | Brazil Margin  | 04°14.68' S | 36°21.16' W | 2344        |
| MD09 3256Q       | Brazil Margin  | 03°32.81' S | 35°23.11' W | 3537        |
| JC89-SHAK-10-10K | Iberian Margin | 37°50.00' N | 09°30.65'W  | 1127        |
| JC89-SHAK-14-4G  | Iberian Margin | 37°50.16' N | 09°43.61'W  | 2063        |
| JC89-SHAK-06-4K  | Iberian Margin | 37°33.68' N | 10°21.89'W  | 2642        |
| JC89-SHAK-03-6K  | Iberian Margin | 37°42.54' N | 10°29.56'W  | 3735        |
| JC89-SHAK-05-3K  | Iberian Margin | 37°36.26' N | 10°41.50'W  | 4670        |

**Supplementary Table 2:** Surface reservoir ages on the Iberian Margin. Ages are determined at tie-points only due to uncertainties in calendar age between the tie points.

|            |               | Tie age, | Interpolated                    |                    | Reservoir |  |
|------------|---------------|----------|---------------------------------|--------------------|-----------|--|
|            |               | Calendar | ar planktic 14C Atmospheric 14C |                    | age, 14C  |  |
| Core       | Tie depth, cm | yrs BP   | age, 14C yrs                    | age, 14C yrs       | yrs       |  |
| SHAK03-6K  | 222.5         | 20262    | 17404                           | 16802              | 602       |  |
| SHAK05-3K  | 140.2         | 20262    | 17787                           | 16802              | 984       |  |
| SHAK10-10K | 242.3         | 20262    | 17810                           | 16802              | 1007      |  |
| SHAK14-4G  | 453.4         | 20262    | 17514                           | 16802              | 711       |  |
| MD99-2334K | 291.3         | 20262    | 17726                           | 16802              | 924       |  |
|            |               |          |                                 |                    |           |  |
| SHAK03-6K  | 243           | 21783    | 18782                           | 17947              | 835       |  |
| SHAK05-3K  | 152.4         | 21783    | 18864                           | 17947              | 917       |  |
| SHAK10-10K | 277.6         | 21783    | -                               | -                  | -         |  |
| SHAK14-4G  | 497.8         | 21783    | 18817                           | 17947              | 870       |  |
| MD99-2334K | 314.0         | 21783    | 19167                           | 17947              | 1220      |  |
|            |               |          |                                 | Average            | 897       |  |
|            |               |          |                                 | Standard deviation | 177       |  |

**Supplementary Table 3:** Radiocarbon ages of benthic and planktonic foraminifera samples from the LGM. Benthic samples are mixed species (excluding agglutinated) and planktonic samples are *G.ruber* (Brazil Margin) or *G.bulloides* (Iberian Margin).

| Core          | Depth in core | Planktic 14C age | Error | Benthic 14C age | Error | B-P  | Error |
|---------------|---------------|------------------|-------|-----------------|-------|------|-------|
| SHAK10-10K    | 252           | 18166            | 90    | 17707           | 74    | -459 | 117   |
| SHAK14-4G     | 432           | 16886            | 75    | 17488           | 82    | 602  | 111   |
| SHAK14-4G     | 488           | 18531            | 89    | 18975           | 87    | 444  | 124   |
| SHAK06-4K     | 210           | 17508            | 97    | 18409           | 120   | 901  | 154   |
| SHAK06-4K     | 250           | 18950            | 106   | 20195           | 145   | 1245 | 180   |
| SHAK03-6K     | 219           | 17169            | 86    | 18378           | 95    | 1209 | 128   |
| SHAK03-6K     | 255           | 19589            | 144   | 21034           | 145   | 1445 | 204   |
| SHAK05-3K     | 132           | 17144            | 91    | 18661           | 141   | 1517 | 168   |
| SHAK05-3K     | 160           | 19536            | 136   | 21031           | 155   | 1495 | 206   |
| MD09-3257     | 189           | 16860            | 141   | 16252           | 87    | 608  | 166   |
| MD09-3257     | 193           | 17829            | 97    | 16675           | 90    | 1154 | 132   |
| MD09-3256     | 62            | 17303            | 75    | 16159           | 65    | 1144 | 99    |
| MD09-3256     | 66            | 18355            | 118   | 17385           | 105   | 970  | 158   |
| MD09-3256     | 68            | 20258            | 164   | 18544           | 159   | 1714 | 228   |
| GS07-150-17/1 | 162           | 17110            | 105   | 16783           | 86    | 327  | 136   |
| GS07-150-17/1 | 180           | 19783            | 118   | 19658           | 136   | 125  | 180   |

|                           |       |             |           | Res. |       |       |                             |
|---------------------------|-------|-------------|-----------|------|-------|-------|-----------------------------|
| Location                  | Depth | B-P         | Error     | Age  | Error | B-atm | Reference                   |
| Brazil Margin             | 1000  | 226         | 113       | 750  | 250   | 976   | This study                  |
| Brazil Margin             | 2344  | 881         | 106       | 750  | 250   | 1631  | This study                  |
| Brazil Margin             | 3537  | 1276        | 98        | 750  | 250   | 2026  | This study                  |
| Western North             |       |             |           |      |       |       | Keigwin and                 |
| Atlantic                  | 2975  | 1145        | 85        | 750  | 250   | 1895  | Schlegel, 2002              |
|                           |       |             |           |      |       |       | (8)                         |
| Western North<br>Atlantic | 3845  | 1000        | 170       | 750  | 250   | 1750  | Xeigwin et al.,<br>2004 (9) |
| Western North             |       |             |           |      |       |       | Keigwin et al.,             |
| Atlantic                  | 4250  | 1550        | 120       | 750  | 250   | 2300  | 2004 (9)                    |
| Western North             | 1712  | 1/150       | 170       | 750  | 250   | 2200  | Keigwin et al.,             |
| Atlantic                  | 4712  | 1450        | 170       | 750  | 230   | 2200  | 2004 (9)                    |
| Iborian Margin            | 1127  | 450         | 117       | 000  | 200   | 4.4.1 | This study                  |
| Iberian Margin            | 2062  | -459<br>E22 | 117<br>02 | 900  | 200   | 441   | This study                  |
|                           | 2003  | 525<br>1072 | 03<br>110 | 900  | 200   | 1423  | This study                  |
| Iberian Margin            | 2042  | 1073        | 118       | 900  | 200   | 1973  | This study                  |
| Iberian Margin            | 3/35  | 1327        | 120       | 900  | 200   | 2227  |                             |
| iberian Margin            | 4670  | 1506        | 133       | 900  | 200   | 2406  | This study                  |
| Iberian Margin            | 3146  | 1510        | 189       | 900  | 200   | 2410  | 2014 (10)                   |
| Fastern                   |       |             |           |      |       |       | 2014 (10)                   |
| Equatorial                | 550   | 240         | 85        | 585  | 300   | 825   | Cleroux et al               |
| Atlantic                  |       |             |           |      |       | 010   | 2011 (11)                   |
|                           |       |             |           |      |       |       |                             |
| South Atlantic            | 1268  | 648         | 48        | 750  | 250   | 1398  | Sortor and                  |
| South Atlantic            | 1200  | 040         | -0        | / 50 | 230   | 1350  | Lund, 2011 (12)             |
| South Atlantic            | 3770  | 1635        | 94        | 1842 | 300   | 3477  | Skinner et al.,             |
|                           |       |             |           |      |       |       | 2010 (13)<br>Barker et al   |
| South Atlantic            | 4981  | 1063        | 69        | 1320 | 300   | 2383  | 2010 (14)                   |
|                           |       |             |           |      |       |       | 2010 (11)                   |
|                           |       |             |           |      |       |       | Burke and                   |
| Drake Passage             | 819   | -           | -         | -    | -     | 1697  | Robinson, 2012              |
|                           |       |             |           |      |       |       | (15)                        |
|                           |       |             |           |      |       |       | Burke and                   |
| Drake Passage             | 1134  | -           | -         | -    | -     | 1680  | Robinson, 2012              |
|                           |       |             |           |      |       |       | (15)                        |

**Supplementary Table 4:** Compiled radiocarbon ventilation ages at the LGM in the Atlantic Ocean<sup>8-15</sup>

## **Supplementary references:**

- Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca. *Geochem. Geophys. Geosystems* 7, Q12003 (2006).
- Gutjahr, M., Frank, M., Stirling, C. H., Keigwin, L. D. & Halliday, A. N. Tracing the Nd isotope evolution of North Atlantic Deep and Intermediate Waters in the western North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. *Earth Planet. Sci. Lett.* 266, 61–77 (2008).
- Lippold, J. *et al.* Strength and geometry of the glacial Atlantic Meridional Overturning Circulation. *Nat. Geosci.* 5, 813–816 (2012).
- Ruth, U., Wagenbach, D., Steffensen, J. P. & Bigler, M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. *J. Geophys. Res. - Atmospheres* 108, 4098 (2003).
- 5. Rasmussen, S. O. *et al.* A new Greenland ice core chronology for the last glacial termination. *J. Geophys. Res. Atmospheres* **111**, D06102 (2006).
- Andersen, K. K. *et al.* The Greenland Ice Core Chronology 2005, 15ka. Part 1: constructing the time scale. *Quat. Sci. Rev.* 25, 3246–3257 (2006).
- Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L. & Wang, Y. A highresolution record of atmospheric 14C based on Hulu Cave speleothem H82. *Quat. Sci. Rev.* 33, 32 (2012).
- Keigwin, L. D. & Schlegel, M. A. Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic. *Geochem. Geophys. Geosystems* 3, 1034 (2002).

- Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. *Paleoceanography* 19, PA4012 (2004).
- Skinner, L. C., Waelbroeck, C., Scrivner, A. E. & Fallon, S. J. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. *Proc. Natl. Acad. Sci. U. S. A.* 111, 5480 (2014).
- Cléroux, C., Demenocal, P. & Guilderson, T. Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO<sub>2</sub> reservoir purging signal. *Quat. Sci. Rev.* **30**, 1875–1882 (2011).
- Sortor, R. N. & Lund, D. C. No evidence for a deglacial intermediate water
  [DELTA]<sup>14</sup>C anomaly in the SW Atlantic. *Earth Planet. Sci. Lett.* **310**, 65 (2011).
- Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the Deep Southern Ocean and Deglacial CO<sub>2</sub> Rise. *Science* 328, 1147–1151 (2010).
- Barker, S., Knorr, G., Vautravers, M. J., Diz, P. & Skinner, L. C. Extreme deepening of the Atlantic overturning circulation during deglaciation. *Nat. Geosci.* 3, 567–571 (2010).
- Burke, A. & Robinson, L. F. The Southern Ocean's role in carbon exchange during the last deglaciation. *Science* 335, 557–561 (2012).