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with paleomagnetic directions
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Abstract Principal component analysis (PCA) is a well-established technique in paleomagnetism and
provides a means to estimate magnetic remanence directions from univectorial segments of stepwise
demagnetization data. Derived directions constrain past geomagnetic field behavior and form the
foundation of chronological and tectonic reconstructions. PCA of isolated remanence segments relies
on estimates of the segment mean and covariance matrix, which can carry large uncertainties given the
relatively small number of demagnetization data points used to characterize individual specimens.
Traditional PCA does not, however, lend itself to quantification of these uncertainties, and inferences drawn
from paleomagnetic reconstructions suffer from an inability to propagate uncertainties from individual
specimens to higher levels, such as in calculations of paleomagnetic site mean directions and pole positions.
In this study, we employ a probabilistic reformulation of PCA that represents the unknowns involved in the
data fitting process as probability density functions. Such probability density functions represent our state
of knowledge about the unknowns in the fitting process and provide a tractable framework with which to
rigorously quantify uncertainties associated with remanence directions estimated from demagnetization
data. These uncertainties can be propagated readily through each step of a paleomagnetic reconstruction to
enable quantification of uncertainties for all stages of the data interpretation sequence, removing the need
for arbitrary selection/rejection criteria at the specimen level. Rigorous uncertainty determination helps to
protect against spurious inferences being drawn from uncertain data.

1. Introduction

Paleomagnetic remanence directions preserved in rocks and sediments provide key paleomagnetic and
geological information. A given paleomagnetic specimen may, however, contain multiple superimposed
remanence components that were acquired over different geological time periods. A key task in paleo-
magnetism is to separate, quantify, and attribute these remanence components to specific geomagnetic
or geological events and processes [Irving, 1964; McElhinny, 1973; Tarling, 1983]. Stepwise demagnetization
of a paleomagnetic specimen, typically with thermal or alternating field (AF) techniques, is used to isolate
different remanence components [As and Zijderveld, 1958; Collinson et al., 1967]. Specifically, within a demag-
netization sequence, sets of consecutive data points that lie along a straight line (i.e., a univectorial trend) are
attributed to the removal of a single remanence component. The estimated direction of an identified rema-
nence component can then be used for paleomagnetic and geological reconstructions. Given the utility of
paleomagnetic directions, it is essential that they can be estimated from demagnetization data in a rigorous
manner and where possible their uncertainty should be determined. Properly quantified uncertainties are key
to a quantitative understanding of geomagnetic field variability and constraining tectonic reconstructions.

Kirschvink [1980] proposed the use of principal component analysis (PCA) to estimate the best fit line to a
sequence of stepwise acquired demagnetization data for an individual specimen. Identification of remanence
components is typically performed interactively through inclusion and removal of demagnetization points
in the PCA analysis. Simple statistics (see section 2) can then be used to compare the different candidate
models. Two sources of uncertainty limit the utility of PCA when analyzing demagnetization data. First, exper-
imental noise can make individual specimen directions highly uncertain. The maximum angular deviation
(MAD) statistic was developed to quantify this uncertainty and provides a basis to reject specimens with poor
demagnetization behavior [Kirschvink, 1980]. However, the MAD is limited in its utility because it cannot be
readily propagated. Thus, the directional uncertainty represented by the MAD is typically ignored above the
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specimen level. Such a failure to propagate specimen level uncertainties through the paleomagnetic data
interpretation sequence inhibits quantification of the uncertainty associated with higher-level statistics, such
as paleomagnetic site mean directions. In turn, this issue will persist through the reconstruction of virtual
geomagnetic pole (VGP) positions, apparent polar wander paths, etc. Second, quantification of remanence
directions is typically based on a small number of demagnetization steps along a selected segment of a
larger data set (≤10 measurement points in most studies). To provide reliable results, PCA requires many more
cases (the number of demagnetization steps) than the dimension (three for paleomagnetic directions) of the
problem [Guadagnoli and Velicer, 1988]. This small sample uncertainty is not represented by currently used
statistics, such as the MAD, and its influence on paleomagnetic reconstructions remains unconstrained, but
must be considered.

A number of studies have extended the approach of Kirschvink [1980] to facilitate objective model selection
and to define confidence regions for paleomagnetic directions. Schmidt [1982] developed an extension to
the PCA-based approach of Kirschvink [1980] termed linearity spectrum analysis (LSA). Instead of considering
specimens in isolation, LSA is based on analysis of groups of specimens from a homogenous source to isolate
demagnetization segments that exhibit maximum linearity. Through analysis of specimens in combination,
LSA can readily reduce a collection of demagnetization data into its geologically relevant parts while also
providing information concerning interspecimen consistency of demagnetization behavior. The shortcom-
ings of existing PCA-based analysis were identified by Kent et al. [1983], who considered the analysis of
demagnetization data from a geometrical perspective. The LINEFIND algorithm developed by Kent et al.
[1983] performed a collection of hypothesis tests to assess the linearity of all possible segments within
a demagnetization sequence. The set of segments deemed to be linear is then thinned into a subset of
nonoverlapping segments. In a similar manner, a subset of segments with planar demagnetization behav-
ior is also constructed. Within the statistical framework developed by Kent et al. [1983] this search process
provides an estimate of the linear and planar segments within a demagnetization sequence and their asso-
ciated confidence limits. McFadden and Schmidt [1986] compared how measurement errors were considered
in the LSA and LINEFIND approaches and provided a statistical framework to estimate overall mean direc-
tions and their cones of confidence based on these errors. It is not apparent why the methods of Schmidt
[1982], Kent et al. [1983], and McFadden and Schmidt [1986] have not been employed more widely by the
paleomagnetic community. Instead, the PCA-based approach of Kirschvink [1980] combined with interac-
tive identification of remanence components has become the default analysis technique. More recently,
Khokhlov and Hulot [2016] developed an approximation with which the PCA fitting statistics provided
by Kirschvink [1980] could be transformed into the framework of Fisher [1953] probability distributions.
Much of the existing paleomagnetic data interpretation sequence is based on Fisher [1953] statistics;
therefore, an ability to place PCA of specimen demagnetization data within this framework may prove to
be fruitful.

As paleomagnetic studies address ever more complex problems, there is a pressing need to quantify direc-
tional uncertainties through each stage of a data interpretation sequence in a paleomagnetic reconstruction.
Such uncertainty propagation is essential to quantitative studies. It provides a rigorous basis for handling and
understanding uncertainties, and it protects against spurious inferences being drawn from uncertain data. In
this paper, we show how PCA can be placed within a probabilistic framework that enables quantification of
directional uncertainties that result from experimental noise and small data sets. These uncertainties are rep-
resented in such a way that they can be propagated readily to higher levels in a data interpretation sequence
in paleomagnetism (e.g., when calculating site mean directions and VGPs). Additionally, uncertainties can
be separated to provide inclination- and declination-specific errors and to allow probabilistic assessment of
indicative properties, such as whether a characteristic remanent magnetization (ChRM) direction will intercept
the origin of a vector demagnetization diagram [Zijderveld, 1967].

2. Principal Component Analysis

When interpreting stepwise demagnetization data for a paleomagnetic specimen, it is necessary to iden-
tify segments of univectorial behavior that are considered to carry geomagnetic or geological information
[Zijderveld, 1967; Dunlop, 1979]. Once a segment of N measurements along a univectorial demagnetization
path has been selected, its intensity, F, inclination, I, and declination, D, can be converted to a Cartesian
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coordinate system:

t1(i) = F(i) cos I(i) cos D(i), (1)

t2(i) = F(i) cos I(i) sin D(i), and (2)

t3(i) = F(i) sin I(i), (3)

where i corresponds to the ith measurement in the segment. If the mean of these points is calculated:

t̄ = 1
N

N∑
i=1

t(i), (4)

then the data can be centered by determining the deviations:

𝛿t(i) = t(i) − t̄, (5)

and the covariance matrix of the demagnetization data can be defined:

S = 1
N

⎛⎜⎜⎜⎝
∑

𝛿t1(i)𝛿t1(i)
∑

𝛿t1(i)𝛿t2(i)
∑

𝛿t1(i)𝛿t3(i)∑
𝛿t2(i)𝛿t1(i)

∑
𝛿t2(i)𝛿t2(i)

∑
𝛿t2(i)𝛿t3(i)∑

𝛿t3(i)𝛿t1(i)
∑

𝛿t3(i)𝛿t2(i)
∑

𝛿t3(i)𝛿t3(i)

⎞⎟⎟⎟⎠ . (6)

PCA considers the squared error between a measured remanence, t(i), and its optimal linear reconstruction,
t̂(i), to minimize

∑
i ∥ t(i) − t̂(i) ∥ over the selected demagnetization segment. The direction of the best fit

(least squares) vector through the demagnetization data is found by solving the eigenvalue problem:

Sui = 𝜆iui, i = 1,… , 3, (7)

where ui and 𝜆i are the eigenvectors and eigenvalues of S, respectively (reordering of the eigenvalues and
eigenvectors may be necessary to ensure that 𝜆1 ≥ 𝜆2 ≥ 𝜆3). The eigenvectors are normalized to unit length,
and I and D of the paleomagnetic vector are given by the leading eigenvector u∗:

I = arcsin
(

u∗
3

)
, and (8)

D = arctan
(

u∗
2∕u∗

1

)
. (9)

For univectorial demagnetization, deviations of data from the fitted vector are expected to be minor and
are attributable to the random walk produced by the demagnetization of an ensemble of magnetic particles
[Khokhlov and Hulot, 2016] or to instrument noise; therefore, 𝜆1 ≫ 𝜆2 ≃ 𝜆3. Kirschvink [1980] proposed MAD
as a measure of directional uncertainty, which treats demagnetization data as if they are drawn from a mul-
tivariate Gaussian distribution with a mean of t̄ and covariance matrix that describes a prolate ellipsoid (i.e.,
𝜆1 ≫ 𝜆2 = 𝜆3). The MAD represents the conical angle between the leading eigenvector and the minor cross
section of the prolate ellipsoid projected onto the surface of a unit sphere:

MAD = arctan

⎛⎜⎜⎜⎝
√

𝜆2
2 + 𝜆2

3

𝜆1

⎞⎟⎟⎟⎠ . (10)

An example of a least squares PCA fit to demagnetization data is given in Figure 1. Once a sequence of rema-
nence directions that corresponds to a paleomagnetic component of interest has been selected, it is simple
to calculate the direction of the best fit vector and corresponding MAD. While fitted directions must carry
some level of uncertainty (represented by a nonzero MAD), it is challenging to quantify this uncertainty in a
useful manner. For example, the MAD can act as a sample acceptance/rejection criterion based on a suitably
chosen cutoff [e.g., Leonhardt et al., 2004]; however, it does not provide an obvious means to propagate the
uncertainty that it represents to higher levels, such as when calculating paleomagnetic site mean directions.

Kirschvink [1980] proposed that when a demagnetization segment is considered to represent a ChRM,
the PCA solution can be centered on the origin of the Cartesian coordinate system. This is termed an
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Figure 1. Orthogonal vector demagnetization diagram with
alternating field demagnetization results for sample eba24a
[from Tauxe, 1998]. The sample contains a readily demagnetized
viscous component (0–20 mT), and the ChRM is defined over
the 20–90 mT demagnetization interval. PCA of the ChRM
interval (red lines) provides a least squares estimate of I, D, and
the MAD.

“anchored fit” and will ensure that the fitted
vector passes through the origin of the vector
demagnetization diagram of Zijderveld [1967].
In practice this can be achieved by removing
the t̄ term from equation (5) and calculating the
covariance matrix from the data directly rather
than the deviations. Although this provides a
simple approach to force a fitted vector through
the origin, it can produce a detrimental elonga-
tion in the covariance structure of the data that
will usually result in a spurious reduction of the
overall uncertainty (Figure 2). When MADs are
reported for anchored fits, the extent to which
they have been reduced by artificial elonga-
tion of the covariance structure is not apparent,
making it difficult to assess the true directional
uncertainty.

McFadden and Schmidt [1986] considered the
direction of the best fit vector as a random draw
from a Fisher [1953] distribution. This allowed
them to estimate an approximate uncertainty
expressed as a p ×100% confidence region for
the true paleomagnetic direction that is defined
by a cone with semiangle (ap):

ap = arccos

(
1 −

𝜆2 + 𝜆3

𝜆1

[(
1

1 − p

1
N−1

)
− 1

])
. (11)

The fidelity of a PCA-derived direction and its associated MAD depend on S being representative of both
the true paleomagnetic vector and the measurement errors. Paleomagnetic directions are typically defined

Figure 2. Two-dimensional example of the covariance distortion that can occur when data are not centered. The data
(shaded circles) have a covariance ellipse (red) that is almost circular, which indicates that they are close to being
isotropic. When the covariance is calculated without centering the data, the ellipse becomes strongly elongated (blue),
which artificially lengthens the leading principal component (dashed line) with respect to the second principal
component (dotted blue line). It is simple to illustrate why this elongation occurs. Using noncentered data to define
the covariance structure is analogous to creating a second set of data points (open circles) on the opposite side of the
coordinate system origin. The noncentered covariance structure is effectively based on both sets of points; thus, the
ellipse is artificially elongated rather than being approximately isotropic.
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using between 4 and 10 demagnetization points; however, the eigenstructure of S can be distorted when the
number of dimensions (three) is close to N [Dempster, 1969]. Thus, it is necessary to consider uncertainties
that originate from measurement errors and from working with a small N and how, in combination, they can
be propagated through each step in a paleomagnetic data processing sequence.

3. A Probabilistic PCA Framework

The MAD ellipsoid concept of Kirschvink [1980] can be extended such that demagnetization data can be
viewed as a realization from a constrained three-dimensional Gaussian distribution that is composed of sig-
nal and noise components. For the signal component, univectorial demagnetization data should fall on a
line that passes through three-dimensional Cartesian space. If the direction of the line is represented by the
three-element vector, W, then the covariance matrix that describes the signal is WWT , which has a rank of 1
(i.e., the data are univectorial). When combined with the mean,𝜇, of the noise-free remanence measurements,
the signal can be represented by a multivariate Gaussian distribution  (𝜇,WWT ).

Kent et al. [1983] proposed a specific noise model for demagnetization data, whereby the error variance
depends on the magnitude of the remanence. To estimate such a noise model requires several repeated rema-
nence measurements at each demagnetization step. Here we follow the simpler approach of Kirschvink [1980],
where noise in demagnetization data is assumed to be Gaussian, isotropic, and independent of the remanence
magnitude. If noise has standard deviation, 𝜎, it corresponds to a three-dimensional Gaussian distribution
 (0, 𝜎2I), where I is a 3 by 3 identity matrix.

The convolution of the signal and noise distributions is also Gaussian and is defined by the parameters 𝜇, W,
and 𝜎2:

t ∼  (𝜇,C), (12)

where C = WWT+𝜎2I. Equation (12) defines a constrained Gaussian model that forms the basis of probabilistic
PCA (PPCA) [Tipping and Bishop, 1999]. The PPCA representation allows maximum likelihood estimates of𝜇, W,
and 𝜎 to be found, but the uncertainties associated with these parameters remain unquantified. To overcome
this hurdle, the PPCA model can be placed within a Bayesian framework that estimates posterior probability
distributions for 𝜇, W, and 𝜎2. These parameters are represented by probability distributions, rather than by
point estimates, so their uncertainty can be readily quantified and propagated to higher levels of the paleo-
magnetic data interpretation sequence. We adopt a variational Bayes approach developed by Bishop [1999a],
which is computationally efficient and provides Gaussian approximations to the posterior probability distribu-
tions (see Appendix A for details). Specifically, the approximate posterior probability distribution of 𝜇 is given
by Q(𝜇), which is a three-dimensional Gaussian distribution with mean m𝜇 and covariance𝚺𝜇 , i.e., (m𝜇,𝚺𝜇).
Similarly, the direction is also represented by a three-dimensional Gaussian distribution, Q(W), with mean mW

and covariance 𝚺W, i.e.,  (mW,𝚺W).

An important source of uncertainty in paleomagnetic directions is the correct identification of linear seg-
ments within demagnetization data [McFadden and Schmidt, 1986]. Although earlier algorithms automated
this process [Schmidt, 1982; Kent et al., 1983], they have not been adopted widely and most studies are based
on interactive data analysis within vector demagnetization diagrams [Zijderveld, 1967]. A great advantage
of variational Bayes as an approximate inference algorithm is its speed [Bishop, 2006]. In future, this speed
may be exploited to facilitate rapid comparison between candidate models to provide an objective means of
identifying linear demagnetization segments.

4. Uncertainty Determination for a Single Specimen

Once Q(𝜇) and Q(W) have been estimated for a given remanence vector (Appendices A and B), two key
questions can be addressed. First, what is the directional uncertainty of the remanence vector? Second, for a
hypothesized ChRM, do the vector and the origin coincide within uncertainty? Directional uncertainty is rep-
resented by Q(W), and random draws from this multivariate Gaussian distribution will provide realizations of
the direction of the paleomagnetic vector. To test if a ChRM vector passes through the origin of the Cartesian
space, it is necessary to consider Q(𝜇) and Q(W) in combination. While Q(W) defines the distribution of pos-
sible vector directions, Q(𝜇) defines a distribution that represents the true (i.e., noise-free) center of the data
points through which the vectors must pass. Random draws from Q(𝜇) and Q(W) define vectors that pass
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Figure 3. Schematic demonstration of the determination of a confidence region around a given point on a maximum a
posteriori probability (MAP) vector. Points of intersection between random vectors generated from Q(𝜇) and Q(W) and a
plane (shaded) normal to the MAP vector (red) are used to define a circular confidence region (orange). For example, the
95% confidence region is defined by a circle (orange) that bounds 95% of the intersection points of the random vectors
and is centered on the MAP intersection point (red symbol).

through the three-dimensional measurement space, which can be compared to the maximum a posteriori
probability (MAP) vector that is defined by m𝜇 and mW and that corresponds to the modes of Q(𝜇) and Q(W).

A confidence region can be defined around the MAP vector at any point along its length by defining a nor-
mal plane that intersects the MAP vector at that point. The intersection of the plane with vectors obtained via
random draws from Q(𝜇) and Q(W) then provides a collection of points with a distribution of distances along
the plane from the selected point on the MAP vector (Figure 3). Determination of the 95th percentile of the
distances between the intersection points and the MAP vector then defines a 95% confidence region for the
intersection of the true paleomagnetic vector with the defined plane. This process can be repeated for a col-
lection of positions along the MAP vector to define a 95% confidence region through the measurement space
(Figure 4a).

To test if the origin of the Cartesian space is contained within the 95% confidence region of the true vector, it
is necessary to consider the path of vectors defined by Q(𝜇) and Q(W). In combination, random draws R𝜇 and

Figure 4. (a) Orthogonal vector demagnetization diagram with alternating field demagnetization results for sample
eba24a [from Tauxe, 1998], which includes the maximum a posteriori probability (MAP) vector (solid lines) and 95%
confidence region for the true vector (dashed lines). Given that MD2

0 >𝜒2
3,0.95, the 95% confidence region of the

identified ChRM does not contain the origin of the diagram and must be interpreted within this constraint. (b) The
multivariate Gaussian distribution Q(W) calculated for sample eba24a defines a distribution of off-axis angles (black line,
equation (15)). The 95th percentile of the distribution defines a 95% confidence region (𝜃95, red dashed line) around
the MAP vector for the true direction of the isolated remanence component in sample eba24a. This distribution can
be marginalized [Love and Constable, 2003] to provide separate uncertainties on the ChRM inclination (I95) and
declination (D95).
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RW from the distributions Q(𝜇) and Q(W), respectively, define a vector that passes through Cartesian space.
The position, Z, along the vector that is closest to the origin is given by

Z = −R𝜇R+
WRW + R𝜇, (13)

where + is the Moore-Penrose pseudoinverse [Penrose, 1955]. If this process is repeated for a large number of
random draws, it is possible to define an empirical distribution for Z and estimate its mean (Z̄) and covariance
matrix (SZ). Assuming that Z is approximately multivariate Gaussian, the squared Mahalanobis [1936] distance
between the origin and Z̄ is given by

MD2
0 = Z̄T SZ

−1Z̄. (14)

If the origin falls within the 95% confidence region for the true paleomagnetic vector, then based on a 𝜒2 dis-
tribution with three degrees of freedom, MD2

0 ≤ 𝜒2
3,0.95 = 7.81 [Rousseeuw and van Zomeren, 1990] (Figure 4a).

It is important to note that visual inspection of confidence bands within an orthogonal vector demagnetiza-
tion diagram can be misleading. It is intuitive to assume that if the origin lies within the two plotted confidence
bands, then the origin must be located within the 95% confidence region of the true paleomagnetic vector.
However, the two projections of a vector in an orthogonal plot depend on each other and a given point on
one projection corresponds to a single point on the second projection. Therefore, it is insufficient for the two
confidence regions to contain the origin; instead, locations within the confidence region that correspond to
the same position along the paleomagnetic vector must contain the origin simultaneously. A test indicating
that a vector is not coincident with the origin within uncertainty does not imply that a given specimen should
be rejected as an unreliable recorder of the paleomagnetic field. Instead, the vector direction should be con-
sidered within the context of the statistical test result and geological interpretations should take this factor
into consideration. As discussed in section 2, anchoring a PCA fit through the origin of the vector demagne-
tization diagram will elongate the multivariate Gaussian distribution toward the origin and artificially reduce
the MAD value. Our proposed approach enables probabilistic evaluation of whether a paleomagnetic vector
will intercept the origin within the uncertainties of the data and, thus, removes the requirement for anchoring.

Estimation of the directional uncertainty of the remanence vector is straightforward. The distribution of
angles, 𝜃, between draws from Q(W) and the MAP direction given by mW is a Gaussian off-axis angular
distribution, with a probability density function (pdf) [Love and Constable, 2003]:

p(𝜃 ∣ 𝚺W, ‖mW‖) = 1
2

sin 𝜃

[
−1

2

‖mW‖2

𝚺W

]
×

{[
1 +

‖mW‖2

𝚺W
cos2 𝜃

]
exp

[
1
2

‖mW‖2

𝚺W
cos2 𝜃

]
×

[
1 + erf

[
1√

2

(‖mW‖√
𝚺W

)
cos 𝜃

]]
+

√
2
𝜋

(‖mW‖√
𝚺W

)
cos 𝜃

}
, (15)

where ‖mW‖ is the magnitude of the mW vector. A given quantile of this distribution then defines a circular
confidence region on a unit sphere centered at mW∕‖mW‖ and within which the true direction is expected
to occur with a given probability. For example, the 95th percentile defines a 95% circular confidence region,
which we term 𝜃95 (Figure 4b). The boundary of this confidence region can be represented as a sequence
of inclination/declination pairs and can, therefore, be illustrated on stereoplots or transformed to provide
a confidence region for VGPs, etc. When considering records of geomagnetic secular variation, it may be
desirable to consider the uncertainty in inclination and declination separately. Love and Constable [2003] pro-
vided marginal density functions for both inclinations (their Appendix F) and declinations (their Appendix G),
from which separate confidence intervals for inclinations and declinations can be calculated (Figure 4b).
It is important to note that because of their fundamentally different forms, 𝜃95 and MADs cannot be
compared directly.

The performance of variational Bayesian PCA (VBPCA) for estimating uncertainties, as introduced above in
section 3, was assessed using a numerical simulation. A given number of data points, N, were created along
a straight line to represent univectorial demagnetization data. Isotropic Gaussian pseudorandom numbers
were then added to the points to simulate noise. PCA and VBPCA were then performed on the simulated
data, and for each approach the angle between the estimated and true vectors was calculated. In the case of
the PCA solution, equation (11) was solved to find the value of p where ap is equal to the angle between the
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Figure 5. Empirical cumulative distribution functions of p values for uncertainty estimates obtained from the
approximation of (left) McFadden and Schmidt [1986] and (right) VBPCA. Bias for a given number of data points (N) is
expressed as a deviation from a line with 1:1 slope (gray). The VBPCA approach gives rise to less bias than the
approximation of McFadden and Schmidt [1986], and the bias decreases with increasing N.

least squares best fit and true vector. For the VBPCA solution, the equivalent p value for the angle between
the MAP and true vector was determined from a cumulative Gaussian off-axis angular distribution defined
by ‖mW‖ and 𝚺W [Love and Constable, 2003, equation E8]. This process was repeated 5000 times with noise
levels producing cases with MADs between 4∘ and 19∘. If a given technique produces unbiased estimates of
the uncertainty associated with an estimated vector direction, the observed p values should be distributed
uniformly in the interval [0, 1]; therefore, their empirical cumulative distribution function will have a 1:1 slope
between 0 and 1. Empirical distributions of p values are shown in Figure 5, with the VBPCA approach giving
rise to less bias than the approximate uncertainty of McFadden and Schmidt [1986]. Additionally, VBPCA bias
decreases with increasing N, while the bias in the approximate uncertainty estimate of McFadden and Schmidt
[1986] increases. This demonstrates the suitability of VBPCA for estimating paleomagnetic directions and their
uncertainties from demagnetization data.

An ability to estimate uncertainties at the specimen level is crucial for evaluating records of polarity reversals
or excursions, where weak transitional fields may result in degraded paleomagnetic recording. To demon-
strate this approach, an inclination record originally presented by Heslop et al. [2013] from marine sediment
core MD00-2361 (offshore of Western Australia) is shown in Figure 6. The presented core interval spans
the Matuyama-Brunhes boundary; however, the specimens were not oriented azimuthally and absolute

Figure 6. Estimated inclinations (closed symbols) and 95% confidence interval (shaded) through a record of the
Matuyama-Brunhes boundary from marine sediment core MD00-2361 from offshore of Western Australia [Heslop et al.,
2013]. U-channel samples were AF demagnetized [Weeks et al., 1993], and the 50–100 mT interval was used to represent
the ChRM. Geocentric axial dipole (GAD) inclinations are shown for reference (red dashed lines). While the inclination
record looks smooth, the inclination uncertainty at each specimen depth can be as much as ±15∘.
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declination information is not available. After fitting the specimen ChRMs using the outlined approach,
uncertainties associated with the estimated ChRM inclinations were determined using the Gaussian marginal
density function for inclination [Love and Constable, 2003, equation F1].

5. Uncertainty Propagation

Once defined rigorously at the specimen level, it is possible to propagate uncertainties through subsequent
paleomagnetic data analyses, such as when calculating paleomagnetic site mean directions. Given that Q(W)
corresponds to a Gaussian distribution for a given specimen, it would be tempting to simply convolve the
distributions for collections of specimens to produce another Gaussian distribution that represents the mean
paleomagnetic direction. In the paleomagnetic context, however, Q(W) defines a collection of directions and
this property must be respected. The convolution of two Gaussian off-axis angular distributions does not
produce another Gaussian off-axis angular distribution [de Sa, 2007]. Therefore, we propagate directional
uncertainties numerically as described below.

5.1. Calculation of Site Mean Directions
In situations where paleomagnetic records, such as those from lava flows, provide a snapshot of the field, or
where a long sequence of flows is thought to be representative of the average field over a given time interval,
it is desirable to calculate a mean direction and its 𝛼95 uncertainty using the framework developed by Fisher
[1953]. This is a common approach in paleomagnetic studies; however, it does not consider the directional
uncertainties at the specimen level.

The framework introduced in section 4 provides a way to incorporate specimen uncertainties into calculation
of a mean. However, as discussed above it is necessary to propagate directional uncertainties numerically. To
achieve this, consider an ensemble of Ns specimens collected from a site. If Q(W) has been determined for
each specimen, then a unit vector that corresponds to a realization of the paleomagnetic direction of the ith
specimen is given by

W̃i =
Wi‖Wi‖ . (16)

This is repeated for all Ns specimens, and the length, R, of the resultant vector produced by summing the
sample of unit vectors is calculated. Assuming that the specimen directions originate from a Fisher [1953]
distribution, a realization of the site mean paleomagnetic direction, xs, can be calculated by permuting the
direction of the W̃ resultant vector with a random angle, 𝜙, given by [Fisher, 1953]

𝜙 = arccos

(
1 − Ns − R

R

[(1
P

) 1
Ns−1 − 1

])
, (17)

where P is a uniformly distributed random number between 0 and 1. The process of drawing a random
direction for each specimen, combining these directions and permuting by a random angle, can then be
repeated a large number of times, Nb (typically∼104), to produce an ensemble of site mean directions, Xs, that
incorporates the uncertainty in individual specimen directions. If the confidence region for the true site paleo-
magnetic mean direction is assumed to be circular, it can be defined by finding the 95th percentile (𝛽95−circular)
of the angles between the cases of Xs and the mean of Xs. Alternatively, if a circular confidence region is not
assumed, a nonparametric 95% confidence region for the true site mean direction can be defined by kernel
density estimation. It is necessary to determine the maximum density that defines a contour on the surface
of a unit sphere that encloses 95% of the points in Xs. For a given point, x0, on the surface of a unit sphere, an
unnormalized estimate of the density, f̂ , based on a Fisher distribution kernel is given by Hall et al. [1987]

f̂ (x0, 𝜅̃) =
Nb∑
i=1

exp
(
𝜅̃Xs

i
Tx0

)
, (18)

where 𝜅̃ represents the precision parameter of a kernel based on a Fisher distribution [Fisher, 1953]. A suitable
value of 𝜅̃ can be estimated as [Garcia-Portugués, 2013]

𝜅̃ = 3

√
𝜅̂[(1 + 4𝜅̂2) sinh(2𝜅̂) − 2𝜅̂ cosh(2𝜅̂)]Nb

8 sinh2(𝜅̂)
, (19)
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Figure 7. (a) Demagnetization data, for example specimen l2 from site AZ26 on São Miguel Island, Azores [Johnson
et al., 1998]. Solid red lines indicate the maximum a posteriori probability (MAP) vector, and dashed red lines represent
the 95% confidence region. (b) When four specimens (open symbols) are averaged, an 𝛼95 can be calculated (gray line),
which does not account for the directional uncertainty carried by individual specimens (as shown in Figure 7a).
Numerical simulation of an ensemble of mean directions (red dots) allows estimation of a 95% confidence region for the
true mean based on an angle that defines a circle that bounds 95% of the ensemble (𝛽95−circular, blue line) or by kernel
density estimation (𝛽95−kernel, green dashed line).

where 𝜅̂ corresponds to an estimate of the precision parameter of the points in Xs. If equation (18) is used
to estimate the density at each location in Xs, then the 5th percentile of these densities corresponds to a
density, which when mapped on the surface of a unit sphere will produce a contour, 𝛽95−kernel, enclosing 95%
of the points in Xs.

When specimen directions carry no uncertainty (i.e., 𝚺W = 0), the 𝛽95 region will correspond to the 𝛼95 value
commonly used in paleomagnetic studies. Given that real specimen directions will always carry an uncer-
tainty, the 𝛽95 region will be larger than that defined by an 𝛼95 and should allow more robust inferences to be
drawn concerning site mean directions. As with the single specimen case discussed in section 4, the limits of
the site mean confidence region are defined simply by a collection of directions (i.e., points on the surface of
a unit sphere) and can be readily converted into other representations, such as VGPs.

An example of propagating specimen uncertainties into a site mean is given in Figure 7, which is based on
data from Johnson et al. [1998] who studied lavas from São Miguel Island, Azores. Johnson et al. [1998] applied
strict specimen acceptance/rejection criteria (e.g., ChRM MADs must be <5∘) before calculating site means.
To demonstrate uncertainty propagation, we selected four specimens (a1, a3, j2, and l2) from site AZ26 that
yield similar directions but have MADs >12∘. Thus, our example is intended to be illustrative of situations
involving small numbers of specimens with large individual uncertainties, rather than a reassessment of the
stringent analysis of Johnson et al. [1998]. In a traditional PCA approach, these four specimens have similar
ChRM directions and their average yields 𝛼95 = 2.1∘ (Figure 7). If, however, the individual ChRM uncertainties
are propagated into the average, the uncertainty increases by a factor of ∼3, reaching 𝛽95−circular = 6.2∘. In
this example the specimens have similar MADs and were assumed to carry equal weight in the calculation of
the site mean direction. In cases where the specimens from a site have a wide range of uncertainties, it would
be feasible to calculate a weighted site mean direction with individual specimen weights derived from
their uncertainties.

5.2. Combining Directional Records
To demonstrate a more complex example, we consider the combination of uncertainties in paleomagnetic
directions during a period of excursional field geometry. Based on a compilation of sedimentary records from
the North Atlantic Ocean and South China Sea, Laj et al. [2006] hypothesized that the Iceland Basin excur-
sion (∼190 ka) was dominated by changes in the dipole component of the field. Laj et al. [2006] showed an
additional VGP path reconstructed by Roberts et al. [1997] from Ocean Drilling Program (ODP) Site 884. This
path contains a more complex double loop behavior; however, age control at ODP Site 884 was limited to an
indirect chronology, so Laj et al. [2006] excluded it from their final compilation. Subsequently, Roberts [2008]
provided additional chronological evidence that relates the ODP Site 884 record to the Iceland Basin excursion
and here we perform a detailed analysis of uncertainties associated with its VGP path.
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Figure 8. Paleomagnetic (a) inclination and (b) declination for the Iceland Basin excursion from three parallel sediment
cores. Vertical bars indicate the marginalized uncertainties associated with each direction (in most cases the bars are
narrower than the width of the symbol). Mean VGP paths (black line) based on weighted averages of specimen VGPs
(solid colored symbols) and their uncertainties (colored ellipses) for (c) ODP Hole 884B, (d) ODP Hole 884C, and (e) ODP
Hole 884D. Gray symbols represent weighted mean directions described in the text. (f ) Composite VGP path and
weighted mean directions obtained by pooling data from ODP Holes 884B, 884C, and 884D.

Roberts [2008] produced three parallel excursion records based on AF demagnetization of discrete speci-

mens from ODP Holes 884B, 884C, and 884D with an additional record based on u-channel samples from

Hole 884D. Using magnetic susceptibility records from these three holes, data for individual specimens were

transferred onto a single depth scale based on ODP Hole 884D [Roberts, 2008]. The three discrete specimen

records are shown in Figures 8a and 8b, with inclination and declination uncertainties calculated for step-

wise AF demagnetization data using the procedure introduced in section 4. VGP paths for the individual holes
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were calculated using a moving average with weights drawn from a Gaussian distribution. For a given depth,
weights were drawn from a Gaussian pdf with a mean corresponding to the depth of interest and a standard
deviation of 2 cm (selected as a balance between the specimen sampling interval and the smoothness of
the resulting VGP path). A random unit vector was then drawn from Q(W) for each specimen and was mul-
tiplied by its corresponding weight, with the resulting vectors then averaged according to the procedure of
Fisher and Hall [1989] to provided a weighted mean direction. This process was repeated 300 times at each
depth to provide a distribution of weighted mean directions that were subsequently transformed into VGPs
(Figures 8c–8e).

The VGP records from ODP Holes 884C (Figure 8d) and 884D (Figure 8e) are characterized by lower direc-
tional uncertainties, and both records have a double clockwise loop structure. In contrast, specimens from
ODP Hole 884B generally carry larger directional uncertainties and yield a single clockwise loop (Figure 8c).
The absence of an inner initial loop in the ODP Hole 884B record may be a sampling artifact rather than a gen-
uine paleomagnetic feature and could result from an apparent gap in the record between ∼9.05 and 9.15 m
(Figures 8a and 8b). At face value, the three records of the Iceland Basin excursion appear similar, but it is
useful to constrain statistically the limits of palaeomagnetic interpretations. Few such multiple records of the
same excursion exist in the literature, and it is important to assess the extent to which inconsistencies among
the records limit overall interpretation of excursional field behavior.

In many instances uncertainties associated with individual directions in the respective holes from ODP Site
884 are smaller than the directional differences among the holes. Such inconsistencies cannot be attributed
to measurement noise alone. Instead, it is apparent that some of the disagreement among the holes must
be attributed to complexities associated with paleomagnetic signal acquisition in sediments [e.g., Heslop
et al., 2014] or to factors associated with coring such as local field deviations associated with the bottom hole
assembly of the ODP coring system. Given the slight depth offsets between specimens from different holes,
it cannot be assumed that given specimens experienced exactly the same field; therefore, it is not appropri-
ate to employ Fisher [1953] statistics to estimate a site mean VGP path. Instead, a composite VGP path was
produced using the same weighted moving average procedure, with specimens from the three holes pooled
together (Figure 8f ). The double clockwise VGP loop structure persists within this combined record, with ODP
Hole 884B playing little role in defining the initial inner loop because of the apparent sampling gap between
∼9.05 and 9.15 m. The VGP path passes over the North Atlantic Ocean, South America, the Pacific Ocean, and
North America, with VGP uncertainties typically <5∘ throughout the excursion, which indicates that the ODP
Site 884 record is inconsistent with the compilation of Laj et al. [2006]. If the records of Roberts [2008] corre-
spond to the Iceland Basin excursion, the excursional field geometry must have been more complex than the
dipole-dominated structure hypothesized by Laj et al. [2006].

6. Conclusions

Paleomagnetic directions estimated from demagnetization experiments are inherently uncertain. This has
implications not only for constraining past geomagnetic field behavior but also for geological reconstruc-
tions based on paleomagnetic directions. Thus, it is essential that paleomagnetic reconstructions include fully
quantified uncertainties to ensure robust interpretation and to protect against spurious inferences. VBPCA
provides a means to readily estimate directional uncertainty, even for the small data sets that are typical
of most demagnetization experiments. This uncertainty takes the form of a Gaussian off-axis angular distri-
bution, which allows confidence regions to be defined for single specimens and numerical propagation of
uncertainty to subsequent analysis of paleomagnetic directions, such as when determining site mean direc-
tions. In turn, these uncertainties can be readily transformed to provide confidence regions for representations
of VGPs or paleomagnetic poles and apparent polar wander paths.

Appendix A

Given an observed data set, D, composed of N vectors, t(1),… , t(N), the log-likelihood of the PPCA model
parameters is given by [Tipping and Bishop, 1999]

(𝜇,W, 𝜎2) = −N
2

{
3 ln(2𝜋) + ln |C| + tr(C−1S)

}
, (A1)

HESLOP AND ROBERTS PALEOMAGNETIC UNCERTAINTY PROPAGATION 2285



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012544

where

S = 1
N

N∑
i=1

(t(i) − 𝜇)(t(i) − 𝜇)T , (A2)

C = WWT + 𝜎2I, (A3)

and 𝜇, W, and 𝜎2 follow the definitions given in section 3.

To estimate the best fit line through demagnetization data and, importantly, the uncertainty associated with
the line, it is necessary to estimate distributions for 𝜇, W, and 𝜎2. This can be achieved with a Bayesian
approach based on defining a prior distribution P(𝜇,W, 𝜎2) for the model parameters, which when multiplied
by the likelihood function (equation (A1)) for the data set, D, and normalized, yields the posterior distribution
P(𝜇,W, 𝜎2|D). This provides the predictive density [Bishop, 1999b]:

P(t|D) = ∫ ∫ ∫ P(t|𝜇,W, 𝜎2)P(𝜇,W, 𝜎2|D)d𝜇dWd𝜎2. (A4)

The variational Bayes approach to PCA developed by Bishop [1999a] introduces a distribution, Q, to approxi-
mate the true posterior distribution. Furthermore, it is assumed that Q can be factorized over its component
variables. This factorization means that for the described Bayesian PCA model [Bishop, 1999a],

Q(X,W, 𝜇, 𝜏) = Q(X)Q(W)Q(𝜇)Q(𝜏), (A5)

where X corresponds to principal component scores and 𝜏 = 𝜎−2. This approach is computationally efficient
and provides an approximation to equation (A4) for between 1 and d − 1 principal components, where d is
the dimension of the data set. Full justification of this approach is provided by Bishop [1999a], who outlines
an iterative procedure to estimate the factors in the variational model (Appendix B). The parameters 𝜇 and W,
which are required to represent a paleomagnetic vector, take the form

Q(𝜇) =  (𝜇 ∣ m𝜇,𝚺𝜇) and (A6)

Q(W) =  (W ∣ mW,𝚺W), (A7)

where m and 𝚺 correspond to a mean and covariance matrix, respectively, and m𝜇 , 𝚺𝜇 , mW, and 𝚺W are
estimated by the variational algorithm (Appendix B).

Appendix B

The variational Bayesian PCA approach of Bishop [1999a] is designed to fit between 1 and d − 1 principal
components, where d is the dimensionality of the data set. When q is the maximum number of components to
be considered, the model includes an additional parameter,𝛼 = 𝛼1,… , 𝛼q, with each value of𝛼 controlling the
inverse variance of the corresponding component of W. Each term in 𝛼 is represented by a Gamma probability
density function (pdf). Large values in 𝛼i will reduce the influence of the ith component; thus, 𝛼 helps to
resolve the question of how many components are needed to describe a data set [Bishop, 1999a].

When analyzing of demagnetization data, it is assumed that a segment selected via interactive point selec-
tion within vector demagnetization diagrams will be linear and only the leading principal component carries
meaningful directional information. Thus, if a demagnetization segment is considered to be linear, it is
expected that 𝛼1 ≪ 𝛼2 ≃ 𝛼3. For simplicity, it could be assumed that q = 1 and the model will consist of only
a single principal component and a noise contribution. As discussed in section 3, however, future studies may
focus on objective identification of linear segments within demagnetization data and the use of 𝛼 could play
a role in determining if a given demagnetization interval is univectorial. Thus, 𝛼 is included in the outlined
approach, which is appropriate for q = [1, d − 1] components.

The Bayesian approach requires definition of prior distributions for 𝜇, 𝛼, and 𝜎2. Little is known about these
parameters; therefore, they are assigned broad priors:

P(𝜇) =  (𝜇|0, 𝛽−1I), (B1)

P(𝛼) =
q∏

i=1

Γ(𝛼i|a𝛼, b𝛼), (B2)
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and
P(𝜏) = Γ(𝜏|a𝜏 , b𝜏 ), (B3)

where 𝜏 = 𝜎−2, 𝛽 = 10−3, a𝛼 = b𝛼 = a𝜏 = b𝜏 = 10−3, I is an identity matrix, and the Gamma distribution
Γ(x|a, b) is given by

Γ(x|a, b) =
baxa−1 exp(−bx)

Γ(a)
. (B4)

As discussed in Appendix A, the variational approach assumes that the true joint posterior distribution can
be approximated using a factorized form:

Q(X,W, 𝛼, 𝜇, 𝜏) = Q(X)Q(W)Q(𝛼)Q(𝜇)Q(𝜏), (B5)

where the individual components take the form

Q(X) =
N∏

n=1

 (
xn|m(n)

x ,𝚺x

)
, (B6)

Q(𝜇) =  (
𝜇|m𝜇,𝚺w

)
, (B7)

Q(W) =
d∏

k=1

 (
w̃k|m(k)

w ,𝚺w

)
, (B8)

Q(𝛼) =
q∏

i=1

Γ
(
𝛼i|ã𝛼, b̃𝛼i

)
, (B9)

and
Q(𝜏) = Γ

(
𝜏|ã𝜏 , b̃𝜏

)
. (B10)

Distribution parameters are initialized based on maximum likelihood estimates obtained by probabilistic PCA
[Tipping and Bishop, 1999]. An iterative cycle is then performed, with the distributions Q(X), Q(W), Q(𝛼), Q(𝜇),
and Q(𝜏) being updated based on the following expressions:

m(n)
x = ⟨𝜏⟩𝚺x⟨WT⟩(tn − ⟨𝜇⟩), (B11)

𝚺x = (I + ⟨𝜏⟩⟨WTW⟩)−1, (B12)

m𝜇 = ⟨𝜏⟩𝚺𝜇

N∑
n=1

(tn − ⟨W⟩⟨xn⟩), (B13)

𝚺𝜇 = (𝛽 + N⟨𝜏⟩)−1I, (B14)

m(k)
w = ⟨𝜏⟩𝚺w

N∑
n=1

⟨xn⟩(tnk − ⟨𝜇k⟩), (B15)

𝚺w =

(
diag⟨𝛼⟩ + ⟨𝜏⟩ N∑

n=1

⟨xnxT
n⟩

)−1

, (B16)

ã𝛼 = a𝛼 +
d
2
, (B17)

b̃𝛼i = b𝛼 +
⟨‖wi‖2⟩

2
, (B18)

ã𝜏 = a𝜏 +
Nd
2
, (B19)

and

b̃𝜏 = b𝜏 +
1
2

N∑
n=1

{‖tn‖2 + ⟨‖𝜇‖2⟩ + Tr(⟨WTW⟩⟨xnxT
n⟩) + 2⟨𝜇T⟩⟨W⟩⟨xn⟩ − 2tT

n⟨W⟩⟨xn⟩ − 2tT
n⟨𝜇⟩} . (B20)

HESLOP AND ROBERTS PALEOMAGNETIC UNCERTAINTY PROPAGATION 2287



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012544

Note that the update rules incorporate the terms that define the prior distributions (𝛽 , a𝛼 , b𝛼 , a𝜏 , and b𝜏 )
into the appropriate Q distributions (the priors are fixed; therefore, these terms do not change as part of the
updates). Expected values are given by ⟨⋅⟩, where for a d-dimensional Gaussian distribution  (x|𝜇,𝚺), the
expectations ⟨x⟩ and ⟨xxT⟩ are given by Šmídl and Quinn [2006]

⟨x⟩ = 𝜇 (B21)

and

⟨xxT⟩ = d𝚺 + 𝜇𝜇T. (B22)
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