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Abstract :   
 
IODP 339 Site U1385 ("Shackleton site", e.g. Hodell et al., 2013a), from the SW Iberian margin, offers 
the opportunity to study marine microfossil population dynamics by comparing several past interglacials 
and to test natural shifts of species that occurred across these warm periods, in a subtropical context. 
Here, more specifically, we present results obtained for the dinoflagellate cyst (dinocyst) population 
integrated at a regional scale thanks to the addition of data from proximal sites from southern Iberian 
margin. When possible, observations made using the dinocyst bio-indicator are compared to additional 
proxies from the same records in order to test the synchronicity of the marine biota response. Pollen data 
available for some of the compiled marine sequences also offer the opportunity to directly compare marine 
biota with terrestrial ecosystem responses. This spatio-temporal compilation reveals that, over the last 
800 ka, surface waters around Iberia were tightly coupled to (rapid) climate changes and were 
characterised by coherent dinocyst assemblage patterns, highlighting a permanent connection between 
Atlantic and Mediterranean waters as evidenced through a continuous exchange of dinocyst populations. 
Some index species well illustrate the evolution of the regional hydrographic context along time, as for 
instance Spiniferites and Impagidinium species, together with Lingulodinium machaerophorum, 
Bitectatodinium tepikiense and heterotrophic brown cysts. They constitute key bio-indicators in context of 
natural environmental shifts at long and short timescales. 
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Graphical abstract 
 

 
 
 

Highlights 

► Southern Iberian margin dinocysts are studied from long sedimentary records (including IODP Site 
U1385). ► Evolution of dinocyst populations is analysed over the last 800 ka focusing on past 
interglacials. ► Coherent and reproducible patterns are detected within dominant cyst species on long-
term trends. ► Mediterranean/Atlantic exchanges are illustrated based on the comparison of inter-basin 
populations. 
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1. Introduction 
 

Drastic marine biodiversity changes that occurred over the last century raise key questions 

today in connection with the concept of ecosystem resilience to environmental changes (e.g. 

Millenium Ecosystem Assessment synthesis reports, 2005). This is especially true for neritic 

ecosystems that encountered major perturbations especially related to the geochemical 

balances of sea-surface waters (e.g. eutrophication, pollution contaminants, acidification e.g. 

Crutzen, 2002) but also to physical parameters (e.g. SST warming, sea-level changes, river 

nutrient loads). At present, natural environmental trends are hidden by anthropogenic 

forcings and reference points are lacking. The natural state is only found in the recent past, 

outside of the modern instrumental period (i.e. the last century), thus preventing actualistic 

studies from defining robust baselines for environmental predictions and trajectories. 

Paleostudies carried out on fossil sediment archives thus provide invaluable information 

(e.g. Wilis et al., 2010) even if they are integrating only a partial view of the paleo-

biodiversity, being only indirectly and incompletely representative of past biomes and 

biotopes. Interglacial optima, and especially their surrounding transitional periods (both 

deglaciations and glacial inceptions), represent key intervals where ecosystems, comparable 

to modern ones, could be tested along large amplitude ecological shifts (e.g Willis et al., 

2010). They permit us to test if the marine biota offers the same recurrent kind of transient 

populations during such shifts and if so, to picture characteristic patterns that could be 

recognized within the assemblages. Are there typical species that could be considered as 
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pioneers, opportunistic or pre-adapted, and so repetitive scenarios that could provide us 

with a predictive ecological model for the marine biota evolution?  

For this study we based our approach on the dinoflagellate cyst (dinocyst) proxy, an organic-

walled bio-indicator related to the phytoplankton realm which constitutes sexual 

reproduction remains of some dinoflagellate species (e.g. de Vernal and Marret, 2007; 

Ellegaard et al., 2013). Fossil dinocysts have long been used in Mesozoic-Cenozoic 

paleoceanographic studies to reconstruct past hydrographical patterns qualitatively as well 

as quantitatively through transfer functions (e.g. Wiliams, 1971; Turon, 1978; de Vernal et 

al., 2001; Houben et al., 2012; de Schepper et al., 2013; Mertens et al., 2014). They 

constitute a robust planktic group to document past sea-surface ecological changes (e.g. 

Marret and Zonneveld, 2003; Zonneveld et al., 2013) and are especially powerful in neritic 

environments where their motile thecal forms proliferate preferentially (e.g. Dale, 1983; 

Dodge and Harland, 1991). 

Here we compare the evolution of dinocyst relative abundances across four of the most 

studied interglacials with regard to their climate dynamics: Marine Isotopic Stage (MIS) 1, 5, 

11 and 19. We thus gathered sedimentary sequences (along which dinocyst assemblages 

have been analysed at high resolution) from the south-western European margin (Iberia), 

from its Atlantic side as well as from the inner Alboran Sea. This compilation, providing an 

integrated view of dinocyst assemblage evolution in space and time from a sensitive 

subtropical area (e.g. Giorgi, 2006), includes new original analyses on the IODP 339 Site 

U1385 (Hodell et al., 2013a and b). It gives us the opportunity to: i) document poorly known 

dinocyst populations from the interglacial MIS 19 and 11, and ii) study ecological interactions 

through several climate cycles of the Quaternary between two end-member environments 
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on either sides of the Gibraltar strait: the Mediterranean Basin (residual Tethys) and the 

North Atlantic. 

 

2. Environmental setting: key features 
 

The modern hydrography of the southern Iberian margin is mainly forced by water mass 

exchanges with North-Atlantic waters penetrating the Alboran Sea at the surface, whereas 

deep saltier waters exit the Mediterranean at depth (Mediterranean Overflow Water or 

MOW). This scheme is mainly related to contrasted density budgets in between the two 

respective basins, however modulated by atmospheric forcing throughout the transfer of 

wind stress to surface currents, such as the Azores and Portugal currents for the Atlantic, or 

the western/ eastern anticyclonic gyres associated with the Algerian current for the Alboran 

(e.g. Rohling et al., 1995; Johnson, 1997; Font et al., 2000; Mauritzen et al., 2001; Arístegui 

et al., 2005, 2009, see Figure 1). This dynamical pattern evolves seasonally /yearly according 

to meridional shifts / contractions - extensions of the subtropical North Atlantic gyre, 

inducing changes in the temporality of upwelling cells and thus major modifications of the 

sea-surface productivity conditions (Arístegui et al., 2005; Peliz et al., 2005; Relvas et al., 

2007). At millennial time scales, significant modulations of the MOW have been recorded 

during major climate transitions associated with boreal ice-sheet collapses (i.e. the well-

known Heinrich events, e.g. Heinrich, 1988) with a consensus supporting synchronous 

accelerations of MOW during these cold episodes (e.g. Cacho et al., 2000; Voelker et al., 

2006; Rogerson et al., 2010). This also resulted in drastic consequences in water mass 
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surface exchanges with the reorganisation of the Alboran gyres and obvious impacts on sea-

surface productivity on either sides of Gibraltar (Penaud et al., 2011). 

 

3. Methods 
 

This study relies on new unpublished data (IODP 339 Site U1385 MIS 19 and 11 sections - i.e. 

from the 788-749 ka and 410-384 ka age intervals respectively - from the "Shackleton site", 

e.g. Hodell et al., 2013a,) and also gathers several previously published and unpublished 

dinocyst records from the Southern Iberian margin (Figure1; see Table 1 for key elements 

concerning each studied core). We selected marine sequences that could provide us a fine 

enough analytical resolution regarding dinocyst assemblage patterns through time and 

where comparative data exists from other paleoenvironmental proxies (mainly derived from 

planktic foraminiferal and pollen assemblages, mono-specific foraminifera 18O).  

Site U1385 was drilled from the SW Iberian Margin during IODP Expedition 339 (e.g. Hodell 

et al., 2013a) with the aim of extending further back in time the range of the exceptional 

piston cores previously retrieved in this area (including those listed in Table 1). Its 

stratigraphy was built upon a combination of chemo-stratigraphic proxies (Hodell et al., 

2013a; this volume), i.e. Ca/Ti ratio, measured in all holes by XRF core scanning to construct 

a composite section, coupled to benthic foraminifera oxygen isotopes which were correlated 

to the marine 18O LR04 stack (Lisiecki and Raymo, 2005). More details regarding this 

stratigraphical work can be found in Hodell et al. (2013a and b; this volume). Concerning the 
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other published paleoceanographical records used in this study, we strictly used the age 

models as initially established and published by the authors (cf. Table 1).  

Palynological preparations were conducted on IODP 339 Site U1385, Hole D, Core 10H 

between sections 3 and 6 which encompass MIS 19 and on Hole D, Core 7H section 1 and 

Hole E, Core 6H sections 5 and 6 for MIS 11. The preparation techniques follow standard 

procedures and can be found at http://www.epoc.u-

bordeaux.fr/index.php?lang=fr&page=eq_paleo_pollens. Acetolysis was not employed to 

avoid destruction of heterotrophic dinocyst taxa such as Polykrikaceae and Brigantedinium 

cysts (Marret, 1993; Combourieu-Nebout et al., 1998; Kodrans-Nsiah et al., 2008). The 

samples were used together for dinocyst and pollen analyses (Sànchez-Goñi et al., this 

volume) with two set of slides mounted independently to facilitate each kind of observations 

(i.e. glycerine jelly coloured with fushine for dinocysts and bidistilled glycerine for pollen). 

Dinocysts were counted on the fraction 10-150 µm (from 47 to 365 -average 187- specimens 

per sample) using a Zeiss PrimoStar light microscope at x400 magnifications. Identifications 

were based on Turon (1984), de Vernal et al. (1992) and Rochon et al. (1999). The 

nomenclature conforms to Fensome et al. (1998) and Fensome and Williams (2004), and 

dinocyst assemblages were described by the percentages of each species calculated on the 

basis of the total dinocyst sum including unidentified taxa and excluding pre-Quaternary 

specimens. Palynomorph absolute concentrations (number of dinocysts/cm3) were 

calculated using the marker grain method (Stockmarr, 1971; de Vernal et al., 1999; Mertens 

et al., 2009). 

A composite sequence was built (for what we have called the "SHACK area", i.e. green circle 

on Figure 1) using relative abundances of dinocysts from the twin cores SU81-18 (MIS 1 to 
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2), MD95-2042 (MIS 2 to 6) and IODP 339 Site U1385 (MIS 11 and 19, "Shackleton site" sensu 

Hoddel et al., 2013a). A Principal component analysis (PCA) was applied to this raw data set 

(non- transformed relative abundances) using the XLSTAT software (XLSTAT Version 

2015.4.01.19992 @Addinsoft 1995-2015, http://www.xlstat.com/en/). The training dataset 

and the PCA results can be downloaded on line as Supplementary information (SI). 

Additionally, some coherency tests were done using the XLSTAT and PAST (Hammer et al., 

2001) softwares for the comparison of thermophilous indexes derived from pollen 

(Mediterranean forest) and from dinocysts. Two indexes were used for dinocysts: (a) the 

warm Impagidinium sum: ΣWImpagidinium, cumulating relative abundances of the 

tropical/subtropical I. patulum and I. aculeatum species and of the subtropical/temperate I. 

paradoxum and I. sphaericum species; (b) the warm/ cold dinocyst ratio as defined in 

Combourieu-Nebout et al. (1999), i.e. [ W/(W+C)] , where (W) cumulates warm-water 

indicator species: i.e. Spiniferites mirabilis s.l. (= S. mirabilis + S. hyperacanthus), 

Selenopemphix nephroides, Impagidinium patulum, Impagidinium strialatum, 

Operculodinium israelianum, Spiniferites delicatus, and Spiniferites membranaceus, excluding 

Operculodinium centrocarpum considered to be too ubiquitous, whereas (C) gathers cold-

water indicators, namely: Nematosphaeropsis labyrinthus, Bitectatodinium tepikiense, 

Spiniferites elongatus, Impagidinium pallidum, Pentapharsodinium dalei and Islandinium 

minutum. 

 

4. Trends and common features in dinocyst communities during 

climatic optima and their transitions  
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For the following discussion, we consider the main features detected in the assemblages 

over time. Our interpretations are based on dominant dinocyst species and also, in some 

cases, on biostratigraphically significant ones. A detailed picture of selected significant 

dinocyst species is provided for the SHACK area (MD95-2042/SU81-18 and IODP 339; Figure 

2) since MIS 11 (from 410-384 ka) and MIS 19 (788-749 ka) analyses constitute new dinocyst 

results for this area. 

The compilation made for the Southern Iberian margin is mainly based on the comparison of 

three specific/index groups, that dominate alternatively dinocyst assemblages and showed a 

sensitive response to climate shifts through time (Figure 3): i) heterotrophic taxa (sum 

established after the taxa list of Marret and Zonneveld, 2003), ii) warm Impagidinium species 

(sum of subtropical I. patulum and I. aculeatum species, also grouped with temperate I. 

paradoxum and I. sphaericum species), and iii) the species L. machaeorophorum.  

In the SHACK area, autotrophic taxa are marked by the dominance of well-known temperate 

to cosmopolite species: Lingulodinium machaeorophorum, Nematosphaeropsis labyrinthus, 

Operculodinium centrocarpum sensu Wall and Dale (1966), cysts of Pentapharsodinium dalei 

together with numerous species from the Spiniferites group, including S. mirabilis s. l. and S 

ramosus s. s. (Figure 2). Heterotrophic dinocysts are mainly represented by Brigantedinium 

species (B. cariacoense and B. simplex included) together with Peridinioid taxa such as 

Selenopemphix quanta or Selenopemphix nephroides (Plate 1). In this group, it is worth 

noting the common occurrence of cysts of Protoperidinium stellatum, which will herein be 

refer to the usual binomial name "Stelladinium stellatum" (Plate 1) for practical reasons and 

in order to be consistent with reference recent works (e.g. Zonneveld et al., 2013) and with 

the Sprangers et al. (2004) dinocyst inventory study from modern sediments of the Iberian 
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margin. In the MIS 19 section of IODP339 1385, S. stellatum abundances reach up to 7% of 

the total dinocyst assemblage (Figure 2), while this taxa was not observed in any of the most 

recent interglacials MIS 11, 5 and 1 from the twin cores MD95-2042 and SU81-18 (Eynaud, 

1999; Turon et al., 2003). A similar assemblage pattern was also observed for the Alboran 

site ODP976 over a longer time scale (see Fig.2 in Combourieu-Nebout et al., 1999), with also 

an almost disappearance of S. stellatum for time periods following the Mid-Brunhes Event 

(MBE). On the basis of our compilation, the highest occurrences of S. stellatum observed 

during MIS 19 (between roughly 750 and 800 ka BP) could thus sign a specific 

biostratigraphic event. At present, this species is characteristic of hypertrophic environments 

and was used as a marker of eutrophication in historical times (e.g. Shin et al., 2010 in the 

East China and Japan seas; Zonneveld et al., 2012 in the Adriatic and Ionan seas). 

Furthermore, on the basis of sediment trap analyses from the Mauritanian upwelling zone, 

Zonneveld et al. (2010) related the ecology of S. stellatum and its seasonal dynamics to those 

of L. machaeorophorum. It has also been described from modern sediments of the Gulf of 

Mexico (Limoges et al., 2013), in Brittany Bays (Larrazabal et al., 1990), and identified as a 

potential proxy of sea-level rise over the last glacial-interglacial period by marked increases 

of this species detected at 16 ka BP in near-equatorial latitudes of the Western African 

margin (Hardy et al., in prep). 

Among the Spiniferites species, S. ramosus and the rare taxa S. rubinus (e.g. Harland, 1992; 

Head et al., 1996) also display noticeable biostratigraphic trends in relation to MIS 19: 

Between 750 and 800 ka, S. ramosus shows percentages two times higher than modern 

values recorded in the area (e.g. Rochon et al., 1999), and then shows a progressive decline 

until present (Figure 2 and 4). S. rubinus appears as specifically related to the beginning of 

MIS 19. Their cumulative abundances reached up to 30% of the assemblage at 784 ka.  
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4.1. L. machaeorophorum and heterotrophic dinocysts: when past data put 

to test modern ecology knowledge 

 

Figure 3a provides an integrated peri-Iberian picture of dinocyst specific changes that 

occurred during interglacials and subsequent glacials in order to identify coherent ecological 

adaptations of this group through time. Climate changes are illustrated in parallel through 

planktonic 18O signals obtained on the same cores (when available), the global LR04 benthic 

stack (Lisiecki and Raymo, 2005), and summer insolation values at 65°N (Berger and Loutre, 

1991). 

 

Especially obvious in all studied records is the opposition observed between the occurrence 

of heterotrophic dinocysts and L. machaeorophorum, which seem to exclude each other. 

Except during MIS 1, these two species show opposite patterns with the expansion of 

heterotrophic species during cold periods (percentages ≥ 80% reached during the last glacial) 

and of L. machaeorophorum during transitional periods (comparable high near monospecific 

values only recorded during glacial inceptions). This is especially evident for MIS 19, 11 and 5 

but should be shaded for MIS 1 where the L. machaerophorum high abundances occur early 

just after the Termination I. The species L. machaerophorum (related to the motile 

dinoflagellate Lingulodinium polyedrum) is a widely distributed dinocyst (e.g. Rochon et al., 

1999) but is especially concentrated today in coastal/neritic sediments around the Gibraltar 

strait (Williams, 1971; Marret and Zonneveld, 2003; Zonneveld et al., 2013; Penaud et al., in 

prep). This local high occurrence is particularly interesting as this species could then be used 

as a peculiar taxa index for the present study. L. machaerophorum also colonizes estuarine 
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environments (Morzadec-Kerfourn, 1977, 1992) and is frequently associated with eutrophic 

areas (fjords especially, e.g. Sætre et al., 1997, Dale et al., 1999, but not restrictively e.g. 

Zonneveld et al., 2012). As such, Leroy et al. (2013) recently considered its highest 

occurrences in the Caspian Sea as a biostratigraphical marker for the Anthropocene. Finally, 

it was interpreted as a proxy for past huge river discharges into the Ocean (Zaragosi et al., 

2001; Eynaud et al., 2007; Penaud et al., in prep) and even considered as allochtonous in 

marine waters by Turon and Londeix (1988). Blooms of its motile form can be responsible for 

toxic red tides (Moorthi et al., 2006) and some culture experiments demonstrated that this 

species is highly sensitive to the water column stratification (Thomas and Gibson, 1990; 

1992).  

At present, L. machaerophorum distribution in modern sediments matches fairly well with 

the distribution of heterotrophic species, with high abundances preferentially found in 

coastal regions and close to upwelling cells (e.g. Zonneveld et al., 2013). It questions the 

observed patterns in our records where these species rather seem to oppose: (1) are they 

related to nuanced ecological patterns such as seasonality, i.e. shifts from permanent to 

seasonal upwelling regimes (or vice-versa) which could have induced major changes in 

dinocyst communities, or (2) are they due to preservation and/or cyst transportation 

changes along time? Preservation is especially a critical issue as dinocyst species are not 

equally impacted by oxydation in the water-column and after deposition (e.g. Zonneveld et 

al., 1997, 2012; Zonneveld and Brummer, 2000; Bogus et al., 2012): some of them being very 

sensitive to water oxygen concentrations and thus water sources and dynamics. It is 

generally accepted that brown cysts, mainly produced by heterotrophic dinoflagellates (i.e. 

Protoperidinium) are more sensitive to aerobic degradation than Gonyaulacoid derived cysts 

(e.g. Dale, 1976). Among our index taxa for this comparative study, L. machaerophorum and 
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warm Impagidinium species are respectively classified as moderately sensitive and resistant 

to oxygen availability in bottom waters (de Vernal and Marret, 2007).  

Does the observed pattern thus signify a difference in bottom water-mass properties (and 

thus circulation) rather than a sea-surface productivity change, or is it a combination of both 

processes? In our study, the inter-basin comparison can provide some clues to solve this 

question, as the opposition between heterotroph cysts and L. machaerophorum are 

systematically observed whatever the considered period and basin. Such a coherent pattern 

suggests a similar way of cyst production and/or preservation despite distinct local surface 

and bottom conditions. It is highly improbable that interglacial/ glacial changes cancelled 

these hydrographical differences since dinocyst population changes are not perfectly 

synchronized between the two basins, thus also underlining their own specificities through 

time. Therefore, the alternative solution would be to consider that the observed downcore 

antiphase between heterotroph cysts and L. machaerophorum is not a matter of post-

production/preservation biases. Then, how to reconcile quite similar modern biogeographies 

which, in past times, seemed to exclude each other? Modern L. machaerophorum ecological 

requirements are still far from being correctly identified and this species may represent 

simply an opportunistic species. Interestingly, L. machaerophorum dynamics observed from 

our compilation (Figure 3) reveals that this species follows or precedes maximal expansion of 

warm sea-surface taxa during interglacial optima. This shift is then discussed below. 

 

4.2. Warm Impagidinium species along interglacials: what do they reveal? 
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In this study, the probable most significant dinocyst assemblage we retained is the one 

associated with Impagidinium. These typical oceanic taxa, often thermophilous, are among 

the common dinocysts found in the area (e.g., Turon et al., 2003; Penaud et al., 2011). For 

this work, we have lumped together abundances of warm Impagidinium (ΣWImpagidinium) to 

define a specific index of warm sea-surface conditions ,for which we have tested coherency 

through time and from one basin to another (Figure 3 and 4, see also SI for further details 

regarding  this group). At present, maximum abundances of these species are recorded in 

sediments of the equatorial Atlantic Ocean with a preference for full marine waters 

(Zonneveld et al., 2013). In the studied records, highest ΣWImpagidinium values (i.e. >10%) are 

associated with the onset of warm conditions during climatic optima (as defined from low 

isotopic values plateau, Figure 3a). Their expansion is noticeable during short periods only, 

of maximum duration of 10 ka, in close phasing with negative shifts in the planktonic 18O 

signal. They seem specifically to mark post-glacial warm conditions rather than hypsithermal 

periods (Figure 3). The relative short duration of expansion of these warm Impagidinium is 

easily explained by competition stress with other thermophilous taxa such as S. mirabilis (see 

Turon and Londeix, 1988; Eynaud et al. 2000, Penaud et al., 2008, 2011 for discussions). It 

could also typify a peculiar ecological strategy as a pioneer group and/or as accompanying a 

change in the oceanic circulation as it was already suggested by Londeix et al. (2007). 

For MIS 5, ΣWImpagidinium increases parallel the three isotopic sub-stage lightening and 

coincide well with insolation maxima (pink bands on Figure 3a). When comparing the 

intrinsic dynamics of each interglacial optima in the SHACK area (Figure 3b) by synchronizing 

Terminations (here Terminations I, II and IX after Lisiecki and Raymo, 2005), and despite 

differences in temporal resolution analysis, trends in the ΣWImpagidinium show similar pacing 
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along interglacials. This is especially obvious for peaks observed just after Terminations and 

for the glacial inception following interglacial optima.  

Furthermore, the multi-phased interglacial complexes MIS 19 and MIS 5 are also well 

reflected in the ΣWImpagidinium evolution. Amplitudes for MIS 1 (green curve; Figure 3b) are 

noticeably largest than those of previous warm MIS (blue and red curves; Figure 3b), 

probably resulting from a major dinocyst community change through time, implying a 

growing presence of Impagidinium species associated with a synchronous general decline of 

Spiniferites species (as previously pointed out). 

 

Figure 4 synthesizes the most salient features provided by dinocysts and pollen (here the 

Mediterranean forest) for a composite sequence consisting of cores SU81-18 (e.g. Turon et 

al., 2003), MD95-2042 (e.g. Eynaud et al. 2000; Shackleton et al., 2003) and IODP 339 1385 

(this work, Sànchez-Goni et al., this volume). Additionally we plotted alkenone-derived SST 

from core MD95-2042 (MIS 1 and 5 sections after Pailler and Bard, 2002) and from the 

proximal core MD01-2443 (MIS 11 section after Martrat et al., 2007). Percentages of the 

polar taxa Neogloboquadrina pachyderma sinistral (Nps) are also shown (from core SU81-18 

MIS 1 after Turon et al., 2003, for core MD95-2042 MIS 5 after Sànchez-Goñi et al., 2006; for 

core MD01-2443 MIS 11 after Voelker and de Abreu, 2011). This data set is also compared to 

the Marine 18O stack LR04 (Lisiecki and Raymo, 2005) and to summer insolation at 65°N 

(Berger and Loutre, 1991). Periods of maximum values of ΣWImpagidinium are marked by pink 

bands. They provide evidence of discrete warming episodes that took place near 

Terminations I, II and IX, that we can also directly compare with synchronous proximal 

continental responses regarding Mediterranean forest evolution. From this compilation, sea-
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surface warming events appear synchronous with warming detected on land at millennial 

scales. A test of correlation was done to check this synchronicity giving a r2 of 0.270 (results 

obtained with the Past software, see SI). The reader should keep in mind that pollen and 

dinocyst preparations are observed from same slides, coming from identical laboratory 

procedures, thus implying no artefact when correlating palynological ocean-continent data. 

Such a result confirms previous observations made for MIS 5 and 3 on the same site 

(Sànchez-Goñi et al., 1999, 2000; Eynaud et al., 2000) and permits us here to confirm and 

extend the continental / ocean relationship up to 800 ka. 

In contrast to ΣWImpagidinium, high abundances of Bitectatodinium tepikiense are observed 

during cold phases, also characterized by high Nps percentages. A strong representation of 

B. tepikiense is especially noticeable during cold MIS 5 interglacial substages. Cold phases are 

also marked by high absolute abundances of dinocysts (i.e. concentrations in nb of cysts /dry 

cm3) in sediments. These high concentrations were already noted by several authors on this 

margin during cold climatic events (e.g. Zippi, 1992; Eynaud, 1999; Eynaud et al., 2009; 

Penaud et al., 2010; 2011) and interpreted as representing changes in the local upwelling 

dynamics (from seasonal to year-round) in response to atmospheric re-organisations. This 

interpretation was based on the distribution of modern dinocyst concentrations in the 

sediments from the proximal North Canary Basin, which show high dinocyst concentrations 

within zones marking upwelling filaments (e.g. Targarona et al., 1999; Bouimetarhan et al., 

2009b). Conversely, on the SW Iberian Margin (Figure 1), Zippi (1992) noted an opposite 

relation between carbonate content and dinocyst concentrations in the sediment and 

attributed that observation to the preferential dissolution of carbonate under cold climate 

(and thus the artificial increase of cysts) in concordance to a high index of fragmentations of 

planktonic foraminifera shells. However, Zippi (1992) did not introduce any consideration 
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about the paleoproductivity issue. Indeed, for calcareous (foraminifera) as well as for 

organic-walled (dinocysts) material, the residual concentration of microfossils in sediments is 

the result of a complex balance between production, dissolution and preservation. Thanks to 

the close correlation made in this study between marine and pollen data, we directly 

attribute the modulation of dinocyst concentrations to climate. 

 

5. The significance of population shifts: from ecology to oceanic 

circulation patterns  
 

The dinocyst compilation made in this study provides important biodiversity information 

that could be tied to changes in the local and/or regional hydrographical dynamics in 

response to climate changes. Population shifts occur repetitively and coherently through 

time with some index groups that could be used to evaluate the adaptation capability of the 

marine flora. They illustrate a constant population interchange between the western 

Mediterranean and the subtropical North Atlantic despite sea-level changes and the 

temporal physiographic barrier of the Strait of Gilbraltar, which should have reduced water 

exchanges during low sea-levels of the last million years. These latter processes have had 

important echoes on planktonic populations, as demonstrated by Rohling et al (1995) for 

planktonic foraminifera, something also detected with some dinocyst key taxa. 

Strong modulations of the MOW have already been pointed out by several studies for the 

last glacial (e.g. Cacho et al., 2000; Voelker et al., 2006; Rogerson et al., 2010), showing an 

acceleration of the outflow during cold phases. Their impact on the distribution of 

dinoflagellate and their cysts has certainly been important. A southward migration of 
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biogeographical provinces in the North Atlantic and even the invasion of the Alboran Sea 

waters by B. tepikiense from where this species is absent at present (Turon and Londeix, 

1988; Combourieu-Nebout et al., 2002; Penaud et al., 2011; Figure 3) have been observed 

concomitantly. This invasion, in a configuration of accelerated MOW, attests to an extensive 

North Atlantic intrusion in the Alboran Sea, probably as a way to compensate the MOW 

export and its associated deficit. This thus supposes vigorous Atlantic/Mediterranean 

exchanges at those times and thus enhanced exportation/importation of cysts. 

Cold sub-stages within interglacial complexes (MIS 19 and 5) demonstrate the same biotic 

pattern with also high occurrences of B. tepikiense (this work, Combourieu Nebout et al., 

1999; Eynaud et al., 2000). The context is however different here even if some analoguous 

hydrographical mechanisms could be at play, i.e. due to acceleration of the MOW also, but in 

this case rather forced by a reduction of the Gibraltar strait section during cold sub-stages 

and associated sea-level low stands (the reader should keep in mind that at the opposite HEs 

record a rising sea-level with an estimated magnitude of up to 30 m, e.g Siddal et al., 2003). 

The synchronous regression of warm species and of L. machaerophorum furthermore 

documents a severe cooling and a major change of the water column stability; a vital 

requirement for this later species as deduced from culture (e.g. Thomas and Gibson, 1990). 

Turbulence at the Gibraltar strait due to the acceleration of currents, thus preventing a soft 

settling of cysts and inhibiting a complete life cycle, could explain the L. machaerophorum 

disappearance. This turbulence could be amplified by atmospheric processes, i.e. winds, the 

regression of the Mediterranean forest on Iberia being also noticed (Figure 3). 

The past population shifts observed in this part of the sub-tropical North-Atlantic provide 

some new insights regarding the known modern ecology and biogeography of cysts and their 
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related theca (i.e. Marret and Zonneveld, 2003, de Vernal and Marret, 2007). They show a 

strong potential for dinoflagellates to adapt, even when facing abrupt ecological changes. 

Two taxa would especially be considered as super-adapted to transient periods: one is a 

common typical cyst from the studied area, L. machaerophorum; the other, B. tepikiense, is a 

taxa rather distributed in the cool temperate Atlantic but especially adapted to strong 

seasonality (i.e. cold winters and warm summers), as those which characterize waters from 

the St Laurent outlet at present (e.g. Rochon et al., 1999). These two species are found at 

the transition boundaries of interglacial optima and could thus be qualified of opportunistic, 

as conditions accompanying transition phases (glacial inception and termination) are 

especially unstable and contrast with the relative equilibrium of warm optima. However the 

local high occurrence of L. machaerophorum rather argues for a pre-adaptation to the sea-

surface conditions surrounding the Gibraltar strait. Conversely, its presence with nearly 

mono-specific abundances in the modern sediments from the Iberian and North Canary 

regions since 5 ka at least (Figure 2) questions the hydrographic and associated climatic 

modes of the last millennia. When comparing its specific dynamics during previous 

interglacials, this species does not mark hypsithermal modes but rather cooler conditions. 

This supports previous findings showing that modern conditions around Iberia already 

shifted toward a late Holocene Neoglacial state (e.g. Jerardino, 1995). For the Atlantic side, it 

seems to have already implied changes in the seasonality of the modern Canary Current 

upwelling (e.g. Abrantes et al., 2011; Mc Gregor et al., 2007; Bouimetarhan et al., 2009a). 
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6. The nine past and current interglacials: new insights from 

dinocyst data of the "Shackleton" site 

Even if not continuous, the dinocyst data produced for this compilation gathering cores from 

the SHACK area (Figure 1) offer the possibility to test the significance of this phyto-

planktonic population regarding long term records over the last 800 ka. The purpose of our 

approach was to test interglacial periods in low eccentricity contexts first, explaining why, up 

to date, our focus and records are thus restricted to some snapshots. To present a 

comprehensive view of these results and simplify the message brought by dinocyst 

assemblages, we ran a PCA on the composite "SHACK" sequence (SU81-18 /MD95-2042 

/IODP339 U1385, see methods and SI). The coordinates of the first three axis obtained from 

this PCA are plotted along time on Figure 5 and compared to selected 800 ka-long-sequences 

of interest, along with the [W(/(C+W)] dinocyst ratio for the SHACK area and for the Alboran 

ODP976 record which, even if of lowest resolution, encompasses the last 810 ka 

(Combourieu-Nebout et al., 1999). A schematic index reflecting qualitatively the Aguhlas 

linkage dynamics (as redrawn from Caley et al. 2012) is also plotted to further document 

inter-oceanic exchanges.  

This comparison reveals very distinctive patterns and specific signatures (Figure 5 and SI) for 

each of the first three PCA-axis (these 3 axis representing nearly 30% of the total variance, 

see methods and the excel file provided in SI for detailed results of the PCA). These 

signatures could be summarized as follow: (a) a first axis F1 (13.6 % of the total variance), 

positively related to warm eutrophic species but negatively related to cold eutrophic ones 

(see species/ variables distribution in SI), thus bearing the double and coupled 

environmental signal of SST and upwelling dynamics. Considering a paleoceanographic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

21 
 

perspective, this axis clearly relates to global changes as seen throughout the (ice-volume/ 

sea-level linked) LR04 record and the CO2 atmospheric content.  

(b) a second axis F2 (7.65 % of the total variance), also bearing a strong SST/ upwelling 

signature but for which species positively correlated to, are representative of the typical 

Iberian margin modern dinocyst assemblage (i.e. Sprangers et al, 2004). Its time distribution 

shows a close matching with the Ca content (vs terrigeneous components) of marine 

sediments from the subtropical North Atlantic western margin as derived from XRF data, 

both for the same "Shackleton site" (Log (Ti/ Ca) from Hoddel et al., 2013a and b) and from 

the southern core MD03-2705 (Malaizé et al., 2012).  

(c) a third axis F3 (7.33% of the total variance), which plainly separates autotrophic from 

heterotrophic dinocyst species, and is interestingly closely mirroring the monsoon index 

along time (after the stack produced by Clemens et al., 2008).  

From this 810 ka long perspective, arise some noticeable points which shed light on the high 

sensitivity of dinocyst communities regarding climate changes. First of all, it is worth noting 

the good reproducibility of the [W(/(C+W)] ratio at the regional scale except during MIS 19 

where the "Shackleton site" reveals much more contrasted responses. Differences in time 

resolution are at the origin of this discrepancy but other evidences are brought by the PCA 

that this MIS 19 interval is clearly atypical. This is well expressed in the F1 component which 

registers large and sharp amplitude shifts (not seen later in the Pleistocene neither in the 

Holocene) and additionally shows poor matching with other 810 ka records as plotted on 

Figure 5. Conversely, F2 and F3 during MIS 19 closely mirror the Ca sedimentary content and 

the monsoon index respectively, recording synchronous and consistent transitions, thus 

suggesting that the message brought by dinocyst populations from the Iberian margin is 

however comprehensive enough to be assimilated to large scale environmental changes 
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over the last 810 ka. The link between the Ca content and PCA axis 2 is easily understandable 

at the scale of the North Atlantic basin (including its marginal seas) as it reflects mainly 

biogenic carbonate content and thus the pelagic production, well known to be favoured, 

during warm periods (e.g. Chapman and Shackleton, 1997; Richter et al., 2007; Hodell et al., 

2013b). In the same way, consistency between the stacked monsoon index vs the PCA axis 3 

could be explained by the fact that this axis is mainly representing the weight of autotrophic 

species which thereby need sea-surface fertilisation and thus dust arrival to proliferate. 

Most problematic is the signal detected with the PCA axis 1 during MIS 19, which if it does 

echo the [W(/(C+W)] ratio and the Ca content within the "Shackleton site", is not completely 

attributable to long term and global trends as stated previously. Is this difference related to 

the specific assemblage we encountered during MIS 19, with the occurrence of atypical 

species such as S. stellatum and S. rubinus, and the high percentages of S. ramosus as 

previously underlined? Could the drastic climatic transitions occurring between MIS 19 and 

modern times, i.e. the MPT and the MBE, have impacted dinocyst population of this area so 

significantly? This is highly possible, as these two climatic temporal nodes are known to sign 

major oceanic reorganisations, with especially a strong impact on the Atlantic meridional 

oceanic circulation (e.g. Poirier and Billups, 2014; Bell et al.,2015), a key component for the 

Iberian margin oceanography and its associated upwelling dynamics. To valid such an 

assumption we urgently need to further extend our record up and back in time, putting a 

focus not only on past interglacials but also on glacials, including the atypical MIS 13 and MIS 

6 ones, so as to detect an optimal set of contrasted features. 

 

7. Conclusions 
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This study was designed to provide new biogeographical and stratigraphical patterns for the 

Iberian margin by compiling micropaleontological records derived from the study of 

dinoflagellate cysts during past interglacials. This effort has revealed that surface waters 

around Iberia were characterised over the last million years by the repetitive occurrence of 

the same dinocyst assemblage; however, some discrepancies in the response of this marine 

protist community shade its adaption to glacial and interglacial cycles. Very coherent 

features occur on both sides of the Gibraltar strait indicating a constant interchange of 

populations and a permanent connection between Atlantic and Mediterranean marine 

biomes, even during sea-level low stands. Regarding dinocysts, this interchange is easily 

attributed to sea-surface water exchanges, but the Mediterranean Outflow Waters could 

also be considered as a vector of settled cysts. Some index groups could be used to evaluate 

the adaptation capability and the dynamics of the marine dinoflagellate flora, especially the 

autotrophic cysts: Lingulodinium machaerophorum, Bitectatodinium tepikiense, together 

with some species from the Spiniferites and the Impagidinium groups, which swing with 

heterotrophic dinocysts along time. Changes detected in the dinocyst community appeared 

to be coherent at sub-orbital and orbital scales with those detected with other sea-surface 

proxies and continental bio-indicators (pollen), demonstrating a close connection between 

sea-surface environments and the Iberian continent over the last 800 ka. 
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Table caption 
 

Table 1: key information regarding the set of cores used for this study.  
 

Core Latitude Longitude 
Water 

depth (m) 

Marine 
isotopic 

stage 
References, Datasources 

IODP339 1385 
D10H 

37.8 -10.02 3146 11, 19 This work, Oliviera, Sanchez-Goni, in prep. 

SU81-18 37.77 -10.18 3155 1 Le Coeur, L., unpublished; Turon et al., 2003 

ODP976 36.20 -4.30 1108 
1, 5, 11, 

19 
Combourieu Nebout et al., 1999; 2002; Levi C., 
unpublished; Rattinacannou J.-E., unpublished 

MD95-2042 37.80 -10.17 3146 3, 5 Eynaud, 1999 ; Eynaud et al., 2000 

MD95-2043 36.14 -2.62 1841 1,3 Rouis-Zargouni, 2010, Penaud, 2009 

MD99-2339 35.89 -7.53 1177 1 Penaud, 2009, Penaud et al., 2011 

MD04-2805CQ 34.52 -7.02 859 1 Penaud et al., 2010 

 

Table 1
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Figure / plate caption 
 

Figure 1: (a) location of the cores of interest (IODP 339 U1385, SU81-18, MD95-2042, MD99-

2339, MD04-2805CQ) with a sketch of the modern sea-surface hydrological dynamics (main 

currents, PC = Portugal current, CC = Canary current, NAD = North Atlantic drift); (b) detailed 

view of the modern surface dynamic structures, with: IPC: Iberian Poleward Current, AC: 

Azores Current, WIWF: Western Iberia Winter Front, after Peliz et al. (2005); and WAG: 

Western Alboran Gyre, EAG: Eastern Alboran Gyre, AOF: Almería-Oran Front after Hauschildt 

et al. (1999). 

Green empty circle: "SHACK area" identifying the location of twin and/or proximal cores (i.e. 

SU81-18/ MD95-2042) of the "Shackleton site" - IODP 339 U1385. 

 

Figure 2: Main dinocyst taxa shifts (relative abundances) over the "SHACK area" for the last 

one million years as depicted by a composite sequence consisting of interglacials from cores 

SU81-18 (e.g. Turon et al. 2003), MD95-2042 (e.g. Eynaud 1999; Eynaud et al. 2000) and 

IODP 339 U1385 (this work). Full interglacial conditions are highlighted by pink bands for 

LR04 Benthic 18O stack (Lisiecki and Raymo, 2005) values under 4 ‰. 

 

Figure 3: (a) Comparison of interglacial signals along time and space of some selected 

dinocyst groups and species plotted versus isotopic 18O data of the respective cores, the 

LR04 Benthic 18O stack (Lisiecki and Raymo, 2005) and the 65°N summer insolation data 

(Berger and Loutre, 1991; pink band locate insolation values ≥ 450 W.m-2). Mid-Brunhes 

Event (MBE) after Candy et al., 2010. 

% L.mac. = relative abundances, i.e. percentages of Lingulodinium machaerophorum; Σ 

heterotr. dino. = sum of the relative abundances of heterotrophic dinocysts (taxa list after 

Marret and Zonneveld, 2003); Σ W. Impagidinium = sum of the relative abundances of the 
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warm Impagidinium : I. patulum, I. paradoxum, I. aculeatum and I. sphaericum). Yelow bands 

locate the Σ W. Impagidinium maxima on the "SHACK area".  

(b) synchronisation of the Σ W. Impagidinium signals from cores SU81-18 (e.g. Turon et al. 

2003) , MD95-2042 (e.g. Eynaud 1999; Sànchez-Goñi et al., 1999; Eynaud et al. 2000; 

Sànchez-Goñi et al., 2008) and IODP 339 U1385 (this work) over Terminations 1, 2 and 9 in 

concordance with the LR04 Benthic 18O stack (Lisiecki and Raymo, 2005). Note the good 

coherency of dinocyst derived data (suborbital events included) along comparable sections. 

 

Figure 4: Sea-surface key proxies (from dinocysts, foraminifera and alkenones) compared to 

continental ones (Mediterranean forest) over a composite sequence gathering data from 

cores SU81-18 (e.g. Le Coeur, 1993, Turon et al., 2003), MD95-2042 (e.g. Sanchez-Goñi et al., 

1999; Eynaud et al., 2000; Sanchez-Goñi et al., 2008) and IODP 339 1385 (this work, Sanchez-

Goni et al., in progress, Oliviera et al., in progress). Derived SST from alkenone data: for MIS 

1 and 5 from core MD95-2042 after Pailler and Bard (2002), for core MD01-2443 after 

Martrat et al. (2007). Percentages of the polar taxa Neogloboquadrina pachyderma sinistral 

(Nps) after Turon et al; (2003) for core SU81-18, after Sanchez-Goni et al., (2006) for core 

MD95-2042 and after Voelker and de Abreu (2011) for core MD01-2443. Marine isotopic 

stage limits after Lisiecki & Raymo (2005). Note the progressive regression of the S. ramosus 

through time. 

 

Figure 5: Compilation of some archives of interest along the last 810 ka with: (a) Eccentricity 

cycles (after Berger & Loutre, 1991),(b) LR04 Benthic 18O stack (Lisiecki and Raymo, 2005), 

(c) CO2 data (ppmv) compiled from Antarctic Ice Cores (from 

http://ncdc.noaa.gov/paleo/study/17975), (d) IODP339 U1385 XRF data Log (Ca/Ti) after 

Hoddel et al. (2013), (e) Dust content in the marine core MD03-2705 (terrigeneous content 

100% - CaCO3) after Malaizé et al. (2012), (f) Mean Grain Size (normalized) after Clemens et 

al. (2008), (g) periods of strong Aguhlas linkage (adapted from Caley et al., 2012). These 

sequences are compared to (h) the dinocyst W/(W+C) ratio from the Alboran ODP976 site 

and from the "SHACK" area (SU81-18 / MD95-2042 and IODP 339 U1385), together with the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

46 
 

PCA analysis results of this composite dinocyst record (see methods) as seen throughout the 

first 3 components (from F1 (i) to F3 (k), representing 30% of the total variance). 

 

Plate 1: Some common specimens from IODP 339 1385 (HoleD). Scale bar = 50 µm. (a) 

Impagidinium patulum; (b, h) Selenopemphix nephroides; (c) Spiniferites membranaceus; (d) 

Stelladinium stellatum; (e) Spiniferites lazus; (f) Brigantedinium carioense; (g) Impagidinium 

aculeatum.  
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Figure 1 
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Figure 2 
 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

49 
 

Figure 3 
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Figure 4 
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Figure 5 
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Plate 1 
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Highlights 

 

Southern Iberian margin dinocysts are studied from long sedimentary records (including IODP site 

U1385)  

 

Evolution of dinocyst populations is analyzed over the last 800 ka focusing on past interglacials 

 

Coherent and reproducible patterns are detected within dominant cyst species on long term trends 

 

Mediterranean /Atlantic exchanges are illustrated based on the comparison of inter-basin 

populations 

 

 




