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Abstract : 
 
Marine research survey data on fish stocks often show a small proportion of very high-density values, 
as for many environmental data. This makes the estimation of second-order statistics, such as the 
variance and the variogram, non-robust. The high fish density values are generated by fish aggregative 
behaviour, which may vary greatly at small scale in time and space. The high values are thus 
imprecisely known, both in their spatial occurrence and order of magnitude. To map such data, three 
indicator-based geostatistical methods were considered, the top-cut model, min–max autocorrelation 
factors (MAF) of indicators, and multiple indicator kriging. In the top-cut and MAF approaches, the 
variable is decomposed into components and the most continuous ones (those corresponding to the low 
and medium values) are used to guide the mapping. The methods are proposed as alternatives to 
ordinary kriging when the variogram is difficult to estimate. The methods are detailed and applied on a 
spatial data set of anchovy densities derived from a typical fish stock acoustic survey performed in the 
Bay of Biscay, which show a few high-density values distributed in small spatial patches and also as 
solitary events. The model performances are analyzed by cross-validating the data and comparing the 
kriged maps. Results are compared to ordinary kriging as a base case. The top-cut model had the best 
cross-validation performance. The indicator-based models allowed mapping high-value areas with small 
spatial extent, in contrast to ordinary kriging. Practical guidelines for implementing the indicator-based 
methods are provided. 
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1 INTRODUCTION 

Spatial data of natural resources or pollutants often show a small percentage of very high 

concentration values. This makes the inference of second-order statistics non-robust and in 

particular the variogram (Rivoirard et al. 2013). In fisheries survey data, high-density values 

often result from the fish aggregative and schooling behaviour (Fréon and Misund 1999). The 

aggregation dynamics occurs at a small temporal scale that the spatial survey design cannot 

resolve as it is designed to survey large marine areas without stopping.  Thus the large data 

values seem to occur at random in space. When the distribution of the data is heavily skewed 

a usual solution is to transform the data into a better behaved, dome-shape distribution. The 

log transform is often considered. Yet lognormal kriging is known to be non-robust 

(Matheron 1974; Rivoirard 1990). Thus Guiblin et al. (1995) developed a back-transform 

equation to infer the variogram of the original data from that of the logged data and proceed 

with kriging the original data. Another solution could be transforming the data into a Gaussian 

distribution by normal score transforms (for treating the zero values, see Woillez et al. 2016), 

then performing conditional simulations and taking their average. But this remains 

complicated and makes a strong diffusion assumption in the spatial distribution when passing 

from low to high values (Matheron 1988). Another approach is to consider indicators and 

discretize the data. Bez and Braham (2014) discretized their data and co-kriged the 

corresponding indicators to map the occurrence probability of the different classes. Building 

on such an indicator approach, the objective of this study is to estimate the target variable 

using its indicators. For that, models with defined structural assumptions are considered as 

alternatives to ordinary kriging when the variogram is difficult to estimate. In the top-cut 

model (Rivoirard et al. 2013), values above a top-cut threshold have a behaviour which does 

not depend on lower values. This allows separating values above and below the top-cut. The 
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data are then mapped using co-kriging. Discretizing the target variable with multiple 

indicators over the full range of values was also investigated. Indicator kriging was applied, 

which is simple to implement but at the price of severe assumptions on the spatial structure. 

Another discrete model was considered, where the structure of the indicators is fully 

characterized and modeled. The method of min-max autocorrelation factors (MAF: Switzer 

and Green 1984) was applied to indicators. When the MAFs of indicators are spatially 

uncorrelated at all lags, they represent an empirical isofactorial model of the variable under 

study, which can then be mapped by kriging the MAFs separately. The objective of the paper 

is to compare three indicator-based models (indicator kriging, MAF, and top-cut models) 

together and with ordinary kriging. The models are applied to marine acoustic survey data 

acquired to assess the anchovy stock in the Bay of Biscay.  

The data show a high proportion of zero values and a small percentage of high values. The 

methods are proposed as simple solutions to mapping such data and the paper gives guidelines 

for their implementation and discusses hypotheses that are made on the spatial distribution 

when using them. All calculations were performed with the package RGeostats (Renard et al. 

2014) in the R environment (R Core Team 2016).  

 

2 METHODS  

2.1 Multiple indicator kriging 

The target variable Z(x) is discretized into p disjoint successive classes and is approximated 

by the discrete variable (x)Ẑ  defined by 
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where z0=0 and (z0<z1<z2<…<zp) is a set of cut-offs defining (p+1) classes, 
k

zZ(x)1 the 

indicator of being above cut-off zk and kz  the mean of Z(x) in class k.  
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In general, it is not equivalent to krige separately the indicators of disjoint classes or the 

indicators of cumulated classes above cut-offs. However, when making the rather severe 

assumption that all indicators have the same spatial structure, those are equivalent and result 

in the simplest form of multiple indicator kriging. Then kriging the indicators leads to kriging 

the discrete variable (x)Ẑ . Thus, the variogram of the discrete variable (x)Ẑ  was computed 

and (x)Ẑ was mapped by ordinary kriging. The approach approximates the continuous 

variable Z(x) as the intra-class variability is ignored.  

 

2.2 MAFs of indicators as an isofactorial model 

This approach is also a discrete approach where the discrete variable (x)Ẑ (see definition 

above) is considered in place of the continuous variable Z(x). Here the multivariate spatial 

structure of the indicators is analyzed and modeled with min/max autocorrelation factors 

(MAF: Switzer and Green 1984). MAFs were developed to filter out noise in multi-channel 

(multivariate) spatial image data. The method is based on principal components analysis 

(PCA). MAFs are designed to maximize the autocorrelation at a given lag  and thus extract 

the most continuous information from multivariate data. Consider a p-variable random field 

Z(x)=(Z1(x),…,Zp(x))’. The MAFs of Z(x) are obtained as follows:  

1. Transform with a first PCA the original data Z(x) into standardized principal components 

Y(x) with zero mean and unit variance.  

2.  Compute increments of these principal components for lag  Y(x)-Y(x+), and apply a 

PCA on their covariance matrix 

3. Re-order the principal components of this second PCA with eigenvalues in increasing 

order. The (re-ordered) principal components are the MAFs (x).  

By construction, the MAFs have zero mean and are uncorrelated at lag 0 and also at lag . 

The first MAF has the highest autocorrelation (smallest variogram value at lag ), the second 
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MAF the second highest and so one. In fisheries ecology, MAFs have been applied on 

multiple time series (Fujiwara 2008; Woillez et al. 2009) to extract the most continuous series 

and regroup series with common behaviors. Following Rivoirard et al. (2014), MAFs were 

used here in the two-dimensional geographical space to model and map the continuous 

variable Z(x) with a discrete approach. The target variable Z(x) was also discretized into p 

disjoint successive classes and the corresponding discrete variable )(ˆ xZ written as above 

(Sect. 2.1) 
pzxZp

+k
zZ(x)

k
zZ(x)

p
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The indicators of the (p+1) classes represent a multivariate data set, from which p MAFs were 

extracted. When the MAFs of indicators are spatially uncorrelated at all lags (not just at lags 0 

and , they form an empirical isofactorial decomposition of the discrete variable (Rivoirard 

et al. 2014) 


p

i

ii xc+m=(x)Z
1

)(ˆ  , where m=E[Z(x)] is the mean of Z(x), i(x) are the zero 

mean MAFs of indicators and ci are coefficients. The coefficients ci are derived from the 

relationships ])([)]()(ˆ[ 2xEcxxZE iii    as the MAFs i(x) and j(x) (i ≠ j)  are spatially 

uncorrelated.  

Kriging the discrete variable )(ˆ xZ  is then obtained by kriging the MAFs of indicators 

separately and by linearly combining the kriged estimates. Higher order MAFs showing pure 

nugget effects may be kriged or not (see below). Spatial uncorrelation between MAFs is 

checked by computing cross-variograms between them.  

 

2.3 Top-cut model 

Here, the discretization approach applies to high values only. In the top-cut model (Rivoirard 

et al. 2013) the target variable Z(x) is truncated at a defined sufficiently high threshold (the 

top-cut cut-off ze) and values above it are treated separately. Variable Z(x) is split into three 
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components, Z1(x) the truncated variable Z(x)^ze , Z2(x) the weighted indicator of the threshold 

(m(ze)-ze) 1{Z(x) ≥ze} and Z3(x) the residual Rze(x), which add  

Z(x) = Z(x)^ze + (m(ze)-ze)1{Z(x) ≥ ze} + Rze(x) . The truncated variable is Z(x)^ze= Z(x) if 

Z(x)<ze and ze otherwise. The indicator of the top-cut cut-off is 1{Z(x) ≥ ze}=0 if Z(x)<ze and 

1 otherwise. The mean of Z above the cut-off is m(ze) and therefore (m(ze)-ze)1{Z(x) ≥ ze} 

represents the mean excess variable (mean excess value times the indicator). And the residual 

Rze(x) = [Z(x) −m(ze)]1{Z(x) ≥ ze} represents the variability around the mean of Z when 

above ze.  

In this model, the truncated variable Z1(x) and the weighted indicator Z2(x) are spatially 

correlated. The residuals Z3(x) may show a spatial structure or not. The top-cut model 

considers that the residual Z3(x) is spatially uncorrelated with the truncated variable Z1(x) and 

the indicator Z2(x). Mapping Z(x) is then obtained by co-kriging the truncated variable Z1(x) 

and the weighted indicator Z2(x). The zero mean residual Z3(x) may be kriged and added to the 

other two components or not (see below). In this latter case high values are accounted for by 

the mean excess value (m(ze)-ze), a constant, which adds to the truncated variable but only in 

areas where the probability to exceed the threshold is high as defined by the estimation of the 

indicator 1{Z(x) ≥ ze}. The spatial structures necessary for mapping are the simple- and cross-

variograms of the truncated variable Z1(x) and the weighted indicator Z2(x), which are inferred 

without considering the variability in the very high values.  

The major assumption in the model is the absence of border effect in the spatial organization 

of the residual Z3(x) within the geometrical set defined by the indicator 1{Z(x) ≥ ze}. In other 

words, the residual values are located inside this set with no influence on the proximity of its 

borders. If there was a border effect, smaller values would be close to the borders and larger 

values in the center of the set, or vice versa. This can be analyzed using the ratio of the cross-

variogram between the residuals and the indicator divided by the variogram of the indicator 
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(Rivoirard et al. 1994, 2013). As a matter of fact, this variogram ratio measures the average 

value of (Z(x)- m(ze)) when entering the geometrical set defined by the indicator 1{Z(x) ≥ ze}. 

A flat ratio indicates an absence of border effect. In practice, the top-cut cut-off ze is chosen as 

the lowest cut-off starting from the high values for which the residual Z3(x) values do not 

exhibit any border effect within the geometrical set defined by the indicator.  

 

2.4 Kriging pure nugget components 

The top-cut and MAF models separate different components in the spatial distribution, some 

of which may be zero mean pure nugget effects. Should they be kriged? When kriging with 

the top-cut model, the kriged estimate of a block v0 is 

)(vZ+)(vZ+)(vZ=)(vZ
kckckktc

0302010 ,  

and its estimation variance  

)(vσ+)(vσ=)(vσ kckktc 0

2

3,0

2

21,0

2

 ,  

where ck stands for co-kriging, k for kriging and ktc for kriging with the top-cut model and 

where the numbers in subscript indicate the components of the model.  

Component Z3 (residuals) has zero mean by construction. If it corresponds to a pure nugget 

effect, one may wonder whether or not the component should be kriged. If kriging of Z3 is 

omitted, one considers that in the neighborhood of the block, the mean of Z3 is zero and thus 

assumes stationarity in the high values above the cut-off, which results in replacing them by 

their constant mean m(ze). This may be a strong hypothesis but it is also a practical one when 

high values are very imprecisely known. In that case, values above the top-cut cut-off are 

modeled by component Z2 only, that is, they are estimated by the probability of being above 

the cut-off (indicator) multiplied by a constant, the mean excess value. In this case, the nugget 

component does not contribute to the estimation variance of the block average 00

2

3, )(vσ k .  
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Alternatively, kriging Z3 will estimate local residual variations around the mean m(ze) in areas 

above the top-cut cut-off. One should, therefore, decide whether or not it is reasonable to 

represent such details because of the imprecise knowledge on the high values. When kriging 

the residuals, the corresponding estimation variance is )(/)var()( 030

2

3, vnZvk  , where n(v0) 

is the number of samples in the neighborhood. It adds to the estimation variance of the other 

components. 

Similarly, for a fitted MAF isofactorial model with p components, the last q (q<p) may be 

pure nugget effects. When kriging block v0, the estimate of the block average is 
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where kmf stands for kriging with the MAF model and k for kriging. 

The MAFs have zero mean. Therefore the q last MAFs showing nugget effects may not be 

kriged. Their kriging may add noise or provide local details in the spatial distribution, 

depending on our capacity to interpret this signal. As discussed above, the nugget components 

add no variance to the estimation of the block average when they are not kriged, whereas they 

contribute by )(/)var()( 00

2
vnMAFv jkj   when they are. Here kriging was performed with 

and without the pure nugget components for comparison. 

 

The top-cut, the MAFs of indicators and the multiple indicator models were fitted on the 

anchovy data (see below) and were also compared to ordinary kriging, which was used as a 

base case for model comparison. Therefore, the variogram of Z(x) was also calculated. 
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Kriging with the four models was performed on the same grid and with the same moving 

neighborhood. 

 

2.5 Comparison of approaches 

To compare model performances, the prediction errors associated with each model were 

compared. Prediction errors were estimated by cross-validation, that is, considering each 

sample as temporarily unknown and comparing the sample value to the one estimated by 

kriging. Prediction errors were characterized using global statistics such as the overall bias 

and the mean squared error. But these statistics may be non-robust because of some high or 

low values difficult to re-estimate. Thus following Rivoirard et al. (2013), the regression of 

the sampled values on the estimated ones was used as well, to characterize whether values 

estimated in a given range were effectively observed in that range (this refers to non-

conditional bias).  

To compare the patterns in the spatial distributions estimated with the different models, the 

kriged maps were compared. This was performed using visual comparisons, selectivity curves 

and scatter plots. Selectivity curves (Matheron 1981) allowed comparing the dispersion in the 

estimated values for the different models. The selectivity curve is defined by Q(z)=E[Z 1Z≥z], 

where Z stands for the kriged estimate. Scatter plots were used to compare the estimated 

values among the different models.   

 

3 APPLICATION  

3.1 Anchovy survey data  

The data (Fig. 1) consisted of anchovy density values expressed in tons per nautical mile 

square (tons nm
-2

). The sampling design was made of line transects perpendicular to the coast 

across the French continental shelf of the Bay of Biscay. Transects were regularly spaced with 
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an inter-transect distance of twelve nautical miles (12 nm). The inter-sample distance along 

transect was one nm. Fish density was derived from the combination of echo-sounding 

records and trawl-haul catches undertaken to identify the echo-traces (Doray et al. 2010). The 

2002 data showed a marked zero effect (50% of the data) and a few high values with a 

disproportionate contribution to the data arithmetic mean (3% of the data were above 100 tons 

mn
-2

 and represented 45% of the mean, Table 1). Some of the high values were spatially 

aggregated while others appeared isolated in areas of low values. The proportion of very low 

and low values was 40% and that of medium values 3% (Table 1). The basic statistics were: 

985 samples, with an arithmetic mean of 11.23, a coefficient of variation of 3.99, a maximum 

value of 701, and 50 percent of zero values.  

 

3.2 Structural analysis 

3.2.1 Variogram  

The experimental variogram of the data was computed in two directions (not shown) along 

and across transects. No anisotropy was identified. The omnidirectional variogram with a lag 

of 2 nm (+/- 1 nm) showed a rapid increase and large fluctuations around a sill (Fig. 2). It was 

modeled with in a high nugget effect (65% of total sill) and a spherical model with a short 

correlation range (9 nm). Yet, a larger correlation structure is visible (Fig.1) for medium 

values. 

 3.2.2 Discretizing and thresholding the data 

The data were discretized into five classes on a scale close to the decimal log scale (Table 1). 

The threshold defining the last class was chosen as equal to the top-cut cut-off in the top-cut 

fitted model. After various trials, the top-cut cut-off of a 100 tons nm
-2

 was retained as it 

allowed a consistent fit of both top-cut and MAF models. Adding higher classes in the MAF 

analysis to the current five classes resulted in estimating unnecessary higher order MAFs, 
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which were not spatially structured. Hence the current choice of classes, which will be 

discussed further. The mean of the discretized data )(ˆ xZ  was equal to that of Z(x) (11.23 tons 

nm
-2

) whereas the coefficient of variation of )(ˆ xZ  was reduced in comparison to that of Z(x) 

even if it still remained large (3.26 instead of 3.99).  

 

3.2.3 Variogram of the discrete variable 

The experimental variogram of the discrete variable )(ˆ xZ was computed and modeled in the 

same way as the continuous variable Z(x) (Fig. 3). The correlation range of )(ˆ xZ was larger 

than that of Z(x) and the nugget effect remained high. The correlation range was similar to 

that of the second MAF or that of the truncated variable Z(x)^ze. The shorter correlation 

range of Z(x) was thus due to the presence of high values, whose effect was reduced when 

discretizing the data.  

 

 3.2.4 MAFs of indicators as an isofactorial model 

MAFs were computed on the multivariate data set made of the indicators of the five classes 

used to discretize the anchovy data (Table 1). With five classes, four MAFs were estimated. 

They were computed using different omnidirectional lags  = 1, 2, 5, 12 nm. To characterize 

the sensitivity of MAFs with respect to the lag mean MAF values were reported as a 

function of the class index (Fig. 4). The mean MAF value for a given data class was 

calculated on the samples belonging to that class. MAFs 1 and 2 were not very sensitive to the 

lag value , indicating that the most continuous components in the spatial distribution were 

robustly defined. Hence a lag = 2 nm was used throughout this study. The curves of mean 

MAFs as a function of class indices allowed interpreting the MAFs (Fig. 5). MAFs with a 

large absolute mean value for a given class index represented that class in particular. A 
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gradual change in the mean MAF value with the class index indicated smooth spatial 

transitions between classes. MAF 1 revealed a gradual spatial transition from class 1 to class 

3. MAF 2 characterized class 2 and class 5 in particular. MAF 3 accounted for the spatial 

difference between class 5 and classes 3 and 4 and MAF 4 between classes 3 and 4. 

Omnidirectional simple and cross-variograms of the MAFs of indicators were computed with 

a lag of 2 nm. The variograms of MAF 1, MAF 2 and MAF 3 were structured with decreasing 

autocorrelation range and that of MAF 4 showed a pure nugget effect (Fig. 6). Cross-

variograms between MAFs were unstructured (Fig. 7), meaning that the MAFs constituted an 

isofactorial model of the discretized anchovy data.  

 

3.2.5 Top-cut model 

Omnidirectional simple and cross-variograms were computed with a lag of 2 nm. The 

variogram of the indicator Ie(x)=1{Z(x) ≥ ze} was structured (Fig. 8) with a correlation range 

close to that of the variogram of the data, meaning that the values above the top-cut cut-off 

strongly influenced the overall spatial structure. The residual Z3(x) was a pure nugget effect 

component and showed no border effect with the indicator Ie(x), as demonstrated by the 

variogram ratio which was flat (Fig. 8). The top-cut model assumption was thus validated: 

within the geometrical sets defined by the indicator, the high values above the cut-off 

occurred at random and without transition (no border effect) when crossing the spatial limits 

of the sets.  

The variogram of the truncated variable Z1(x) revealed a longer range structure (20 nm) (Fig. 

8), than the variogram of the data. The variogram of the mean excess variable Z2(x) is by 

construction proportional to that of the indicator and showed a shorter range structure, close to 

that of the variogram of the data. This result was consistent with the so-called de-structuration 

of the high values (Matheron 1982), where indicators for increasing cut-offs have decreasing 
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correlation ranges. A linear model of co-regionalization between Z1(x) and Z2(x) was fitted 

using the algorithm of Goulard and Voltz (1992). The model was composed of three basic 

structures: a nugget effect and two spherical models with short (8nm) and long (25nm) range 

structures (Fig. 9). 

 

3.3 Choice of neighborhood 

Because they were collected along transects, the data were not evenly distributed in all spatial 

directions and this could affect kriging results. The choice of the neighborhood was thus 

critical. For kriging between transects, data from different transects and quadrants were used. 

Different neighborhoods were tested by cross-validation using ordinary kriging. The 

neighborhood retained gave the best cross-validation statistics, in particular, the lowest 

estimation bias and a ratio between kriging standard error and estimation standard error 

closest to one. The retained neighborhood was defined as follows: radius of 30 nm, four 

samples at minimum and sixteen at maximum with a maximum of four samples by quadrant.  

 

3.4 Cross-validation and comparison of model performances 

Cross-validation results varied slightly between models (Table 2). The overall bias was small 

for all models (0.1 to 0.5% of the mean). The root mean squared error was comparable 

between models, although ordinary kriging had the largest value. The predicted kriging error 

was lower for all models than that observed by cross-validation (Table 2: error ratio between 

1.5 and 1.9). This was due to the underestimation of high values in the vicinity of low values 

and vice versa. To appreciate whether values estimated in a given range were originally 

observed in that range, the class means of the re-estimated samples were computed and 

compared to that of the corresponding samples (Fig. 10). The points should be close to the 

diagonal line, which corresponds to the non-conditional estimation bias. The values estimated 
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in the lower ranges (<50 tons nm
-2

) were originally low on average for all models. Models 

differed for values estimated in the highest class (>100 tons nm
-2

). For the models based on 

indicators only (MAF and indicator kriging), values estimated in that class underestimated 

real values. Ordinary kriging showed overestimation, probably because of an overestimation 

of low values in the vicinity of high ones (see later). And the top-cut model estimates were 

close to the diagonal line, meaning that this approach estimated the real values in that highest 

class correctly on average. All models overestimated the real values in the intermediate range 

(50-100 tons nm
-2

), although the top-cut and MAF models without their nugget components 

were closer to the diagonal line.   

 

3.5 Mapping by kriging 

The data were mapped by block kriging. Block kriging was performed on a grid with a mesh 

size of 6 nm, which encompassed the survey design and was limited by the coastline and the 

polygon of species potential presence offshore. Maps were derived by ordinary kriging, 

indicator kriging, kriging with the MAF and top-cut models (Fig. 11). A visual inspection 

showed that in ordinary kriging, high data values spread their influence on the estimation in 

their neighborhood. This effect could also be seen with the top-cut model with residuals but 

was not seen with the other models, which then estimated better the small spatial extent of 

rich values in regions of low to medium values. With these latter models, the surroundings of 

high isolated data values were not estimated as rich areas (as for instance on the fourth 

transect counted from the southern limit). Also, with all models except ordinary kriging, areas 

surrounding medium data values were estimated as such (as for instance on the first and 

second transects in the South or offshore on the fifth transect counted from the northern limit).  

The scatter plots between map values obtained with the different models (Fig. 12) allowed 

identifying more precisely similarities and dissimilarities between models. Results obtained 
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with indicator kriging, MAF, and top-cut models without residuals were correlated, while the 

top-cut model with residuals was better correlated to ordinary kriging. It is noteworthy that 

some intermediate values estimated around 50 (tons nm
-2

) with ordinary kriging were 

estimated within a larger range (20-80) with indicator kriging, MAF and top-cut without 

residuals, probably due to the larger spatial continuity in these models for low and 

intermediate values (range 10-100 tons nm
-2

: class indices 3 and 4). Furthermore, the 

selectivity curve for ordinary kriging (Fig. 13) contrasted with that of other models, being 

more selective in the range 40-80 (tons nm
-2

). This showed again how intermediate values 

played a major role in determining the structure and the spatial pattern in the kriged maps, 

when using indicator kriging, MAF and top-cut models without residuals. 

Basic statistics of the kriged maps are presented in Table 3. The means were similar for 

ordinary kriging and the top-cut model with residuals on the one hand, and for the other 

models on the other hand, the former being smaller than the latter. The highest values 

estimated by ordinary kriging and the top-cut model with residuals were the highest among 

models. The highest values estimated by MAF and indicator kriging were the lowest among 

models, probably because the spatial structure in these models was more continuous. For the 

MAF and top-cut models, the maximum (respectively minimum) estimated values were 

greater (respectively lower) when nugget components were kriged. The negative estimated 

values had a low impact (<1%) on the means.  

The maps of standard deviation (kriging error) predicted by the different models showed 

similar spatial patterns: lower precision on the borders of the field as well as in between 

transects. This was so because kriging with the different models was performed with the same 

neighborhood on the same grid. Thus only mean kriging errors were compared (Table 3). 

Ordinary kriging had the highest mean kriging error. In the top-cut model, the residuals had a 

high variance, which led to an important additional error when comparing kriging with and 
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without residuals. Indicator kriging and kriging with the MAF model showed similar kriging 

errors. The difference between ordinary kriging and other models resulted from the fact that 

the variogram of the data had a high nugget effect, high sill, and short correlation range 

because of a few high values. In contrast, the spatial structures in the other models had longer 

ranges representing a greater proportion of total variance and were less affected by high 

values.  

 

4 CONCLUSION - DISCUSSION 

When data have a small proportion of high values, the experimental variogram is often erratic, 

poorly structured, and its modelling uncertain. The paper showed how geostatistical indicator-

based models can be used to map such data. The top-cut, MAF of indicators and multiple 

indicator kriging models were alternative efficient approaches to ordinary kriging. In these 

approaches, the residual variability in the class of largest data was erased, and the spatial 

structure in the low and medium values served to guide mapping. The spatial structures in 

these models had a longer range and represented a greater proportion of total variance than in 

the variogram used for ordinary kriging. The practical implementation of the models was 

based on discretizing the data in classes (introducing thresholds) and a thorough structural 

analysis. Model performances were analyzed by cross-validation the data and comparing the 

kriged maps. The top-cut without residual model had the best cross-validation performance 

(lowest mean squared error and no conditional bias). In the cross-validation exercise, the 

highest data values were underestimated when using MAF and indicator kriging models. All 

models overestimated real values in the medium range of values whereas estimated low 

values were effectively low. Comparing spatial patterns in the kriged maps showed that the 

top-cut without residual, MAF and indicator kriging approaches were all able to map high-

value areas with small spatial extent even when surrounded by low values. In contrast, the 



17 

 

map obtained by ordinary kriging showed a spatial spread in the influence of high values on 

low ones and vice versa.  

 

4.1 Guide lines for model choice 

The top-cut model, when applicable, appears to be a convenient way to handle high values, 

when they are not frequent but make statistics non-robust. Very often the residual is a pure 

nugget effect (at least locally, since the variograms are generally not computed for large 

distances). Two options are then available for the estimation of the initial variable. Either 

kriging the residuals assuming local stationarity in the neighborhoods: then the estimates 

depend on the high data values present in the neighborhoods; or using the zero mean residual 

value: this makes the estimate more robust as it does not depend on individual high data 

values. But this assumes strict stationarity of the residuals, meaning that the values higher 

than the top-cut cut-off have the same mean everywhere in space.  

MAFs of indicators extract the most spatially structured components, which are most helpful 

for mapping. However, this approach first requires a discretization of the variable. In doing 

so, a part of the variability disappears. In particular, the data values in the highest class are set 

to their mean, which is considered to be valid everywhere in space. On the other hand, the last 

MAF is likely to be a pure nugget effect. Then, it can either be kriged or not. In this latter 

case, its zero mean is used instead, assuming it is valid everywhere. 

In the present application on anchovy survey data, high values corresponded to dense schools, 

with no understanding of their dynamics. Therefore, the accurate location of the high values 

as well as their maximum value were imprecise. For these reasons, it seems appropriate here 

not to krige the pure nugget components neither in the top-cut nor in the MAF models. In 

other situations where the process generating the high values would be better known, kriging 

the pure nugget components could be worthwhile.  
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In our example, multiple indicator kriging and MAF kriging performed similarly, probably 

because the variogram of the discrete variable was close to that of the first two MAFs. It is 

difficult to judge whether this result is generic or case dependent. The MAF approach could 

thus be recommended for analyzing precisely the spatial structure in the discretized data. 

Table 4 summarizes the different steps when analyzing data with the top-cut and MAF 

models.  

 

4.2 Thresholding the data 

Rivoirard et al. (2014) suggested defining those discretization classes that lead to the best 

approximation of the data selectivity curve. In doing so, one is tempted to add extra classes 

for the high values, with low probability. This results in diminishing the reliability of the first 

MAFs and increasing the number of high order MAFs with pure nugget effect models. 

Therefore, here, only five data classes were considered and high values were regrouped in one 

class. As a result, only the highest order MAF showed a pure nugget effect. The drawback 

was a slight decrease in variance of the discretized variable in comparison to the data and a 

lower maximum estimated value. The advantage was the estimation of robust MAFs (robust 

to the discretization and to lag ). They revealed long-range spatial structures in the data, 

which were used for mapping. 

 

4.3 Behaviour of the first MAF of indicators as a function of the class index 

The distribution of MAF 1 as a function of the class index used when discretizing target 

variable Z(x) may be used as an empirical diagnosis for choosing between two classes of 

models: the diffusion or the sharp transition (jump) types (Matheron 1988; Rivoirard 1994). A 

monotonic curve is indicative of gradual spatial transitions from low to high values, which 

would be adequately modeled by a diffusion model (Rivoirard et al. 2014). In our case (Fig. 
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5) the variation of MAF 1 with increasing class index showed a decrease from class 1 to class 

3 and then a sill for higher class indices. Thus MAF 1 indicated a gradual spatial transition 

between data class indices 1 to 3 but such diffusion in the low values did not extend to higher 

class indices 4 and 5. The sharp spatial transitions to high values (class 5) were identified by 

the absence of border effect in the top-cut model and this behaviour was apparent in MAFs 2 

and 3. The structural analyses in the MAF and top-cut model approaches both identified a 

mixed spatial behaviour: gradual and structured spatial transitions in the low values, on top of 

which high values occurred with very sharp transitions and no spatial structure. This switch in 

spatial behaviour occurred above 100 tons nm
-2

. The biological implications of such density 

threshold for anchovy aggregative behaviour remain to be understood.  
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Table 1: Parameters of the discrete distribution resulting from discretizing the anchovy data  

Values Class index Limits Proportion Mean 

zeroes 1 [0,0.1[ 0.539 0.0003 

very low 2 [0.1,10[ 0.296 2.55 

low 3 [10,50[ 0.109 23.94 

medium 4  [50,100[ 0.027 67.67 

high 5  [100,+∞ [ 0.028 211.26 
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Table 2: Statistics of cross-validation for the different models. Zest are the re-estimated 

values, Zobs the sampled values and sigma.K the estimation error predicted by kriging. 

Models are: ordinary kriging (OK), indicator kriging (IK), MAF model without (estim1) and 

with (estim2) the nugget component, Top-cut model without (estim1) and with (estim2) the 

nugget residual 

 OK IK MAF 

estim1 

MAF 

estim2 

Topcut 

estim1 

Topcut 

estim2 

Mean estimation error  

mean [Zest-Zobs] 

0.01 0.01 -0.04 -0.05 -0.04 -0.05 

Root mean squared error 

√ mean [ [Zest-Zobs]^2 ] 

40.75 40.08 40.00 40.13 39.54 40.16 

Mean normalized error  

mean [ |Zest-Zobs| / sigma.K ] 

1.56 1.68 1.94 1.87 1.51 1.48 
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Table 3: Statistics of the maps obtained by block kriging with the different models. The data 

arithmetic mean is 11.23 and the standard deviation 44.86. Models are: ordinary kriging (OK), 

indicator kriging (IK), MAF model without (estim1) and with (estim2) the nugget component, 

Top-cut model without (estim1) and with (estim2) the nugget residual 

 

 OK IK MAF  

estim1 

MAF  

estim2 

Topcut  

estim1 

Topcut  

estim2 

Mean  10.40 11.05 11.10 10.97 10.96 10.48 

Mean kriging error 43.86 32.44 30.89 32.34 25.00 36.39 

Maximum  171.77 124.97 111.48 121.32 128.45 146.39 

Minimum  0 0.003 -2.87 -4.44 -2.37 -3.37 
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Table 4: The different steps when analyzing survey data with the top-cut and MAF models 

 Top-cut model MAF of indicators model 

Target variable 

and its 

decomposition 

Variable Z(x) 

Z(x) is decomposed into three 

components: truncated variable, 

indicator of being above the cutoff 

and residual 

Discretized variable )(ˆ xZ   

)(ˆ xZ  is decomposed into MAFs 

Model 

assumptions 

Values above the top-cut cut-off are 

spatially uncorrelated with the 

indicator  

MAFs of indicators are spatially 

uncorrelated between each others  

MAFs of indicators are robust against 

changes in lag  used to compute them 

Implementation 

steps 

Identify a cut-off value that satisfies 

the previous assumption 

Compute simple and cross 

variograms of the components and 

check whether previous assumption 

is valid. If not, use MAFs 

Discretize Z(x) using a sufficient 

number of classes 

Compute MAFs for different lags  and 

evaluate robustness of MAFs against 

the choice of  

Compute simple and cross variograms 

of MAFs and check if previous 

assumption is valid. If not, consider 

indicator kriging 
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Fig. 1 Proportional representation of the anchovy concentration data (2002 Pelgas survey). 

Units are tons per nautical mile square 
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Fig. 2 Omnidirectional variogram of the target variable Z(x) and its model. The model is: 

1265.8 Nugget + 668.2 Spherical (range=9 nm) 
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Fig. 3 Omnidirectional variogram of the discrete variable )(ˆ xZ and its model. The model is: 

770 Nugget + 550  Spherical (range=22 nm) 
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Fig. 4 Mean MAF values for the first (left) and second (right) MAF as a function of the data 

class index for different values of the lag  used to compute the MAFs. Data classes are 

defined in Table 1 
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Fig. 5 Mean MAF values as a function of the data class index. MAFs are computed with lag  

= 2nm. Data classes are defined in Table 1  
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Fig. 6 Variograms of the MAFs of indicators and their models. MAF 1 model is: 0.09 Nugget 

+ 0.10 Spherical (range=13.35) + 0.23 Spherical (range=50.74). MAF 2 model is: 0.5 

Nugget + 0.23 Spherical (range=21.90) + 0.06 Spherical (range=80.60). MAF 3 model is: 

0.79 Nugget + 0.16 Spherical (range=11.86). MAF 4 model is: 1.34 Nugget  
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Fig. 7 Cross-variograms between the four MAFs 
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Fig. 8 Structural analysis for values higher than the top-cut cut-off. Upper left: variogram of 

the indicator Ie(x) = 1{Z(x) ≥ ze}. Upper right: variogram of the residual Z3(x). Lower left: 

ratio of the cross-variogram IexZ3 divided by the variogram of the indicator Ie.  
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Fig. 9 Top-cut model. Upper left: variogram of the truncated variable Z1(x) and its model: 

152.32 Nugget + 84.85 Spherical (range=8nm) + 180.23 Spherical (range=25nm).  Lower 

right: variogram of the mean excess variable Z2(x) and its model: 219.36 Nugget + 84.17 

Spherical (range=8nm) + 33.17 Spherical (range=25nm). Lower left: cross-variogram 

between Z1(x) and Z2(x) and its model: 125.79 Nugget + 83.30 Spherical (range=8nm) + 

77.33 Spherical (range=25nm)  
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Fig. 10 Observed versus estimated mean values in each data class for the different kriging 

models. The line is the first bisector. The models are: ordinary kriging (OK), indicator kriging 

(IK), MAF model without (estim1) and with (estim2) nugget component, Top-cut model 

without (estim1) and with (estim2) nugget residual  
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Fig. 11 Maps of anchovy (tons nm
-2

) in 2002 obtained with ordinary kriging (OK), indicator 

kriging (IK), and kriging with the MAF and top-cut models. For these latter models, kriging 

was performed without (estim1) and with (estim2) nugget component. The data are shown in 

red  
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Fig. 12 Comparison of kriged map values obtained with the different models: ordinary kriging 

(OK), multiple indicator kriging (IK), kriging with the MAF and top-cut models. For these 

latter models, kriging was performed without (estim1) and with (estim2) nugget component  
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Fig. 13 Normalized selectivity curves Q(z)/ Q(0) for the kriged maps obtained with the 

different models: ordinary kriging (OK), indicator kriging (IK), kriging with the MAF and 

top-cut models. For these latter models, kriging was performed without (estim1) and with 

(estim2) nugget component  

 


