Supplementary Materials

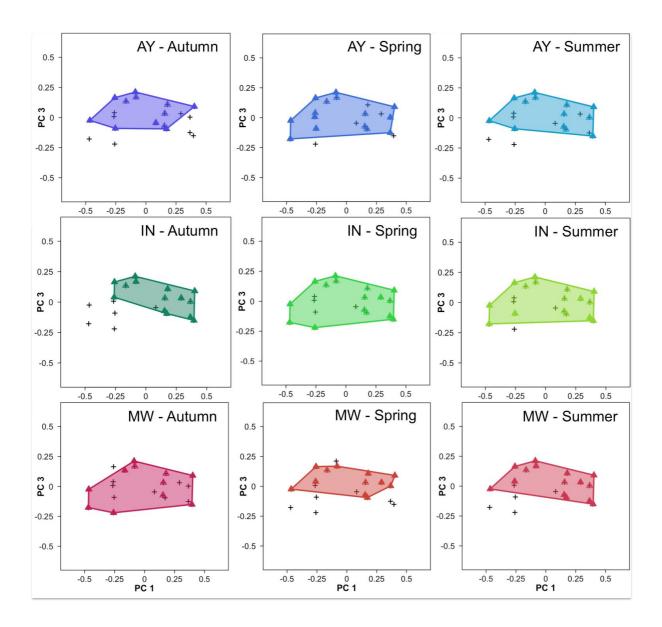


Fig. S1. Functional richness of the three lagoons (AY, IN and MW) in samplings in autumn 2013, spring and summer 2014 in the three-dimensional functional space, illustrated with the first two principal coordinate axes 1 and 3. The 20 functional entities (FEs) are represented with crosses. FEs present in a community are represented by triangles and those being vertices in the three-dimensional space are filled. Projections of the convex hull computed in 3-dimensions on this 2-dimensional space are illustrated by polygons.

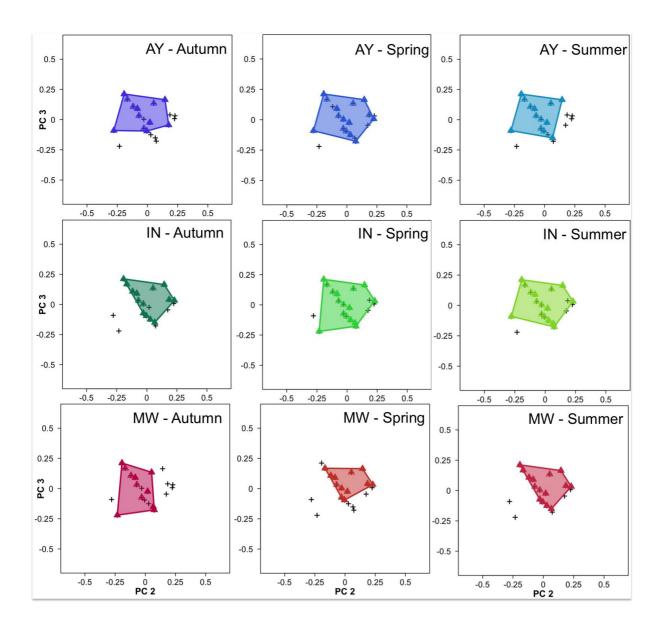


Fig. S2. Functional richness of the three lagoons (AY, IN and MW) in samplings in autumn 2013, spring and summer 2014 in the three-dimensional functional space, illustrated with the first two principal coordinate axes 2 and 3. The 20 functional entities (FEs) are represented with crosses. FEs present in a community are represented by triangles and those being vertices in the three-dimensional space are filled. Projections of the convex hull computed in 3-dimensions on this 2-dimensional space are illustrated by polygons.

Table S1: Bray-Curtis dissimilarity distances calculated between communities according to (i) relatives biomasses of functional entities, (ii) relatives biomasses of taxa, for the three lagoons (Ayrolle – "AY", North Ingril – "IN", and West Méjean – "MW"), the three sampling periods (autumn – "aut", spring – "spr", summer – "sum").

Bray-Curtis Distance Matrix based on taxa relative biomasses								
	AY_aut	IN_aut	MW_aut	AY_spr	IN_spr	MW_spr	AY_sum	IN_sum
IN_aut	0.989							
MW_aut	0.989	0.883						
AY_spr	0.904	0.928	0.955					
IN_spr	0.982	0.430	0.884	0.889				
MW_spr	0.987	0.659	0.911	0.915	0.502			
AY_sum	0.988	0.873	0.936	0.966	0.870	0.953		
IN_sum	0.986	0.469	0.900	0.829	0.370	0.573	0.840	
MW_sum	0.999	0.994	0.998	0.996	0.993	0.988	0.999	0.994
Bray-Curtis Distance Matrix based on FEs relative biomasses								
	AY_aut	IN_aut	MW_aut	AY_spr	IN_spr	MW_spr	AY_sum	IN_sum
IN_aut	0.770							
MW_aut	0.957	0.868						
AY_spr	0.638	0.678	0.834					
IN_spr	0.938	0.330	0.767	0.639				
MW_spr	0.970	0.451	0.837	0.653	0.216			
AY_sum	0.352	0.582	0.809	0.653	0.695	0.749		
IN_sum	0.771	0.385	0.852	0.473	0.336	0.330	0.636	
MW_sum	0.986	0.393	0.934	0.960	0.498	0.574	0.856	0.602