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Supplement 1: Evaluation and choice of the model  
 
In the present work, we ran ensemble models as a decision tool to select algorithms that are 
the most appropriate to the type of data to be analysed (Scales et al. 2016). The performance 
of 10 different algorithms was compared using the default parametrization settings proposed 
in the ‘biomod2’ R package (see Thuiller et al. (2016) for calibration details and Marmion et 
al. (2009) for modeling documentation). The compared algorithms include Artificial Neural 
Network (ANN), Boosted Regression Trees (BRT), Classification Tree Analysis (CTA), 
Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized 
Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Maximum 
Entropy (MaxEnt), Random Forest (RF), and Surface Range Envelope (SRE).  
Two analyses were realised to compare the respective performance of the models. First, for 
each algorithm, AUC values of 100 model replicates were computed. Models were performed 
using all occurrence data available for the species Ctenocidaris nutrix and Sterechinus 
diadema only (Fig S1A, S1C) because there were not enough data to perform the analysis for 
Abatus cordatus and Brisaster antarcticus.  
In a second step, standard deviation of the 100 replicates were compared between models as 
the number of data was progressively increased between runs to represent the improvement of 
sampling effort through time (Fig S1B, S1D).  
Presence-only records associated to non-informative environmental data (NA/, no data 
values) were removed as required to perform the biomod2 analysis. Occurrence duplicates 
located on one single 0.1° grid cell were removed to reduce spatial weighting. 200 pseudo-
absences were selected to perform the analysis. 
 
Results show that Boosted Regression Trees (BRT) and Random Forest (RF) are the 
algorithms that perform best to model the distribution of C. nutrix and S. diadema (Fig. S1), 
with relatively stable (SD < 0.025) and high AUC values varying between [0.976,1] and 
[0.994,1] respectively of the analysis that studies data addition. Unexpectedly, algorithms 
previously shown to be well suited to presence-only data and small datasets (e.g. SRE or 
MaxEnt, see Araújo and Peterson 2012, Yackulic et al. 2013) did not perform well in our case 
study. Low performances of SRE have already been reported (Elith et al. 2006). The low 
number of pseudo-absences used to calibrate the model could explain the low performance of 
MaxEnt (Barbet-Massin et al. 2012, Phillips and Dudik 2008). 
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Figure S1: Compared performances of the different models for the species Ctenocidaris 
nutrix (A-B) and Sterechinus diadema (C-D). (A, C) Mean AUC values of model replicates 
for each algorithm. (B, D) Variation of mean AUC values and Standard Deviation (SD) of 
model replicates with data addition (n=22, n=51 or n=54 occurrences for C. nutrix and n=21, 
n= 23 and n=23 for S. diadema). For each analysis, 200 background data were randomly 
sampled in the studied area. Environmental descriptors correspond to [1955-2012]. 
 
The respective performance of BRT and RF (Fig. S1) was tested for spatial transferability 
following a non-random three-fold cross-validation procedure (Fig. S2, Wenger and Olden 
2012). Model transferability is defined as the “extrapolative accuracy” of a model that is, the 
model ability to extrapolate in space and time (Randin et al. 2006, Wenger and Olden 2012). 
Three models were computed simultaneously using three different subsets of occurrences for 
C. nutrix (Fig. S2) alternatively used as training and test data (50 replicates). The three 
averaged models were compared with each others using the Schoener’s D similarity index. D 
mean and standard deviation values were computed for all comparisons. All analyses were 
performed using time-averaged environmental parameters for the total period under study 
[1955-2012]. We considered that the most similar the distribution maps are the better the 
transferability performance is (Fig. S2).  
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Figure S2: (A) Map showing the distribution of presence-only data in the three subsets 
defined for the cross-validation procedure. (B) Non-random three-fold cross-validation 
procedure performed to test for the transferability performance of models. Zones 1, 2 and 3 
refere to (A). 
 
Comparison between maps shows higher similarity values between the different models run 
with BRT (Schoener’s !=0.867± 0.034) than with RF (!=0.761± 0.036), which highlights 
that BRT performs best for spatial transferability. Because transferability performance is a 
central criterion of model selection in our study (Araújo and Guisan 2006, Wenger and Olden 
2012), BRT was selected for the further analyses. This result is in line with previous studies 
that highlight the high performance of BRT for prediction (Elith and Graham 2009, Guo et al. 
2015) and transferability (Heikkinen et al. 2012, Wenger and Olden 2012, Crimmins et al. 
2013) while RF has been shown to generate geographically restricted models with high 
accuracy (Guo et al. 2015, Qiao et al. 2015, Beaumont et al. 2016). 
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Table S1: Overall comparison between Random Forest, Boosted Regression Tree (BRT) and MaxEnt respective performances with reference 
works. 

 Random Forest BRT MaxEnt 
DATASET    

● Type of data 
 

Presence-only/ presence-absence Presence-only/ presence-absence Presence-only/ presence-absence 

        •      Missing biological values  
 
        •      Categorical descriptors 

Interpolation required first (Breiman 2001)  allowed allowed 

Biased if different categorical levels (Duan et al. 
2014) 

 
allowed 

 
allowed 

 
 
Robustness to spatially biased data 

 
 
More sensible than BRT to patchy patterns  
(Marmion et al. 2009, Barbet-Massin et al. 2012) 
More adapted to bias correction methods than BRT 
(Barbet-Massin et al. 2012) 

 
 
Not adapted (Royle et al. 2012) 
Unstable predictions (this study)  

 
Overall modelling performance 
    
 
 
 
       
         • Transferability performance 
 
 
 
         • Extrapolation performance 

 
High performance and interpolation accuracy 
(Wenger and Olden 2012, Guo et al. 2015) 
Biological responses often unrealistic (Beaumont 
et al. 2016) 
 
 
Poor (Wenger and Olden 2012, Crimmins et al. 
2013).  
 
 
Not suitable (Qiao et al. 2015, Beaumont et al. 
2016) due to overfitting (Wenger and Olden 
2012, Aguirre-Gutiérrez et al. 2013) 
 

 
Medium performance (Qiao et al. 2015) 
Performed better than RF in previous works on 
benthic marine species (Reiss et al. 2011) 
 
 
 
Good (Heikkinen et al. 2012) 
 
 
 
Good (Heikkinen et al. 2012).  
High prediction performance (Elith et al. 2006, 
Elith and Graham 2009, Guo et al. 2015)  
 
 

 
High performance even with complex 
environmental interactions 
(Elith et al. 2011) 
 
 
 
One of the highest (Heikkinen et al. 2012, 
Duque-Lazo et al. 2016) 
 
 
Perform worse than BRT (this study) 
Tend to overpredict (Duan et al. 2014) 

Required computation time  Long (Elith and Graham 2009, García-Callejas 
and Araújo 2016) 

Medium (this study) Medium (this study) 
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Supplement 2: Spatial autocorrelation (SAC)   
 
Table S2: Moran I SAC index computed from mean residuals of the 100 model replicates 
and the associated significance for each species before and after spatial bias correction. 
 

 Before 
correction 

After 
correction 

 Iobs p-value Iobs p-value 
Abatus cordatus 0.16 1.19e-9 0.06 5.85e-4 
Brisaster antarcticus 0.05 0.04 0.04 0.08 
Ctenocidaris nutrix 0.07 7.37e-8 0.01 0.17 
Sterechinus diadema 0.06 3.90e-3 0.02 0.13 

 
 

 
Figure S3: Maps	
  showing	
  species	
  distribution	
  models	
  computed	
  before	
  and	
  after	
  
correcting	
  for	
  spatial	
  bias	
  by	
  background	
  sampling.	
   
 
 
 
  



 6 

Supplement 3: Testing the influence of chronological addition of occurrences  
 
We thank the 19 scientific cruises for the collection of the data used to realise this work 
(Table 1, Guillaumot et al. 2016). We thank the master, the crew and the scientific team of 
the FV “Austral” that collected, sorted, and made available for studies the benthic samples of 
the POKER II (2010) cruise.  We are grateful to the leader of the cruise, Pr. Guy Duhamel 
(MNHN) and Echinodermata curators Nadia Améziane and Marc Eléaume for giving us the 
opportunity to study POKER II sea urchins. Work at sea was supported by the Terres 
Australes et Antarctiques Françaises (TAAF),  the Syndicat des Armateurs Réunionnais de 
Palangriers Congélateurs (SARPC), the Direction des Pêches Maritimes et de l’Aquaculture, 
Ministère de l’Agriculture et de l’Alimentation (DPMA), the Réserve Naturelle of TAAF, 
and the Muséum national d’Histoire naturelle, Paris. 

 
 
Figure S4: First row: distribution models of Abatus cordatus with increasing number of 
occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 
probability distribution between n=76 and n=54, (B) between n=95 and n=76. 
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Figure S5: First row: distribution models of Sterechinus diadema with increasing number of 
occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 
probability distribution between n=66 and n=54, (B) between n=98 and n=66. 
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Table S3: Effect of chronological addition of new data on model performance. Comparison 
between distribution maps. Upper diagonal: Schoener‘s D correlation between averaged 
maps. Lower diagonal: significance p-value of the associated Schoener‘s D correlation. 
 

Abatus 
cordatus 

←1975] 
n=54 

- ←2010] 
n=76 

←2015] 
n=95 

←1975] n=54 - - 0.972±0.025 0.980±0.021 

- - - - - 

←2010] n=76 0.002 - - 0.981±0.023 

←2015] n=95 0 - 0 - 

Ctenocidaris 
nutrix 

←1975] 
n=46 

←1993] 
n=54 

←2010] 
n=106 

←2015] 
n=114 

←1975] n=46 - 0.964±0.026 0.969±0.020 0.967±0.020 

←1993] n=54 0.017 - 0.960±0.020 0.961±0.020 

←2010] n=106 0.005 0.037 - 0.988±0.013 

←2015] n=114 0.010 0.028 0 - 

Sterechinus 
diadema 

←1975] 
n=54 

- ←2010] 
n=66 

←2015] 
n=98 

←1975] n=54 - - 0.930±0.030 0.928±0.037 

- - - - - 

←2010] n=66 0.369 - - 0.937±0.042 

←2015] n=98 0.411 - 0.262 - 
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