Supporting Information

Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge *Suberea ianthelliformis*

Amr El-Demerdash,^{1,2} Céline Moriou,¹ Jordan Toullec,³ Marc Besson,^{4,5} Stéphanie Soulet,⁶ Nelly Schmitt,⁶ Sylvain Petek,³ David Lecchini,⁴ Cécile Debitus^{*3} Ali Al-Mourabit ^{1*}

- 1. Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France email: <u>eldemerdash555@gmail.com</u>, <u>Celine.Moriou@cnrs.fr</u>, <u>Ali.ALMOURABIT@cnrs.fr</u>
- 2. Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura-35516, Egypt
- 3. LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, Plouzané, France, email: <u>Jordan.Toullec@univ-brest.fr</u>, <u>sylvain.petek@ird.fr</u>, <u>cecile.debitus@ird.fr</u>
- 4. CRIOBE, CNRS, EPHE, UPVD, PSL Research University, Moorea, French Polynesia, email: <u>bessonmarcluc@gmail.com</u>, <u>david.lecchini@ephe.sorbonne.fr</u>
- 5. Observatoire Océanologique de Banyuls-sur-Mer, Université Pierre et Marie Curie Paris, Banyuls-sur-Mer, France
- 6. EIO, UPF, ILM, IFREMER, IRD, Faa'a, Tahiti, French Polynesia, email: <u>stephanie.soulet@upf.pf</u>, <u>nelly.schmitt@upf.pf</u>
- Correspondance: Ali Al-Mourabit ; <u>Ali.ALMOURABIT@cnrs.fr</u>

Table of Contents

Figure S1. ¹ H NMR spectrum of Psammaplysene D (1) in MeOD (500 MHz)	4
Figure S2. ¹³ C NMR spectrum of Psammaplysene D (1) in MeOD (500 MHz)	5
Figure S3. HR-ESI mass spectrum of Psammaplysene D (1)	6
Figure S10. ¹ H NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)	7
Figure S11. ¹³ C NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)	8
Figure S12. HSOC NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)	9
Figure S13. ¹ H– ¹ H COSY NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)	10
Figure S14. ¹ H- ¹³ C HMBC NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)	
Figure S15. HR-ESI mass spectrum of Psammaplysene F (2)	
Figure S16. ¹ H NMR spectrum of Psammaplysene G (3) in MeOD (500 MHz)	
Figure S17. ¹³ C NMR spectrum of Psammaplysene G (3) in MeOD (500 MHz)	
Figure S18. HSOC NMR spectrum of Psammaplysene G (3) in MeOD (500 MHz)	
Figure S19. ${}^{1}H$ COSY NMR spectrum of Psammaplysene G (3) in MeOD (500 MHz).	
Figure S20, ¹ H- ¹³ C HMBC NMR spectrum of Psammaplysene G (3) in MeOD (500 MHz)	
Figure S21. HR-ESI mass spectrum of Psammaplysene G (3)	
Figure S4 ⁻¹ H NMR spectrum of Psammaplysene H (4) et I (5) in MeOD (500 MHz)	19
Figure S5 ¹³ C NMR spectrum of Psammaplysene H (4) et I (5) in MeOD (500 MHz)	20
Figure S6. HSOC NMR spectrum of Psammaplysene H (4) et I (5) in MeOD (500 MHz)	21
Figure S7 ${}^{1}H_{-}H$ COSY NMR spectrum of Psammaplysene H (4) et I (5) in MeOD (500 MHz)	
Figure S ^{1} H ^{3} C HMBC NMR spectrum of Psammaplysene H (4) et I (5) in MeOD (500 MHz)	
Figure S0. HP - C HWIDE WWIK spectrum of Psammaplysene H (4) et I (5) in WeOD (500 WHZ).	23 24
Figure S22 ¹ H NMP spectrum of Anomoion C (6) in MeOD (500 MHz)	
Figure S22. If NMR spectrum of Anomoian C (6) in MeOD (500 MHz)	
Figure S24. HSOC NMP spectrum of Anomoian C (6) in McOD (500 MHz)	20
Figure S25 ¹ H ¹ H COSY NMD spectrum of Anomaion $C(6)$ in McOD (500 MHz)	27 20
Figure S25. $H = H COST NMR spectrum of Anomologi C (6) in MeOD (500 MHz).$	
Figure S20. H- C HMBC NMR spectrum of Anomoion C (6) III MeOD (500 MHZ)	
Figure S27. HR-ESI mass spectrum of Anomolan C (0)	
Figure S28. H NMR spectrum of Anomolan D (7) in MeOD (500 MHz)	
Figure S29. C NMR spectrum of Anomoian D (7) in MeOD (500 MHz)	
Figure S50. HSQC NMR spectrum of Anomotan D (7) in MeOD (500 MHz)	
Figure S31. H–H COSY NMR spectrum of Anomoian D (7) in MeOD (500 MHz).	
Figure S32. 'H-'C HMBC NMR spectrum of Anomoian D (7) in MeOD (500 MHz)	
Figure S33. HR-ESI mass spectrum of Anomoian D (7)	
Figure S34. H NMR spectrum of Anomoian E (8) in MeOD (500 MHz)	
Figure S35. ¹³ C NMR spectrum of Anomoian E (8) in MeOD (500 MHz)	
Figure S36. HSQC NMR spectrum of Anomoian E (8) in MeOD (500 MHz)	
Figure S37. 'H–'H COSY NMR spectrum of Anomoian E (8) in MeOD (500 MHz)	
Figure S38. 'H-1'C HMBC NMR spectrum of Anomoian E (8) in MeOD (500 MHz)	
Figure S39. HR-ESI mass spectrum of Anomoian E (8)	
Figure S40. ¹ H NMR spectrum of Anomoian F (9) in MeOD (500 MHz)	43
Figure S41. ¹³ C NMR spectrum of Anomoian F (9) in MeOD (500 MHz)	
Figure S42. HSQC NMR spectrum of Anomoian F (9) in MeOD (500 MHz)	45
Figure S43. ¹ H– ¹ H COSY NMR spectrum of Anomoian F (9) in MeOD (500 MHz)	46
Figure S44. 'H-1'C HMBC NMR spectrum of Anomoian F (9) in MeOD (500 MHz)	47
Figure S45. HR-ESI mass spectrum of Anomoian F (9)	48
Figure S46. ¹ H NMR spectrum of N, N-dimethyldibromotyramine (10) in MeOD (500 MHz)	49
Figure S47. ¹³ C NMR spectrum of N, N-dimethyldibromotyramine (10) in MeOD (500 MHz)	50
Figure S48. HR-ESI mass spectrum of N, N-dimethyldibromotyramine (10)	51
Figure S49. ¹ H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in MeOD (500 MHz)	52
Figure S50. ¹³ C NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in MeOD (500 MHz)	53

Figure S51. ¹ H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in DMF-d ₇ (600 MHz)	54
Figure S52. ¹ H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in DMSO (500 MHz)	55
Figure S53. HR-ESI mass spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11)	56
Figure S54. ¹ H NMR spectrum of Xantherunic acid (12) in MeOD (600 MHz)	57
Figure S55. ¹³ C NMR spectrum of Xantherunic acid (12) in MeOD (600 MHz)	
Figure S56. HR-ESI mass spectrum of Xantherunic acid (12)	59

Figure S1.¹H NMR spectrum of Psammaplysene D (1) in MeOD (500 MHz)

Figure S2.¹³C NMR spectrum of Psammaplysene D (1) in MeOD (500 MHz)

Figure S3. HR-ESI mass spectrum of Psammaplysene D (1)

Elemental Composition Report

Single Mass Analysis Tolerance = 9.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 579 formula(e) evaluated with 7 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

ALMOURABIT_ahmed148-1 329 (1.506) Cm (327:329)

783.9638

783,9718

783,9606

3.5

-4.5

6.7

4.5

-5.7

8.5

1.5

9.5

9.5

392

C17 H38 N9 O6 79Br2

C27 H38 N5 O2 79Br2

C28 H38 N3 O3 79Br2

81Br2

81Br2

81Br2

100-,393 391 % 394 784 391 295 385 780 413 806 354 702706709 754770 317, 324 -839 m/z 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 Minimum: -1.5Maximum: 200.0 9.0 100.0 Mass Calc. Mass mDa PPM DBE 1-FIT i-FIT (Norm) Formula 783.9673 783.9678 -0.5 -0.6 5.5 104.3 1.9 C22 H38 N7 O4 79Br2 81Br2 783.9664 0.9 1.1 0.5 104.4 2.0 C21 H42 N3 O8 79Br2 81Br2 783.9646 2.7 3.4 13.5 104.4 2.0 C33 H38 N O 79Br2 81Br2 C26 H42 N 06 783.9705 -3.2-4.14.5 104.3 1.9 79Br2 81Br2

104.4

104.4

104.3

2.0

2.0

1.9

Figure S10. ¹H NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)

Figure S11. ¹³C NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)

Figure S12. HSQC NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)

Figure S13. ¹H–¹H COSY NMR spectrum of Psammaplysene F (**2**) in MeOD (500 MHz)

Figure S14. ¹H-¹³C HMBC NMR spectrum of Psammaplysene F (2) in MeOD (500 MHz)

Figure S15. HR-ESI mass spectrum of Psammaplysene F (2)

Elemental Composition Report

698.8661

698.8687

698.8634

698.8647

1.4

-1.2

4.1

2.8

2.0

-1.7

5.9

4.0

0.5

10.5

1.5

6.5

134.9

134.9

135.1

135.1

2.0

2.0

2.2

2.2

Single Mass Analysis

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

81Br2

81Br2

81Br2

81Br2

C17 H31 O9 79Br2

C14 H23 N10 O3 79Br2 81Br2

C19 H23 N8 O 79Br2

C13 H27 N6 O7 79Br2

Monoisotopic Mass, Even Electron Ions 468 formula(e) evaluated with 7 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

Figure S16. ¹H NMR spectrum of Psammaplysene G (**3**) in MeOD (500 MHz)

Figure S17. ¹³C NMR spectrum of Psammaplysene G (**3**) in MeOD (500 MHz)

Figure S18. HSQC NMR spectrum of Psammaplysene G (**3**) in MeOD (500 MHz)

Figure S19. ¹H–¹H COSY NMR spectrum of Psammaplysene G (**3**) in MeOD (500 MHz)

Figure S20. ¹H-¹³C HMBC NMR spectrum of Psammaplysene G (**3**) in MeOD (500 MHz)

Figure S21. HR-ESI mass spectrum of Psammaplysene G (3)

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron lons 468 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

Figure S4. ¹H NMR spectrum of Psammaplysenes H (4) and I (5) in MeOD (500 MHz)

Figure S5. ¹³C NMR spectrum of Psammaplysenes H (**4**) et I (**5**) in MeOD (500 MHz)

Figure S6. HSQC NMR spectrum of Psammaplysenes H (**4**) and I (**5**) in MeOD (500 MHz)

Figure S7. ¹H–¹H COSY NMR spectrum of Psammaplysenes H (**4**) and I (**5**) in MeOD (500 MHz)

Figure S8. ¹H-¹³C HMBC NMR spectrum of Psammaplysenes H (**4**) and I (**5**) in MeOD (500 MHz)

Elemental Composition Report Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9 NH Monoisotopic Mass, Even Electron Ions R 557 formula(e) evaluated with 7 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2 ALMOURABIT_ahmed139-1 340 (1.543) Cm (335:342) 1: TOF MS ES+ 7.85e+004 385 100-378 399 377 % 407 756 770 37 408 773794 100 463 829 420 262 310347 371 445 minnin m/z 600 711111 200 250 300 350 400 450 500 550 650 800 100 150 700 750 Minimum: -1.5Maximum: 200.0 10.0 100.0 Mass Calc. Mass mDa PPM DBE 1-FIT i-FIT (Norm) Formula 769.9521 769.9489 3.2 83.3 4.2 13.5 1.8 C32 H36 N O 79Br2 81Br2 769.9548 -2.7 -3.5 4.5 83.3 1.9 C25 H40 N O6 79Br2 81Br2 769.9449 7.2 9.4 9.5 83.4 1.9 C27 H36 N3 O3 79Br2 81Br2 769.9562 -4.1-5.3 9.5 83.4 1.9 C26 H36 N5 O2 79Br2 81Br2

Figure S22. ¹H NMR spectrum of Anomoian C (6) in MeOD (500 MHz)

Figure S23. ¹³C NMR spectrum of Anomoian C (6) in MeOD (500 MHz)

Figure S24. HSQC NMR spectrum of Anomoian C (6) in MeOD (500 MHz)

Figure S25. ¹H–¹H COSY NMR spectrum of Anomoian C (6) in MeOD (500 MHz)

Figure S26. ¹H-¹³C HMBC NMR spectrum of Anomoian C (6) in MeOD (500 MHz)

Figure S27. HR-ESI mass spectrum of Anomoian C (6)

Elemental Composition Report

Single Mass Analysis

Tolerance = 13.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

1: TOF MS ES+

Monoisotopic Mass, Even Electron Ions 517 formula(e) evaluated with 10 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

Figure S28. ¹H NMR spectrum of Anomoian D (7) in MeOD (500 MHz)

Figure S29. ¹³C NMR spectrum of Anomoian D (7) in MeOD (500 MHz)

Figure S30. HSQC NMR spectrum of Anomoian D (7) in MeOD (500 MHz)

Figure S31. ¹H–¹H COSY NMR spectrum of Anomoian D (7) in MeOD (500 MHz)

Figure S32. ¹H-¹³C HMBC NMR spectrum of Anomoian D (7) in MeOD (500 MHz)

Figure S33. HR-ESI mass spectrum of Anomoian D (7)

Elemental Composition Report

Single Mass Analysis Tolerance = 8.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron lons 495 formula(e) evaluated with 6 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

ALMOURABIT ahmed146-1 287 (1.320) Cm (286:292)

Figure S34. ¹H NMR spectrum of Anomoian E (8) in MeOD (500 MHz)

Figure S35. ¹³C NMR spectrum of Anomoian E (**8**) in MeOD (500 MHz)

Figure S36. HSQC NMR spectrum of Anomoian E (8) in MeOD (500 MHz)

Figure S37. ¹H–¹H COSY NMR spectrum of Anomoian E (8) in MeOD (500 MHz)

Figure S38. ¹H-¹³C HMBC NMR spectrum of Anomoian E (8) in MeOD (500 MHz)

Figure S39. HR-ESI mass spectrum of Anomoian E (8)

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

1: TOF MS ES+

Monoisotopic Mass, Even Electron lons 629 formula(e) evaluated with 5 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br: 2-2 81Br: 2-2

Figure S40. ¹H NMR spectrum of Anomoian F (9) in MeOD (500 MHz)

Figure S41. ¹³C NMR spectrum of Anomoian F (9) in MeOD (500 MHz)

Figure S42. HSQC NMR spectrum of Anomoian F (9) in MeOD (500 MHz)

Figure S43. ¹H–¹H COSY NMR spectrum of Anomoian F (9) in MeOD (500 MHz)

Figure S44. ¹H-¹³C HMBC NMR spectrum of Anomoian F (9) in MeOD (500 MHz)

Figure S45. HR-ESI mass spectrum of Anomoian F (9)

Elemental Composition Report

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

1: TOF MS ES+

Monoisotopic Mass, Even Electron lons 648 formula(e) evaluated with 9 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-10 O: 0-10 79Br; 2-2 81Br; 2-2

Figure S46. ¹H NMR spectrum of N, N-dimethyldibromotyramine (10) in MeOD (500 MHz)

Figure S47. ¹³C NMR spectrum of N, N-dimethyldibromotyramine (10) in MeOD (500 MHz)

Figure S48. HR-ESI mass spectrum of N, N-dimethyldibromotyramine (10)

Elemental Composition Report

Single Mass Analysis

Tolerance = 20.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron lons 122 formula(e) evaluated with 3 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-120 N: 0-10 O: 0-10 79Br: 1-1 81Br: 1-1

Figure S49. ¹H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (**11**) in MeOD (500 MHz)

Figure S50. ¹³C NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in MeOD (500 MHz)

Figure S51. ¹H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in DMF-*d*₇(600 MHz)

Figure S52. ¹H NMR spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11) in DMSO (500 MHz)

Figure S53. HR-ESI mass spectrum of 4,5,8-trihydroxyquinoline-2-carboxylic acid (11)

Elemental Composition Report

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

1: TOF MS ES+ 2.38e+005

Monoisotopic Mass, Even Electron Ions 243 formula(e) evaluated with 11 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 ALMOURABIT_ahmed140-1 199 (0.948) Cm (195:204)

100 	222 220 223 224 283 255	461 405					
olinian			1575 69	8,714,771		aai	1267 1327,1345
100	200 300 4	00 500	600	700 800	900	1000 1100 1	1200 1300 1400 1500
Minimum:				-1.5			
Maximum:		200.0	50.0	100.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula
222.0441	222.0528	-8.7	-39.2	12.5	110.3	0.1	C10 H4 N7
	222.0488	-4.7	-21.2	8.5	112.9	2.7	C5 H4 N9 O2
	222.0416	2.5	11.3	12.5	113.3	3.2	C11 H4 N5 O
	222.0475	-3.4	-15.3	3.5	116.2	6.0	C4 H8 N5 O6
	222.0461	-2.0	-9.0	-1.5	116.7	6.6	C3 H12 N 010
	222.0515	-7.4	-33.3	7.5	117.1	6.9	C9 H8 N3 O4
	222.0376	6.5	29.3	8.5	122.4	12.3	C6 H4 N7 O3
	222.0335	10.6	47.7	4.5	122.6	12.4	C H4 N9 O5
	222.0344	9.7	43.7	16.5	124.0	13.9	C17 H4 N
	222.0362	7.9	35.6	3.5	125.3	15.2	C5 H8 N3 O7
	222.0402	3.9	17.6	7.5	126.7	16.5	C10 H8 N O5

Figure S54. ¹H NMR spectrum of Xantherunic acid (**12**) in MeOD (600 MHz)

Figure S55. ¹³C NMR spectrum of Xantherunic acid (**12**) in MeOD (600 MHz)

Figure S56. HR-ESI mass spectrum of Xantherunic acid (12)

Elemental Composition Report

Single Mass Analysis

Tolerance = 30.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron lons

211 formula(e) evaluated with 6 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 ALMOURABIT ahmed142-1 184 (0.879) Cm (182:188)

