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Including observation error to a MAR(1) model

Formally, autoregressive models with added observation errors are referred to as state-space mod-
els. One strength of recent statistical packages for fitting autoregressive models in ecology, including
MARSS (Holmes et al., 2012; Hampton et al., 2013), which we use for the analysis in the main text,
is their ability to do so within a state-space framework.

Taking into account an observation error when present, which is often the case, can help to get
better estimates (Lindén & Knape, 2009). However, adding an observation error, when unknown,
may also bias the estimation (Knape, 2008). A recent study by Auger-Méthé et al. (2016) indeed
demonstrated that state space models can suffer from parameter- and state-estimation problems when
both the observation and process error are unknown and especially when observation errors are larger
than process errors.

We therefore investigated the effect of adding observation error to the simulated datasets as follows:

yt = Ixt + vt, vt ∼ MVN(0,R) (1)

where I is the identity, 2 × 2 matrix and the correlation structure of observation errors is specified
within the matrix R. For our purpose, R will be a simple scalar 2 × 2 matrix with diagonal elements
equal to ν2, so that process error is equal to ν2 for the two species and errors are uncorrelated.

We limited our investigation to competitive dynamics (Gompertz, Ricker and Beverton Holt) with
process error σ2

1 = 0.1 for the sake of simplicity and feasibility (state-space models are much more
time-consuming to fit than their state-only counterpart). We considered three levels of observation
error, ν2 = 0.01, 0.1 and 0.5, to investigate situations in which observation error was lower than, equal
to, and greater than the simulated process error, respectively.

For the fit, the observation variance-covariance matrix was specified as diagonal and equal, so
that it exactly matches the way observation errors have been introduced in the simulated data. Note
that in the case of process errors, a perfect match between σ2

1 and σ2
2 , and the corresponding fitted

values Σ11 and Σ22 can only be assumed when the data-generating model is of Gompertz type. When
the dynamics are Ricker or Beverton-Holt, the change in nonlinearities mean that variability due to
nonlinear functional forms will end up in the process error (see Fig. S5.1). That said, it is still
reasonable to assume that error variances should have similar order of magnitude.

How do observation errors affect the performance of MAR(1)
models?

Table S5.1 and 5.2 are structured similarly to tables 3 and 4 in the main text. Table S5.1 displays
the statistics evaluating how the B matrix estimated in a MAR(1) model in a state-space context
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approaches the Jacobian matrix J of the underlying, data-generating model.

model Gompertz Ricker Beverton-Holt

Obs. Err None 0.01 0.1 0.5 None 0.01 0.1 0.5 None 0.01 0.1 0.5

specific question evaluation criterion

0.99 0.99 0.96 0.87 0.94 0.93 0.91 0.82 0.94 0.91 0.84 0.68

0.87 0.79 0.57 0.30 0.92 0.58 0.52 0.21 0.91 0.54 0.45 0.33

0.92 0.91 0.76 0.39 0.91 0.89 0.80 0.56 0.89 0.85 0.65 0.45

0.99 0.98 0.95 0.80 0.94 0.82 0.77 0.52 0.89 0.81 0.67 0.37

0.01 0.00 -0.01 0.01 0.09 0.06 0.05 0.08 0.04 0.04 0.03 0.01

0.00 -0.01 0.02 0.09 0.07 0.05 0.08 0.17 0.00 0.00 0.04 0.11

0.01 0.01 0.01 0.03 0.05 0.03 0.04 0.06 0.01 0.01 0.01 0.01

-0.01 -0.01 -0.02 -0.04 0.06 0.05 0.07 0.06 -0.01 -0.01 -0.04 -0.07

6.33 7.33 6.67 12.00 43.33 34.33 28.00 21.33 24.00 22.67 19.33 14.67

5.00 4.67 6.67 7.67 15.00 11.00 12.67 13.67 7.00 6.67 9.33 12.67

6.67 7.33 8.00 9.33 29.33 19.33 20.00 20.67 10.00 9.67 9.33 11.33

5.33 5.67 7.33 16.00 23.67 19.00 21.67 24.67 6.33 7.67 11.67 18.00

% of j11 correctly ranked 83.33 82.33 78.67 57.33 82.00 80.00 75.67 64.33 89.67 87.00 79.33 64.00

% of j12 correctly ranked 77.67 74.33 67.33 45.33 77.33 73.33 67.00 49.00 88.00 88.33 74.00 51.00

% of j21 correctly ranked 82.00 77.67 68.33 51.67 78.67 76.00 67.00 52.67 80.67 81.00 66.67 51.00

% of j22 correctly ranked 84.33 83.33 78.33 60.33 77.33 75.00 65.00 49.33 81.67 78.33 67.00 43.67

% of j11 correctly signed 96.33 97.33 94.33 87.33 93.00 92.33 90.00 86.00 97.33 97.00 95.67 89.33

% of j12 correctly signed 94.33 92.33 88.67 71.00 91.00 85.33 82.00 67.67 91.33 88.67 83.00 64.33

% of j21 correctly signed 94.67 92.67 91.00 80.00 90.67 88.67 84.67 73.33 82.00 81.00 78.33 67.33

% of j22 correctly signed 96.33 96.33 93.67 84.00 90.67 88.00 86.67 72.67 88.33 85.33 78.33 66.00

0.93 0.90 0.81 0.60 0.64 0.62 0.53 0.39 0.90 0.83 0.74 0.70

Subjective color scale: Fairly Good Some Issues irrelevant

Do B and J correlate ?

Corr. between b11 and j11

Corr. between b12 and j12

Corr. between b21 and j21

Corr. between b22 and j22

Is there some 
systematic bias in the 

fitted B values ?

median of b11 - j11

median of b12 - j12

median of b21 - j21

median of b22 - j22

Is J within the 
confidence intervals of 

B ?

% of j11 out of c.i.95% of b11

% of j12 out of c.i.95% of b12

% of j21 out of c.i.95% of b21

% of j22 out of c.i.95% of b22

Do ranks in B values 
reflect ranks in J values 

?

Do signs in B values 
reflect signs in J 

values ?

B and J matrix 
properties Corr. between max. eigen. of B and J

Best performing 
cases

Less performing 
cases

Table S5.1: For each of the competition models, 4 columns are presented. The first one corresponds to the performance

of MAR(1) without including observation error (as in table 3 of the main manuscript), and the three others corresponds

to the three levels of observation error considered (ν2 = 0.01, 0.1 and 0.5). Rows are organized according to statistics

evaluating various aspects of the approximation of J by B. The colorscale is subjective but allows for quickly identifying

the best performing (green) and worst performing (red) situations.

It is clear from Table S5.1 that the inclusion of observation errors makes it more challenging for
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B to approximate J, and sometimes to a large extent. Consider for example how well b12 relates
to j12: the correlation ranges from 0.9 or 0.8 for absent or small observation errors to 0.30 for large
observation errors. This points to bias in parameters (i.e., estimated parameters such as net interactions
and density-dependence are away from their true values, although this bias is not the same accross
simulations). The pattern is similar when considering the predictive ability of the MAR(1) model
fitted with observation errors (Table S5.2).

model Gompertz Ricker Beverton-Holt

noise None 0.01 0.1 0.5 None 0.01 0.1 0.5 None 0.01 0.1 0.5

specific question evaluation criterion

10.67 12.00 10.00 9.67 12.00 12.00 11.67 9.00 9.00 8.33 6.67 9.33

6.33 5.33 9.00 7.33 5.33 6.00 7.33 8.33 7.33 8.67 7.00 6.67

99.00 99.33 97.67 96.33 98.33 98.33 98.00 96.00 98.33 98.33 97.00 93.33

-0.01 -0.01 -0.01 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01

% of well predicted next trend, sp1 84.33 85.67 84.33 84.33 82.67 82.33 81.67 80.33 74.67 74.33 73.33 72.67

% of well predicted next trend, sp2 78.00 78.00 79.33 78.00 77.33 75.33 74.67 74.00 69.00 69.33 68.67 63.33

% ASE >1, sp1 9.33 9.00 11.00 14.33 18.00 20.00 22.00 27.67 23.67 25.67 27.00 33.67

%ASE >1, sp2 17.00 17.00 18.00 25.33 28.00 29.00 29.67 31.00 31.00 31.00 31.33 35.33

0.98 0.97 0.96 0.92 0.48 0.57 0.55 0.58 0.70 0.71 0.72 0.74

0.93 0.92 0.91 0.85 0.72 0.70 0.62 0.51 0.59 0.57 0.52 0.40

0.92 0.92 0.88 0.76 6.63 5.88 5.18 3.73 4.46 4.32 3.83 3.16

0.89 0.89 0.92 0.72 0.45 0.45 0.43 0.39 0.32 0.31 0.31 0.25

3.68 2.34 3.67 2.33 49.50 42.48 30.33 11.07 37.00 33.33 22.33 8.33

2.34 1.67 2.00 3.33 10.37 6.69 4.00 6.04 22.00 16.33 13.00 4.67

99.00 99.00 98.33 97.33 97.66 96.99 97.67 96.31 98.33 98.33 95.67 95.33

88.29 88.96 81.67 74.67 86.29 83.61 78.33 66.78 78.67 77.67 74.00 69.33

Subjective color scale: Fairly Good Some Issues irrelevant

Accuracy of the 
detection of the 

environmental effect

% of q11 out of c.i.95% of c11

% of q21 out of c.i.95% of c21

% of q11 correctly signed

median of c11 - q11

median of c21 - q21

Accuracy of the short-
term forecasts

Accuracy of the 
prediction of the PRESS 

effect

Correlation between Δx1
* and Δn1

*

Correlation between Δx2
* and Δn2

*

Slope of the linear regression Δx1
* ~ Δn1

*

Slope of the linear regression Δx2
* ~ Δn2

*

% of Δn1
* out of c.i.95% of Δx1

*

% of Δn2
* out of c.i.95% of Δx2

*

% of Δn1
* correctly signed

% of Δn2
* correctly signed

Best performing 
cases

Less performing 
cases

Table S5.2: For each of the competition models, 4 columns are presented. The first one corresponds to the performance

of MAR(1) without including observation errors (as in table 4 of the main manuscript), and the three others corresponds

to the three levels of observation errors considered (ν2 = 0.01, 0.1 and 0.5). Rows are organized according to statistics

evaluating the performance of the short-and long-term predictions offerd by MAR(1). The colorscale is subjective but

allows for quickly identifying the best performing (green) and worst performing (red) situations.

Neither notable improvements nor strong degradations in short-term forecasts or long-term pre-
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dictions are associated with the inclusion of observation errors, thus observation error identifiability
issues mostly impact parameter inference.

How well are observation errors recovered by MAR(1) models?

We investigated how well the state-space formulation of MAR(1) models would distinguish observation
error from process error by comparing estimated values for the fitted observation error ν2 and fitted
process errors Σ11 and Σ22 among simulations (Fig S4.1).
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Figure S5.1: This figure shows, for the three competition models investigated (rows, Gompertz, Ricker and Beverton

Holt) and the three observation error values simulated (columns, ν2 = 0.01, 0.1 and 0.5) how well those are approximated

by fitted observation errors and fitted process errors Σ11 and Σ22 for 1000 simulated experiments. Note that Σ11 and

Σ22 are the fitted counterparts of process errors σ2
1 and σ2

2 , included in species 1 and 2 growth rates. For this experiment

focusing on observation errors, both were kept at 0.1. Each dashed line in the graph corresponds to a single simulation

with a unique parameter set. Red dots correspond to cases in wich the true simulated value is outside of the confidence

intervals provided by the MAR(1) model.

Figure S5.1 shows that even for data generated by Gompertz dynamics, the estimated process and
observation errors tend to trade-off: whenever the observation error is underestimated the process error
is overestimated and vice versa, especially for species 1 that is also under the influence of environmental
forcing. These findings confirm results obtained in other modelling studies (Knape, 2008; Auger-
Méthé et al., 2016). Even though not accounting for observation errors when present can possibly
lead to biased estimates of the environmental effect (Lindén & Knape, 2009), doing so without prior
knowledge of the magnitude of observation error versus process error to constrain model fitting is a
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risky endeavour: observation errors might end up in the process error term, or vice versa, which may
significantly hamper conclusions drawn from fitted variances or estimated model coefficients.
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