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Abstract
1.	 Multivariate	autoregressive	(MAR)	models	are	an	increasingly	popular	technique	to	
infer	interaction	strengths	between	species	in	a	community	and	to	predict	the	com-
munity	response	to	environmental	change.	The	most	commonly	employed	MAR(1)	
models,	with	one	time	lag,	can	be	viewed	either	as	multispecies	competition	models	
with	Gompertz	density	dependence	or,	more	generally,	as	a	linear	approximation	of	
more	complex,	nonlinear	dynamics	around	stable	equilibria.	This	latter	interpreta-
tion	allows	for	broader	applicability,	but	may	come	at	a	cost	in	terms	of	interpreta-
tion	of	estimates	and	reliability	of	both	short-	and	long-term	predictions.

2.	 We	investigate	what	these	costs	might	be	by	fitting	MAR(1)	models	to	simulated	
2-species	competition,	consumer-resource	and	host–parasitoid	systems,	as	well	as	
a	larger	food	web	influenced	by	the	environment.	We	review	how	MAR(1)	coeffi-
cients	can	be	interpreted	and	evaluate	how	reliable	are	estimates	of	interaction	
strength,	rank,	or	sign;	accuracy	of	short-term	forecasts;	as	well	as	the	ability	of	
MAR(1)	models	to	predict	the	long-term	responses	of	communities	submitted	to	
environmental	change	such	as	PRESS	perturbations.

3.	 The	net	effects	of	 species	 j	 on	 species	 i	 are	usually	 (90%-95%)	well	 recovered	 in	
terms	of	sign	or	rank,	with	the	notable	exception	of	overcompensatory	dynamics.	In	
actual	values,	net	effects	of	species	j	on	species	i	are	not	well	recovered	when	the	
underlying	dynamics	are	nonlinear.	MAR(1)	models	are	better	at	making	short-term	
qualitative	forecasts	(next	point	going	up	or	down)	than	at	predicting	long-term	re-
sponses	 to	 environmental	 perturbations,	 which	 can	 be	 severely	 over-	 as	 well	 as	
underestimated.

4.	 We	conclude	that	when	applying	MAR(1)	models	to	ecological	data,	inferences	on	
net	effects	among	species	should	be	limited	to	signs,	or	the	Gompertz	assumption	
should	be	tested	and	discussed.	This	particular	assumption	on	density-depend-
ence	(log-linearity)	is	also	required	for	unbiased	long-term	predictions.	Overall,	we	
think	that	MAR(1)	models	are	highly	useful	tools	to	resolve	and	characterize	com-
munity	dynamics,	but	we	recommend	to	use	them	in	conjunction	with	alternative,	
nonlinear	 models	 resembling	 the	 ecological	 context	 in	 order	 to	 improve	 their	
	interpretation	in	specific	applications.
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1  | INTRODUC TION

Resolving	 how	 species	 in	 a	 community	 interact	 with	 each	 other	
and	respond	to	environmental	change	 is	a	 fundament	of	commu-
nity	 ecology,	 and	multivariate	 autoregressive	 (MAR)	models	 pro-
vide	one	approach	to	do	so.	MAR	models	originally	gained	traction	
as	 “Vector	 Autoregressive	 Models”	 in	 econometrics	 (Lutkepohl,	
2005;	 Sims,	 1980),	 to	 account	 for	 temporal	 dependencies	 be-
tween	time	series,	predict	responses	to	economic	shocks,	and	infer	
prediction-based	 causality	 (Detto	 et	al.,	 2012;	 Granger,	 1969).	 In	
neuroscience,	they	are	used	to	reveal	connectivity	between	brain	
regions	(Harrison,	Penny,	&	Friston,	2003;	Rogers,	Katwal,	Morgan,	
Asplund,	&	Gore,	2010;	Seth,	Barrett,	&	Barnett,	2015).	In	ecology,	
they	 are	 applied	 to	 infer	 species	 “interaction	 strength,”	 a	 crucial	
but	multifaceted	 notion	 in	 community	 ecology	 (see	Novak	 et	al.,	
2016;	Wootton	&	Emmerson,	2005)	which	 in	 a	broad	 sense	 rep-
resents	 the	 intra-	 and	 interspecific	 net	 effects	 of	 species	 abun-
dances	on	population	growth	rates.	Their	use	is	also	advocated	to	
identify	 environmental	 drivers	 of	 community	 dynamics	 (Fischer,	
Frost,	&	Ives,	2001;	Francis	et	al.,	2012;	Hall	et	al.,	2009;	Hampton	
et	al.,	2008;	Huber	&	Gaedke,	2006;	Klug,	Fischer,	Ives,	&	Dennis,	
2000;	Lindegren,	Möllmann,	Nielsen,	&	Stenseth,	2009;	Mac	Nally	
et	al.,	2010;	Scheef,	Hampton,	&	Izmest’eva,	2013),	to	predict	the	
fate	of	communities	submitted	to	environmental	changes	(Cooper,	
Spencer,	&	Bruno,	2015;	Gross	&	Edmunds,	2015;	Ives,	1995;	Ives,	
Carpenter,	&	Dennis,	1999),	or	extract	measures	of	community	sta-
bility	and	resilience	(Britten	et	al.,	2014;	Gross	&	Edmunds,	2015;	
Ives	et	al.,	1999;	Klug	&	Cottingham,	2001;	Lindegren	et	al.,	2010).	
This	broad	use	of	MAR	models	in	ecology	arises	from	the	connec-
tion	 of	MAR(1)	models	 (with	 lag	 of	 one	 time-step)	 to	mathemat-
ical	 models	 of	 community	 dynamics	 (Ives,	 Dennis,	 Cottingham,	
&	 Carpenter,	 2003).	 Today,	MAR	modelling	 has	 been	 brought	 to	
a	 general	 audience	 thanks	 to	 the	 design	 of	 user-friendly	R	 pack-
ages	(Hampton	et	al.,	2013;	Holmes,	Ward,	&	Wills,	2012;	Holmes,	
Ward,	&	Scheuerell,	2014),	and	even	though	most	of	the	early	MAR	
applications	 in	 ecology	 focused	 on	 lake	 or	 marine	 systems,	 the	
approach	has	also	taken	up	in	terrestrial	ecology	(Almaraz	&	Oro,	
2011;	Mutshinda,	O’Hara,	&	Woiwod,	2009).

MAR(1)	 models	 offer	 to	 ecologists	 a	 practical	 tool	 to	 study	
time	series	that	is	also	well	rooted	in	ecological	theory,	as	they	can	
be	viewed	as	a	 first-order	approximation	of	unknown,	nonlinear	
dynamics	 around	 a	 stable	 equilibrium	 (Ives	 et	al.,	 2003).	Hence,	
MAR(1)	models	can	be	fitted	to	a	large	number	of	systems	whose	
underlying	dynamics	are	unknown,	as	long	as	stationarity	can	be	
safely	assumed	for	 the	 time	series	at	hand.	Once	fitted,	MAR(1)	
models	are	essentially	a	multispecies	Gompertz	dynamics	(Dennis	
&	Taper,	1994;	Ives	et	al.,	2003;	Supporting	Information	S1).	In	a	

Gompertz	 competition	model,	 the	 expected	 growth	 for	 a	 given	
species	at	times	t+1	is	a	linear	function	of	its	ln-density	and	of	the	
ln-density	of	its	competitors	at	times	t.	The	linear	assumption	of	
the	Gompertz	model	is	convenient	when	it	comes	to	model	fitting	
(Ives,	1995)	because	growth	rates	are	expressed	in	a	logarithmic	
scale.	However,	 density-dependencies	other	 than	Gompertz	 are	
likely	 to	 occur	 in	 real	 systems,	 for	 example,	 when	 trophic	 rela-
tionships	are	 involved	as	we	have	no	mechanistic	predator–prey	
model	 with	 Gompertz	 density	 dependence.	 Yet,	 very	 little	 is	
known	regarding	the	robustness	of	MAR(1)	models	to	departures	
from	 ln-linearity	 in	 the	underlying,	data-generating	dynamics.	 In	
his	 seminal	 paper,	 Ives	 (1995)	provided	 some	answers	 regarding	
the	robustness	of	MAR(1)	models	to	departures	from	ln-linearity,	
using	a	model	of	three	competing	prey	following	a	Lotka–Volterra	
type	dynamics	with	Ricker	density-dependence	and	of	one	pred-
ator	with	a	type	II	functional	response.	As	Ives	(1995)	stated,	the	
simulated	example	was	 “moderately	complex	and	 therefore	pre-
sented	 a	 considerable	 challenge	 to	 the	 prediction	 techniques.”	
The	 results	 were	 encouraging,	 proving	 that	 meaningful	 predic-
tions	could	be	obtained	for	such	a	system.	However,	general	con-
clusions	cannot	be	drawn	from	a	single	simulated	experiment	with	
a	single	parameter	set	and	model	structure.	A	thorough	evaluation	
is	currently	critically	needed,	as	the	applications	of	MAR	modelling	
in	community	ecology	are	increasing,	while	there	is	a	controversy	
regarding	the	usefulness	of	linear	approximations	for	unravelling	
ecological	dynamics	from	observed	time	series.	On	the	one	hand,	
MAR(1)	models	 are	 still	 the	 base	 for	 recent	methodological	 de-
velopments	in	high-dimensional	models	(Ovaskainen	et	al.,	2017),	
while	on	the	other	hand,	some	studies	have	suggested	that	linear	
autoregressive	approaches	may	be	inappropriate	to	model	nonlin-
ear	ecological	dynamics	and	have	proposed	alternative	nonlinear	
fitting	 approaches	 to	 infer	 species	 interactions	 (Sugihara	 et	al.,	
2012;	Suzuki,	Yoshida,	Nakanishi,	&	Fukuda,	2017).

This	 study	 therefore	 provides	 a	 thorough	 evaluation	 of	 the	
performance	of	MAR(1)	models	when	fitted	to	unknown	nonlinear	
dynamics.	To	do	so,	we	first	briefly	review	the	basic	formulation	
and	assumptions	of	MAR(1)	models.	We	then	show	how	a	wider	
range	of	models	of	 ecological	 communities	 relate	 to	MAR(1),	 by	
addressing	 an	 array	 of	 nonlinear	 stochastic	 models	 represent-
ing	 competitor,	 predator–prey,	 and	 host–parasitoid	 interactions,	
as	 well	 as	 a	 larger	 food	 web.	 The	 nonlinearities	 we	 explore	
occur	 in	 the	 form	 of	 nonlinear	 self	 regulation	 such	 as	 in	 Ricker	
or	Beverton–Holt	models,	possibly	leading	to	overcompensatory	
dynamics	 with	 Ricker,	 and	 as	 nonlinear	 functional	 responses	 in	
enemy-victim	models	(predator–prey	or	host–parasitoid	systems).	
For	 each	model,	we	 present	 equilibria	 and	 Jacobian	matrices	 to	
demonstrate	how	these	models	link	to	the	MAR(1)	formulation.	To	
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test	 the	 robustness	of	 fitted	MAR(1)	models	 to	nonlinearities	 in	
ecological	dynamics	we	extensively	sample	the	parameter	space	
of	each	model	to	produce	a	 large	set	of	simulated	time	series	of	
interacting	species	subjected	to	three	different	levels	of	process	
error	 to	which	we	 fit	 a	MAR(1)	model.	 From	 these,	we	evaluate	
the	capacity	of	the	fitted	MAR(1)	model	to	(1)	provide	information	
about	the	ecological	processes	at	play	in	the	underlying	ecological	
dynamics,	(2)	infer	interaction	strengths	and	approximate	the	un-
derlying	community	dynamics,	(3)	predict	short-term	dynamics	as	
well	as	long-term	changes	induced	by	altered	mean	environmental	
conditions.

2  | MATERIAL S AND METHODS

2.1 | MAR(1) theory

A	detailed	description	of	the	formulation	of	MAR(1)	models	and	how	
they	connect	 to	more	mechanistic	models	derived	from	ecological	
theory	is	provided	in	Supporting	Information	S1,	sections	1	&	2.	The	
standard	equation	for	a	MAR(1)	model	describing	the	dynamics	of	a	
vector x of	time	series	is:

This	 equation	 can	 be	 interpreted	 as	 a	 multispecies	 Gompertz	
competitive	community	dynamics,	in	which	x	are	species	ln-abun-
dances,	the	vector	of	intercept	a	corresponds	to	the	zero	ln-den-
sity	growth	rate;	the	matrix	B	relates	to	the	intra-	and	interspecific	
competition	 coefficients,	 C	 corresponds	 to	 the	 environmental	
effect	on	species	growth	rates	and	wt	 is	a	multivariate-normally	
distributed	 error	 vector	 with	 mean	 0 and variance-covariance 
	matrix	Σ.

The	applicability	of	MAR(1)	models	is	not	restricted	to	Gompertz	
dynamics,	 for	 Ives	et	al.	 (2003)	showed	a	mapping	between	B and 
the	 Jacobian	 matrix	 J	 for	 a	 general	 nonlinear	 model.	 If	 species	
ln-abundance nt+1	is	a	nonlinear,	stochastic	function	of	abundances	
nt	and	environmental	covariates	ut	such	that	nt+1 = f(nt,ut),	which	is	
stationary	 around	 equilibrium	 n*,	 the	 linear	 approximation	 of	 this	
process	around	the	equilibrium	abundances	n*	and	for	environmen-
tal	variables	standardized	to	mean	0	simplifies	to:

where	x	now	represents	the	deviation	of	ln-abundances	from	equi-
librium	 (xt = nt−n∗),	 J is	 the	 Jacobian	matrix	 of	 partial	 derivatives	
with	respect	to	species	ln-abundances	and	Q is	the	matrix	describ-
ing	the	effect	of	the	environment	on	species	growth	rates	modelled	
as	 rt = r + Qut.	By	comparing	equation	 (1)	and	 (2)	 it	 is	 clear	 that	B 
corresponds	to	J,	C	corresponds	to	Q	and	that	the	intercept	vector	
a	 is	a	zero	vector,	since	the	 ln-abundances	are	centred	around	the	
equilibrium	point.	 In	 community	 ecology,	 J	 is	 often	 referred	 to	 as	
the	 community	matrix	 (although	 the	 term	 “community	matrix”	 en-
compasses	other	forms,	see	Novak	et	al.,	2016)	and	can	be	used	to	
define	interaction	strengths.	The	ln-transformation	before	centring	

of	the	species	abundance	data	is	essential	to	the	stochastic	context	
because	the	process	error	on	population	growth	rates	 is	generally	
ln-normal	 (Royama,	1992)	and	all	 the	 theory	 for	MAR(1)	models	 is	
developed	for	Gaussian	process	error.

2.1.1 | Short-term forecasts and long-term 
predictions following environmental “PRESS” 
perturbations

A	fitted	MAR(1)	model	 such	as	Equation	1	can	be	directly	applied	
to	predict	species	ln-abundances	for	the	next	time	step,	given	that	
current	 ln-abundances	 and	 covariates	 are	 known.	 Such	 forecasts	
can	 support	management	and	conservation	of	natural	populations	
(Ward,	Holmes,	Thorson,	&	Collen,	2014).	They	are	obtained	under	
the	constraining	assumption	that	the	system	is	at	its	dynamic	equi-
librium,	 that	 is,	 the	 means	 of	 the	 stationary	 distributions	 of	 spe-
cies	 ln-abundances	 and	 environmental	 covariates	 remain	 constant	
through	time.

MAR(1)	models	can	also	be	used	to	predict	the	fate	of	the	com-
munity	over	longer	periods,	in	response	to	a	change	in	the	mean	of	
the	 environmental	 covariates	 (i.e.	 a	 “PRESS”	 perturbation	 Bender,	
Case,	&	Gilpin,	1984).	Such	change	could	be,	for	example,	a	sudden	
and	 sustained	 increase	 in	 temperature.	 From	 the	mean	 stationary	
distribution	of	xt	at	equilibrium	derived	from	Equation	1	(Ives,	1995;	
Klug	 &	 Cottingham,	 2001),	 the	 expected	 change	 in	 species	 equi-
librium	 ln-abundances	 following	 an	 environmental	 perturbation	
Δu = u2−u1	becomes

Equation	3	 provides	 a	 simple	 formulation	 to	 predict	 long-term	
changes	in	species	ln-abundances	following	environmental	change,	
explicitly	 disentangling	 changes	 due	 to	 species	 interactions	 in	
(I −	B)−1	from	changes	due	to	environmental	forcing	CΔu.

2.2 | Simulating ecological dynamics

Because	we	 focus	on	how	nonlinearities	 affect	 the	performance	of	
fitted	MAR(1)	models	when	analysing	community	dynamics,	we	used	
low-dimensional,	 2-species	 systems,	 to	 explore	 in	 detail	 the	 conse-
quences	of	disregarding	such	nonlinearities.	In	addition,	we	also	con-
sidered	a	larger	food	web	(see	Supporting	Information	S2	for	details).	
We	 used	 six	 2-species,	 discrete-time	models	 to	 simulate	 ecological	
dynamics	(Table	1).	Three	competition	models	were	implemented	with	
either	Gompertz,	Ricker	or	Beverton–Holt	density	dependence.	Prey–
predator	 dynamics	 was	 simulated	 with	 the	 Lotka–Volterra	 model,	
with	and	without	 a	 type	 II	 functional	 response.	 Lastly,	host–parasi-
toid	 dynamics	was	 simulated	with	 the	May–Hassell	model	 (Hassell,	
2000;	May,	1978).	Without	stochasticity,	each	but	one	of	these	mod-
els	displays	a	stable	equilibrium	point.	The	Lotka–Volterra	model	with	
type	II	functional	response	can	be	parameterized	to	produce	either	a	
stable	equilibrium	point	or	a	stable	 limit	cycle,	and	we	treated	both	
separately.

(1)xt+1=a+Bxt+Cut+wt,wt∼MVN(O,Σ)

(2)xt+1≈ Jxt+Qut

(3)Δx∗ = (I−B)−1CΔu.
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In	 each	 model,	 stochasticity	 was	 introduced	 in	 the	 species	
growth	rate	as	rt = r + qUt + wt,	where	wt ~ N(0,	σ2)	and	Ut	represents	
an	external	environmental	driver	with	a	moderately	complex	auto-
correlation	structure	 (AR(5)	model,	 including	some	autocorrelation	
over	several	timesteps,	see	Supplementary	Information	S3	for	how	
to	generate	plots	of	the	simulations)	exerting	some	control	on	spe-
cies	growth.	In	each	model,	only	species	1	was	affected	by	the	en-
vironmental	variable	(q	=	0	for	species	2).	To	study	the	effect	of	the	
intensity	of	process	error	on	the	robustness	of	MAR(1)	models,	we	
considered	 three	 scenarios.	Process	error	on	 species	1	was	 set	 to	
be	either	negligible	(σ2

1
= 0.01),	on	par	with	the	strength	of	the	en-

vironmental	signal	(σ2
1
= 0.1)	and	well	above	it	(σ2

1
= 0.5).	For	species	

2,	process	error	was	kept	fixed	at	the	intermediate	level	(σ2
2
= 0.1).	

Such	range	of	process	error	matches	what	 is	observed	 in	the	field	

(Dennis,	Desharnais,	Cushing,	Henson,	&	Costantino,	2001;	Jonzén,	
Pople,	Grigg,	&	Possingham,	2005).

2.2.1 | Gompertz competition

The	 discrete-time	 Gompertz	 2-species	 competition	 model	 (see	
Supporting	 Information	S1,	section	3.1	for	a	complete	description)	
serves	 as	 a	 control	 in	 our	 study	 as	 its	 parameters	 show	a	perfect	
mapping	with	the	fitted	coefficients	of	a	MAR(1)	model.	The	equi-
librium	ln-abundances	derived	from	Equation	1	are	n∗

1
=

α12r2 − r1α22

α21α12 −α11α22
 

and n∗
2
=

α21r1 − r2α11

α21α12 −α11α22
,	and	the	Jacobian	matrix	is:

(4)J=

(

1−α11 −α12

−α21 1−α22

)

.

TABLE  1 Name,	ecological	significance,	and	values	of	all	parameters	used	in	our	data-generating	models.	LVR	:	Lotka-Volterra	model	in	
discrete-time	with	Ricker	density-dependence;	LVR-T2,	same	model	with	a	Type	II	Holling	functional	response	instead.	Min	and	max	values	
refer	to	the	bounds	of	the	uniform	distribution	used	for	parameter	simulation

Model Notation Ecological meaning Min value Max value

Common	to	all	models q Environmental	effect	on	species	1	growth	rate 0.01 0.5

Gompertz α11 Intraspecific	competition	for	species	1 0.01 1.9

α12 Competitive	effect	of	species	2	on	species	1 0.01 0.5

α21 Competitive	effect	of	species	1	on	species	2 0.01 0.5

α22 Intraspecific	competition	for	species	2 0.01 1.9

r1 Zero-log-density	growth	rate	for	species	1 0.5 2

r2 Zero-log-density	growth	rate	for	species	2 0.5 2

Ricker α11 Intraspecific	competition	for	species	1 0.01 1.9

α12 Competitive	effect	of	species	2	on	species	1 0.01 0.5

α21 Competitive	effect	of	species	1	on	species	2 0.01 0.5

α22 Intraspecific	competition	for	species	2 0.01 1.9

r1 Intrinsic	growth	rate	for	species	1 0.5 2

r2 Intrinsic	growth	rate	for	species	2 0.5 2

Beverton–Holt α11 Intraspecific	competition	for	species	1 0.01 1.9

α12 Competitive	effect	of	species	2	on	species	1 0.01 0.5

α21 Competitive	effect	of	species	1	on	species	2 0.01 0.5

α22 Intraspecific	competition	for	species	2 0.01 1.9

r1 Intrinsic	growth	rate	for	species	1 0.1 5

r2 Intrinsic	growth	rate	for	species	2 0.1 5

LVR α Intraspecific	competition	for	species	1	(prey) 0.01 0.9

r Intrinsic	growth	rate	for	species	1	(prey) 0.5 2

γ Predator	(species	2)	attack	rate 0.01 0.5

ε Predator	(species	2)	assimilation	efficiency 0.1 0.5

μ Predator	(species	2)	mortality	rate 0.1 0.8

LVR-T2 h Handling	time	of	prey	items	by	the	predator 0.01 0.1

May-Hassell	 r Intrinsic	growth	rate	of	the	host 0.5 2

c Number	of	female	parasitoids	sprouting	from	host 0.01 0.9

b Searching	efficiency	by	the	parasitoid 0.01 0.5

l Aggregation	parameter	for	the	parasitism	distribution 0.01 0.9
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Because	all	 Jacobian	elements	relate	directly	 to	one	single	param-
eter	of	the	Gompertz	model,	the	elements	of	a	B	matrix	from	a	fitted	
MAR(1)	model	can	be	interpreted	ecologically	in	terms	of	intra-	and	
interspecific	competition	strengths.

2.2.2 | Ricker competition

As	 Ives	et	al.	 (2003);	 Ives,	Einarsson,	Jansen	and	Gardarsson	 (2008),	
we	use	 a	2-species	 competition	model	with	Ricker	density	depend-
ence	to	mimic	Lotka–Volterra	competition	in	discrete	time	(Supporting	
Information	S1,	section	3.2).	For	simplicity,	we	refer	to	it	as	the	“Ricker	
competition”	 model,	 leaving	 the	 Lotka–Volterra	 denomination	 for	
Prey–Predator	models	(see	next	section).	The	Ricker	competition	model	
differs	from	the	continuous	time	version	and	from	the	Beverton–Holt	
dynamics	(see	eqs.	17–21	in	Supporting	Information	S1)	by	its	ability	
to	promote	 cycles	 and	 chaos	 at	 high	 growth	 rates.	This	 system	has	
equilibrium	densities	n∗

1
= ln

(

α12r2 − r1α22

α21α12 −α11α22

)

 and n∗
2
= ln

(

α21r1 − r2α11

α21α12 −α11α22

)

,	and	the	Jacobian	is:

Now	 that	 equilibrium	 values	 enter	 the	 Jacobian,	 its	 elements	 cor-
respond	to	a	mixture	of	parameters	relating	to	different	ecological	
processes	(here	intra-	and	interspecific	competition).	This	is	why	fit-
ted B	matrices	are	often	said	to	be	phenomenological:	their	elements	
describes	the	net	effect	of	one	species	on	another,	but	because	of	
the	mixture	it	is	impossible	to	link	such	observed	net	effect	unambi-
giously	to	a	given	ecological	process.

2.2.3 | Other ecological dynamics considered

The	complete	set	of	derivations	of	equilibria	and	Jacobian	matrices	
for	 the	 four	 other	 ecological	 dynamics	 is	 presented	 in	 Supporting	
Information	 S1.	 The	 third	 competition	model	 used,	 Beverton–Holt	
(Supporting	 Information	 S1,	 section	 3.3),	 is	 usually	 more	 stable	
than	its	Ricker	counterpart	(Kot,	2001)	but	displays	a	more	intricate	
Jacobian.	 We	 also	 simulated	 three	 types	 of	 Lotka–Volterra	 type	
predator–prey	dynamics.	In	the	first	(“LVR”)	the	prey	had	Ricker	den-
sity-dependence	and	the	predator	consumed	prey	and	died	at	fixed	
rates	(Supporting	Information	S1,	section	3.4).	An	important	feature	
of	this	model	is	that	prey	equilibrium	abundance	is	not	affected	by	
its	 growth	 rate	 (Supporting	 Information	S1),	 and	hence	 the	PRESS	
perturbation	imposed	on	the	prey	only	affects	the	predator.	 In	the	
second	predator–prey	model	 (“LVR-T2”),	 the	predator	has	a	 type	 II	
functional	 response	 (Supporting	 Information	 S1,	 section	 3.5).	 This	
model	is	akin	to	the	Rosenzweig–MacArthur	model,	but	its	discrete	
nature	allows	for	a	larger	range	of	dynamical	behaviours	(e.g.	chaos).	
Depending	on	 its	 parameterization,	 the	 LVR-T2	 can	either	 present	
a	 stable	equilibrium	or	 it	 can	display	 limit	 cycles.	Because	we	 sus-
pected	MAR(1)	models	might	handle	the	two	dynamical	behaviours	
differently,	we	treated	them	as	two	separate	models,	termed	“LVR-
T2-point”	and	“LVR-T2-cycle.”	Evaluating	how	MAR(1)	would	approxi-
mate	the	dynamics	produced	by	LVR-T2-cycle	is	of	particular	interest	

as	this	dynamics	violates	the	assumption	of	stable	equilibrium	point.	
Finally,	 host–parasitoid	 dynamics	 were	 simulated	 from	 the	 May–
Hassell	model	 (Hassell,	 2000;	May,	 1978)	 (Supporting	 Information	
S1,	section	3.6).	All	these	models	display	intricate	Jacobian	matrices	
and	therefore	constitute	a	real	challenge	for	the	MAR(1)	model.

Despite	their	mathematical	complexity,	these	2-species	models	
may	appear	 as	highly	 idealized	 representations	of	 ecological	 sys-
tems.	Therefore,	we	also	simulated	a	food	web	dynamics	(12	spe-
cies,	inspired	from	the	Gatun	Lake	case	study,	Aufderheide,	Rudolf,	
Gross,	&	Lafferty,	2013)	to	complement	our	study	of	MAR(1)	per-
formances	on	small	modules	with	a	more	realistic	network	context.	
The	modelled	food	web	had	20%	connectance	and	was	simulated	
with	 Lotka–Volterra–Ricker	 (LVR)	 and	 Gompertz	 dynamics.	 The	
models	were	parameterized	with	biological	constraints	maintaining	
feasibility	of	the	equilibrium	and	realistic	species	abundance	distri-
butions	(i.e.	more	abundant	basal	species	and	slower	dynamics	for	
predators).	MAR(1)	models	were	fitted	to	simulated	time	series	of	
800	time	steps	in	order	to	keep	the	ratio	of	information	in	the	data	
and	model	dimensionality	on	par	with	our	2-species	modules	 (we	
also	 fitted	 the	 full	model	 to	 time	series	of	100	 time	steps,	which	
neither	 provided	 a	 satisfactory	model	 fit	 nor	was	 comparable	 to	
the	 two-species	 numerical	 experiment,	 see	Section	4.5).	 The	de-
tails	regarding	the	set-up,	simulation	and	analysis	of	this	food	web	
experiment	are	to	be	found	in	Supporting	Information	S2.

2.2.4 | Design of the simulation experiment and 
MAR(1) model fitting

To	generate	ecological	 time	series	from	the	simulation	models,	we	
first	chose	parameter	values	by	random	draws	from	uniform	distri-
butions,	bounded	within	a	realistic	range	of	values	(Table	1).	We	kept	
only	 the	 time	 series	 in	which	 both	 species	 ln-abundances	 (before	
centring)	were	bounded	between	−20	and	20	(to	avoid	vanishingly	
small	 and	exploding	populations),	 and	we	considered	only	 feasible	
attractors	(nonnegative	equilibrium	densities)	that	resulted	in	a	sta-
ble	probability	distribution	of	abundance	values	(point	equilibrium	or	
limit	cycle).	After	1000	burn-in	time	steps,	we	recorded	abundances	
and	the	environmental	variable	Ut	during	100	time	steps	(Figure	1).	
Such	 sample	 size	 is	 on	 the	 comfortable	 side	 of	 the	 range	 of	 time	
series	 length	obtained	through	annual	or	seasonal	monitoring,	but	
as	a	 sensitivity	 test,	we	also	used	 time	series	 consisting	of	25,	50	
and	200	points.	We	then	fitted	a	MAR(1)	model	to	this	dataset,	and	
stored	the	estimates	and	confidence	intervals	for	elements	of	B and 
of	the	vector	of	environmental	effects	C. The	MAR(1)	models	were	
fitted	using	the	MARSS	package	(Holmes	et	al.,	2012)	in	R,	with	the	
default	 EM	 algorithm.	 Confidence	 intervals	 were	 computed	 using	
the	estimated	Hessian	matrix,	or	were	obtained	through	parametric	
bootstrap	(as	implemented	in	the	MARSS	package)	if	that	estimation	
failed.	Parametric	bootstrap	was	not	used	systematically	 for	 com-
puting	time	reasons,	but	showed	similar	results	for	a	tested	subset	
(not	 shown).	 For	 each	model	 structure	 and	process	error	 level	 for	
species	 1,	 1000	 simulation	 experiments	were	performed	with	 the	
parameters	drawn	at	random	and	independently.

(5)J=

(

1−α11e
n∗
1 −α12e

n∗
2

−α21e
n∗
1 1−α22e

n∗
2

)

.
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The	 R	 code	 for	 fitting	MAR(1)	 models,	 analysing	 and	 plotting	
the	 results	 of	 the	2-species	 simulation	 experiments	 is	 provided	 in	
Supporting	Information	S3.

2.3 | Evaluating MAR(1) performances

2.3.1 | How does B relate to ecological processes?

As	shown	previously,	 the	B	matrix	of	a	fitted	MAR(1)	model	ap-
proximates	J	which,	in	turn,	summarizes	interaction	strengths	by	
blending	together	parameters	describing	the	ecological	processes	
at	work	 in	 the	underlying	dynamics	 (hereafter	denoted	 “mecha-
nistic	 parameters”).	 Except	 in	 the	 Gompertz	 case,	 the	mapping	
between J	 elements	 and	 the	 mechanistic	 parameters	 of	 the	

underlying	dynamics	is	intricate	(Supporting	Information	S1,	sec-
tion	3).	Still,	it	may	be	tempting	to	interpret	B	in	ecological	terms,	
and	 identify	 its	 elements	 e.g.	 as	 strength	 of	 intra-	 or	 interspe-
cific	 competition,	 predation	or	 parasitism.	 Therefore,	we	 evalu-
ate	how	risky	such	interpretations	may	be	(when	the	underlying	
model	is	not	Gompertz)	by	identifying	the	statistical	relationships	
between	coefficients	of	the	fitted	B	matrix	and	the	mechanistic	
parameters.

2.3.2 | How does B approximate the Jacobian 
J of the underlying dynamics?

To	evaluate	how	well	B	estimates J,	we	compared	the	true	values	of	
the	 Jacobian	matrix	 elements	 ( jij)	 against	 their	 fitted	 counterparts	

F IGURE  1  	Workflow	of	MAR(1)	model	evaluation
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(bij),	using	correlations	and	slopes	of	 linear	regression	between	(bij)	
and	( jij)	and	estimated	bias	 (bij −	jij).	From	the	standard	error	values	
provided	for	each	fitted	bij,	we	estimated	how	often	the	true	values	
of	jij	lied	within	the	95%	confidence	intervals	given	by	the	fit	of	the	
MAR(1)	model.	We	also	reported	how	often	the	ranks	and	signs	of	B 
match	the	ranks	and	signs	of	J.	Finally,	we	compared	the	dominant	
eigenvalue	of	B and J	as	it	is	one	measure	of	the	system	stability	and	
can	be	interpreted	as	a	return	rate	to	the	equilibrium	after	a	pertur-
bation	(Ives	et	al.,	2003).

2.3.3 | Do MAR(1) models accurately capture the 
environmental forcing and provide reliable short- and 
long-term predictions?

To	 check	 for	 recovery	 of	 the	 environmental	 effect	 by	 the	MAR(1)	
model,	we	 compared	 the	 fitted	 environmental	 effects	 c11 and c12 
as	 well	 as	 their	 95%	 confidence	 intervals	 to	 the	 environmental	
forcing	 parameters	 (q	 and	 0,	 as	 only	 species	 1	 is	 affected	 by	 the	
environment).

We	used	the	Absolute	Scaled	Error	 (ASE,	Hyndman	&	Koehler,	
2006)	 on	 the	 next	 point	 of	 the	 simulated	 data	 series	 as	 a	 quanti-
tative	measure	of	 short-term	 forecast	 accuracy.	ASE	 is	 a	 scale	 in-
variant	measure	of	forecast	accuracy	that	allows	comparison	across	
datasets	with	different	 scales	of	variation,	 is	 less	 sensitive	 to	out-
liers	 and	has	already	been	used	 to	evaluate	 the	 forecast	 accuracy	
of	MAR(1)	models,	 among	others,	 on	 real	 time	 series	 (Ward	et	al.,	
2014).	ASE		<		1	indicates	a	better	forecast,	on	average,	than	a	naïve	
one-step	 forecast	 which	 simply	 considers	 the	 last	 observation	 as	
the	forecast	for	the	next	one.	For	each	model	structure,	species	and	
process	 error	 level,	we	 reported	 how	often	 the	ASE	was	 above	1	
across	the	1000	simulations.	As	a	qualitative	measure	of	the	forecast	
accuracy,	we	also	reported	how	often	across	the	1000	simulations	
the	fitted	MAR(1)	model	would	accurately	predict	the	trend	of	the	
next	point,	i.e.	whether	the	next	point	would	lie	below	or	above	the	
last	observed	value.

Finally,	to	evaluate	the	ability	of	the	fitted	MAR(1)	model	to	pre-
dict	the	long	term	effect	of	a	change	in	environmental	conditions,	we	
considered	the	effect	of	a	PRESS	perturbation	in	which	the	mean	of	
Ut	would	shift	from	0	to	4	(e.g.	mimicking	an	abrupt	temperature	in-
crease	or	eutrophication	triggered	by	nutrient	 input).	True	expected	
long-term	change	in	equilibrium	abundances	for	both	species	Δn∗

1
 and 

Δn∗
2
	was	derived	from	the	species	equilibrium	abundances	provided	in	

Supporting	Information	S1	for	each	simulation.	They	were	compared	
to	the	predictions	Δx∗

1
 and Δx∗

2
	from	Equation	(3)	using	fitted	MAR(1)	

parameters.	 For	 each	 simulation,	 we	 applied	 parametric	 bootstrap	
to	 Equation	 3	 by	 randomly	 drawing	 coefficients	 for	B and C	 using	
means	and	standard	errors	obtained	from	the	fitted	MAR(1)	model.	
We	obtained	1000	predictions	and	considered	that	their	median	was	
the	MAR(1)	prediction	of	 the	effect	of	 the	PRESS	perturbation.	We	
finally	calculated,	from	these	boostrapped	predictions,	the	quantile	to	
which	the	true	change	corresponded,	which	characterize	the	statisti-
cal	distance	between	the	prediction	from	MAR(1)	and	the	true	PRESS	
perturbation.

3  | RESULTS

This	section	reports	all	the	summary	statistics	of	our	simulation	ex-
periment	together	with	 illustrations	of	the	most	 important	results.	
More	 detailed	 results	 are	 available	 in	 Supporting	 Information	 S4,	
which	 comprises	 a	 set	 of	 figures	 presenting	 correlations	 between	
B	and	mechanistic	parameters,	numerical	results	regarding	the	ap-
proximation	of J by B,	short-term	forecasts,	PRESS	predictions,	and	
the	 results	of	 the	sensitivity	analysis	on	 time	series	 length.	Lastly,	
Supporting	Information	S5	considers	additional	scenarios	where	an	
observation	error	is	added.

3.1 | How do B elements relate to mechanistic 
parameters?

As	expected,	 the	mapping	between	the	fitted	B	matrix	and	mech-
anistic	 parameters	 of	 the	 underlying	 dynamics	 is	 clear	 when	 the	
underlying	 dynamics	 is	 Gompertz	 but	 becomes	 increasingly	 chal-
lenging	with	more	nonlinear	dynamics.	The	Jacobian	matrix	for	the	
Lotka–Volterra–Ricker	predator–prey	model	illustrates	this	blending	
of	mechanistic	 parameters	 fairly	well	 (Equation	 6,	 parameters	 de-
fined	in	Table	1).

We	 observe	 therefore	 no	 direct	 correlation	 between	 B	 matrix	
elements	 and	 mechanistic	 parameters,	 when	 all	 are	 allowed	 to	
vary	 randomly	 (Table	 2,	where	 the	 results	 are	 conditional	 upon	
the	 parameter	 bounds	 specified	 in	 Table	 1).	 For	 example,	 b21 
represents	the	net	effect	of	species	1	on	species	2.	 It	does	cor-
relate to α21,	 the	 competitive	 effect	 of	 species	 1	 on	 species	 2,	
in	 both	 Gompertz	 and	 Ricker	 competitive	 dynamics.	 But	 there	
is	 no	 such	 correlation	 between	 fitted	 and	 mechanistic	 param-
eters	 in	 the	 case	 of	 prey–predator	 dynamics,	 the	 net	 effect	 of	
the	prey	 (species	1)	on	 the	predator	 (species	2)	mostly	depends	
on	the	predator's	mortality	rate.	This	is	expected	from	the	theo-
retical	formulation	of	j21	(Equation	6	and	Supporting	Information	
S1,	 section	 3.4),	 assuming	 that	 the	 underlying	 dynamics	 at	 play	
is	known.	However,	for	Beverton–Holt	and	May–Hassell	dynam-
ics,	 the	 same	 fitted	 element	b21	 unexpectedly	 correlates	 to	 the	
strength	of	environmental	 forcing	q	even	though	environmental	
forcing	was	explicitly	accounted	for	in	the	MAR(1)	model.	Similar	
patterns	emerge	with	other	 Jacobian	elements,	 for	example	 the	
fitted	intraspecific	density	dependences	b11 and b22 correlate to 
intraspecific	 competition	α11 and α22	 in	 the	Gompertz	 case	 but	
relates	to	intrinsic	growth	rates	otherwise	(Table	2).	Again,	this	is	
not	 surprising	given	 the	 importance	of	 the	 intrinsic	growth	 rate	
in	models	with	Ricker	density	dependence.	Still,	 these	examples	
illustrate	well	that	the	ecological	process(es)	to	which	B	elements	
relate	might	not	be	those	we	intuitively	expect,	and	that	any	de-
tailed	 ecological	 interpretation	 of	B	 matrix	 elements	 when	 the	
underlying	 dynamics	 is	 unknown	 can	be	 challenging,	 and	 in	 the	
worst	cases,	misleading.

(6)J=

(

1−
αμ

εγ
−r+

αμ

εγ

μ 1

)
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3.2 | How do B elements relate to net interspecific 
interactions and intraspecific population regulation?

Signs	of	diagonal	B	matrix	elements	reflect	the	presence	or	absence	
of	overcompensation	(negative	 in	case	of	overcompensation),	while	
signs	of	off-diagonal	elements	give	the	directions	of	the	net	effects	of	
the	interspecific	interactions.	We	considered	sign	recovery	to	be	suc-
cessful	when	90%	of	simulations	gave	correct	sign	(sign(Bij)	=	sign(Jij)).	
This	was	the	case	for	80%	of	our	scenarios	and	B	elements	(Table	3).	
Cases	in	which	sign	recovery	failed	can	be	split	between	inter-	and	
intraspecific	 interactions.	 First,	 interspecific	 interaction	 signs	were	
slightly	less	well	recovered	for	nonlinear	competition	(c.	90%	of	cases	
with	successful	sign	recovery,	75%	in	the	worst	cases	for	Ricker	and	
Beverton–Holt	Dynamics)	than	for	enemy-victim	models	(prey–pred-
ator	and	host–parasitoid	dynamics),	which	performed	very	well	(cor-
rect	 sign	 recovered	 in	 >95%	 of	 cases).	 Second,	 overcompensation,	
denoted	 by	 negative	 diagonal	 element	 in	 J,	 was	 present	 in	 Ricker	
competition	and	LVR	model	but	was	not	always	recovered	in	the	sign	
of	b11	(Figure	2a,	Table	3).	The	LVR	model	performed	especially	poorly	
in	that	respect	(<80%	of	sign	recovery,	60%	at	high	process	error).

Correlations	and	slopes	of	 linear	 regressions	suggested	close	
relationships	between	the	values	of	B and J	elements	in	Gompertz	
and	Beverton–Holt	models,	without	 notable	 bias	 (i.e.	 slopes	 not	
different	from	one,	Figure	2,	Supporting	Information	S4	section	2).	
Such	 relationships	deteriorate	 in	models	with	Ricker	density-de-
pendence,	 due	 to	 a	 systematic	 bias	with	B	 elements	 and	 an	 in-
crease	in	the	variability	of	the	estimates	(Figure	2).	Concerning	the	
diagonal	 elements,	 the	 strength	 of	 over-	 or	 undercompensation	
(intraspecific	 density-dependence)	 tends	 to	 be	 underestimated	
for	 species	 1	 in	 prey–predator	models	 (Figure	 2a)	 and	 overesti-
mated	 for	 species	 2	 in	 the	 May–Hassell	 model	 (see	 Supporting	
Information	S4,	fig.	4.5).	For	off-diagonal	elements,	underestima-
tion	of	the	magnitude	of	interspecific	interactions	was	also	at	play	
in	Ricker-type	models	(Ricker	competition	and	LVR,	LVR-point	and	
LVR-cycle)	 (Figure	2b,	c,	Supporting	 Information	S4,	Fig.	4.3	and	
4.4).	Doubling	the	time	series	length	did	not	improve	how	well	B 
estimated	 J	 (Supporting	 Information	 S4,	 section	 5).	 This	 lack	 of	
precision	in	estimates	should,	in	theory,	lead	to	larger	confidence	
intervals.	However,	upon	examination	(Figure	2,	Table	3),	all	mod-
els	but	Gompertz	have	a	large	proportion	of	CIs	missing	the	sim-
ulated J	 elements,	 and	more	 so	 as	 time	 series	 length	 increased	
(Supporting	Information	S4,	section	5).	This	 is	especially	true	for	
enemy-victim	models.	As	an	example,	if	we	average	over	the	three	
process	error	levels,	53%	of	LVR	and	LVR-T2-point	b12	CIs	did	not	
include	the	“true”	j12 value.

Process	 error	 also	 affected	 whether	 interspecific	 interactions	
were	 recovered	 by	 the	MAR(1)	model,	 and	 additional	 observation	
error	generally	decreased	the	recovery	rate	(Supporting	Information	
S5).	Figure	2c	shows	that	increasing	process	error	on	species	1	led	
to	 a	 better	 recovery	 of	 its	 effect	 on	 species	 2	 (b21).	 Conversely,	
decreasing	process	error	on	 species	1	 improved	 the	estimation	of	
b12	(Figure	2b).	In	other	words,	increased	process	error	(due	to	e.g.	
	environmental	variance)	in	the	growth	rate	of	the	focal	species	im-
pairs	estimation	of	effects	of	other	species,	while	increased	process	
errors	in	the	growth	rate	of	other	species	improves	the	estimation	of	
their	effects	on	the	focal	species.

The	dominant	eigenvalue	of	B	was	inferior	to	1	in	more	than	95%	
of	 cases,	 even	 in	 the	presence	of	data	generated	by	LVR-T2-cycle	
for	which	 the	dominant	eigenvalue	 is	greater	 than	1	by	definition.	
Correlation	between	the	dominant	eigenvalue	of	B and J	was	very	
good	for	Gompertz,	Beverton	Holt	and	May–Hassell,	fairly	good	in	
the	case	of	Ricker,	LVR	and	LVR-T2-point	and	poor	with	LVR-T2-cycle	
(Table	3),	suggesting	that	when	the	underlying	dynamics	has	a	stable	
equilibrium,	 the	MAR(1)	 approximation	 is	 able	 to	 reproduce	 accu-
rately	its	stability	properties	sensu	Ives	et	al.	(2003).

3.3 | Do MAR(1) models accurately capture 
environmental forcing and provide reliable short- and 
long-term predictions?

The	environmental	forcing	on	species	1	was	well	captured	by	MAR(1)	
models	 across	 all	 data-generating	 models	 (Table	 4,	 Supporting	
Information	 S4).	 Qualitative	 forecasts	 from	 MAR(1)	 models	 were	
moderate	to	fair,	with	often	at	least	70%	correctly	predicted	trend	
for	the	next	unobserved	point	of	the	time	serie	(Table	4)	but	rarely	
more	than	90%.	Qualitative	forecasts	obtained	for	nonlinear	preda-
tor–prey	models	were	the	less	accurate.	The	results	on	the	accuracy	
of	quantitative	short-term	forecasts	measured	by	ASE	are	very	simi-
lar,	with	predator–prey	dynamics	as	well	as	Beverton–Holt	competi-
tion	models	not	so	well	predicted	by	MAR(1).	Lastly,	process	error	
intensity	had	a	notable	negative	effect	on	the	accuracy	of	species	1	
forecast	with	all	data-generating	models.

PRESS	predictions	were	rather	accurate	for	Gompertz	and	May–
Hassell	simulations	(Figure	3a,b,e,f,	Table	4,	fig.	S4.6)	but	more	prob-
lematic	otherwise.	 In	the	Ricker	 (Figure	3c,d)	and	the	Beverton–Holt	
(fig.	 S4.6)	 competition	 models,	 future	 equilibrium	 ln-abundances	 of	
species	 1	were	 strongly	 and	 systematically	 overestimated,	while	 for	
species	2	they	were	underestimated.	They	were,	however,	mostly	in	the	
right	direction	(>90%	of	cases	for	species	1	and	>75%	of	cases	for	spe-
cies	2,	Table	4).	For	predator–prey	models,	in	which	only	the	predator's	

F IGURE  2  	Comparison	of	fitted	B	elements	(y-axis)	with	their	true	J	counterparts	(x-axis)	for	(a)	b11,	(b)	b12,	(c)	b21	and	(d)	b22.	In	each	
panel,	rows	correspond	to	the	underlying	model	(from	top	to	bottom:	Gompertz,	Ricker	and	LVR)	and	columns	correspond	to	process	error	
intensity	on	species	1.	Each	graph	is	based	on	1000	simulations,	each	having	a	unique	parameter	set	for	the	underlying	model.	Each	dot	
corresponds	to	one	simulation;	blue	dots	correspond	to	cases	where	the	true	value	jij	lies	within	the	95%	confidence	interval	obtained	for	bij 
from	the	MAR(1)	fit,	pink	dots	display	cases	where	the	true	value	lies	outside	the	95%	confidence	interval.	The	blue	line	corresponds	to	the	
diagonal	y = x,	indicating	perfect	match.	The	dashed	line	shows	the	actual	regression	line	of	jij ~ bij
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equilibrium	ln-abundance	is	supposed	to	change	following	the	PRESS	
perturbation	 (cf.	 Supporting	 Information	 S1,	 sections	 3.4	 and	 3.5),	
MAR(1)	still	predicted	significant	deviations	for	the	prey	in	up	to	20%	
of	 the	cases	 (with	LVR-T2-point	at	 low	process	error,	 fig.	S4.6)	while	
the	 predator's	 response	was	 in	 general	 overestimated	 (Figure	 3h,j,l).	
Lastly	at	high	process	error,	the	sign	of	the	predator's	response	could	
be	mis-predicted	in	up	to	30%	of	simulations	(Figure	3j,l,	Table	4).

3.4 | Do 2-species results hold in a food web 
context ?

We	observed	a	notable	difference	in	the	correspondence	between	
B and J	 for	on-	and	off-diagonal	elements	(Supporting	Information	
S2),	suggesting	that	net	interspecific	interaction	strengths	were	less	
well	 estimated	 than	 net	 intraspecific	 interaction	 strength	 in	 such	
larger	webs.	There	were	relatively	few	differences	in	MAR(1)	perfor-
mances	in	terms	of	interspecific	interaction	sign	recovery	between	
Gompertz	and	LVR,	corroborating	our	results	on	2-species	systems	
that	interaction	sign	recovery	is	robust	to	nonlinearities.	The	under-
estimation	 of	 interaction	 strength	 reported	 for	 the	 2-species	 LVR	
was	visible	at	the	base	of	the	food	web,	but	not	at	the	upper	levels,	
where	the	correlations	between	B and J	were	also	weaker.	Such	up-
per-level	interactions	were	therefore	less	well	estimated,	but	it	is	im-
portant	to	note	that	they	were	also	less	strong	by	construction.	This	
is	notably	due	to	the	low	abundances	of	the	high	trophic	levels	that	
decrease	their	Jacobian	values.	Similarly	to	the	2-species	models,	the	
environmental	effects	were	overall	very	well	recovered	when	strong	
enough.	Overcompensation	was	recovered	as	well.	Finally,	whereas	
PRESS-predictions	 were	 accurate	 for	 2-species	 Gompertz	 model,	
they	were	rather	poor	for	both	Gompertz	and	LVR	food	webs,	as	er-
rors	in	estimation	of	net	interactions	ripple	through	the	web.

4  | DISCUSSION

By	deriving	and	quantifying	the	accuracy,	bias	and	predictive	ability	of	
fitted	MAR(1)-models	using	simulated	data	from	seven	types	of	com-
petitive,	predator–prey	and	host–parasitoid	systems,	as	well	as	a	larger	
food	web,	 with	 nonlinear	 stochastic	 dynamics	 and	 varying	 process	
error	levels,	we	have	provided	a	thorough	test	of	the	MAR(1)	approach	
for	multispecies	dynamics.	Our	 findings	 illustrate	 the	 importance	of	
assuming	that	the	studied	system	exhibits	Gompertz	density-depend-
ence	for	any	other	inference	than	interaction	sign.	This	assumption	is	
a	stern	prerequisite	for	 interpreting	numerical	values	of	the	MAR(1)	
interaction	matrix	B.	While	we	can	specify	mechanistic	competition	
models	 of	 the	Gompertz	 type,	 in	most	 enemy–victim	 scenarios	we	
cannot,	 so	 that	B	 elements	have	 to	be	 interpreted	 in	most	cases	 in	
terms	of	net	interaction	strengths	blending	mechanistic	parameters.

Except	for	diagonal	elements	in	cases	of	overcompensatory	dy-
namics,	high	confidence	can	be	put	in	the	sign	of	B	elements.	Thus,	
the	direction	of	net	 interactions	 in	a	community	can	be	assessed	
using	MAR(1).	Depending	on	the	underlying	dynamics	at	play,	how-
ever,	 the	 magnitude	 of	 point	 estimates	 and	 confidence	 intervals	

of	B	may	poorly	match	the	actual	values	of	the	community	matrix	
J.	MAR(1)	models	accurately	 identified	 the	environmental	 forcing	
acting	on	a	species	in	all	types	of	tested	dynamics.	Predictions	of	
long-term	responses	to	sustained	environmental	changes,	however,	
tended	to	be	either	over-	or	underestimated	for	all	but	2-species	
host–parasitoid	and	Gompertz	systems.	 In	the	following	sections,	
we	discuss	these	findings	in	details,	attempt	to	elucidate	the	rea-
sons	behind	discrepancies,	and	provide	some	guidance	on	interpre-
tation	and	use	of	MAR(1)	models	fitted	to	ecological	data.

4.1 | The ecological significance of MAR(1) 
model parameters

Predictions	regarding	which	B	elements	should	be	related	to	which	
mechanistic	 parameter	 could	 theoretically	 be	 made	 from	 the	 for-
mulations	of	 J	 (see	Supporting	 Information	S1)	but	only	 if	 the	un-
derlying	 dynamics	 at	 play	 are	 known.	When	 they	 are	 not,	 zero	B 
matrix	coefficients	should	not	be	interpreted	as	a	lack	of	ecological	
interactions	 between	 individuals,	 while	 nonzero	 should	 be	 inter-
preted	as	net	 interaction	 strength	without	a	direct	 relation	 to	 the	
ecological	processes	at	work.	Another	 result	 important	 for	 the	 in-
terpretation	of	estimated	MAR(1)	parameters	was	 the	 relationship	
between	the	strength	of	the	environmental	forcing	and	B	elements	
in	 the	Beverton–Holt,	LVR-T2-cycle	and	May–Hassell	models.	This	
shows	 that	when	 the	underlying	dynamics	 is	not	Gompertz,	 some	
part	of	the	environmental	forcing	is	passed	onto	B and interpreted 
by	MAR(1)	as	an	interspecific	effect,	hence	contributing	to	the	mis-
match	in	value	between	B and J	.	As	the	strength	of	environmental	
forcing	is	still	rather	accurately	predicted	even	for	these	models,	it	is	
however	likely	that,	in	our	simulations,	only	a	small	fraction	of	envi-
ronmental	forcing	is	passed	onto	B.

Beyond	 ecological	 interpretation,	 these	 observations	 also	 have	
implications	for	model	building	strategies.	Some	studies	either	restrict	
a priori	the	range	of	MAR(1)	models	investigated,	or	evaluate	a posteri-
ori	the	MAR(1)	model	they	obtain	according	to	“ecological	plausibility”	
(	Fischer	et	al.,	2001;	Hampton,	Scheuerell,	&	Schindler,	2006;	Huber	
&	Gaedke,	2006;	Ives	et	al.,	1999).	An	interaction	is	then	said	to	be	
plausible	when	the	value	of	the	B	element	can	be	easily	interpreted	
in	ecological	terms	(e.g.	negative	interactions	between	competitors).	
However,	given	the	often	idiosyncratic	nature	of	the	relationship	be-
tween B	and	ecological	processes	at	play	in	the	underlying	dynamics	
(see	Supporting	Information	S1),	it	might	well	be	that	the	phenomeno-
logical	approximation	provided	by	the	fit	of	a	MAR(1)	model,	despite	
not	being	“ecologically	plausible,”	is	still	a	better	approximation	of	the	
net	effects	among	species	than	another	model	restricted	to	suppos-
edly	“plausible”	auto-	and	cross-correlations.

4.2 | The Gompertz assumption of linearity on a 
log-scale

Given	its	importance	for	model	interpretation,	testing	the	Gompertz	
assumption	 should	appear	 common	sense—it	 is	 after	 all	 checking	
model	fit.	But	it	is	easier	said	than	done	with	short	ecological	time	



1988  |    Methods in Ecology and Evoluon CERTAIN ET Al.

(a) Gompertz, Sp. 1

True PRESS ∆(n
1
* )

P
re

di
ct

ed
 P

R
E

S
S

∆ (
x 1*

)

–1.0 1.2 3.3 5.5 7.7 9.8 12.0

–1
.0

1.
2

3.
3

5.
5

7.
7

9.
8

12
.0

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

(b) Gompertz, Sp. 2

True PRESS ∆(n
2
* )

P
re

di
ct

ed
 P

R
E

S
S

∆(
x 2*

)

–12.0 –9.8 –7.7 –5.5 –3.3 –1.2 1.0

–1
2.

0
–9

.8
–7

.7
–5

.5
–3

.3
–1

.2
1.

0

(c) Ricker, Sp. 1

True PRESS ∆(n
1
* )

P
re

di
ct

ed
 P

R
E

S
S

∆(
x 1*

)

–1.0 3.3 7.7 12.0 16.3 20.7 25.0

–1
.0

3.
3

7.
7

12
.0

16
.3

20
.7

25
.0

(d) Ricker, Sp. 2

True PRESS ∆(n
2
* )

P
re

di
ct

ed
 P

R
E

S
S

∆(
x 2*

)

–6.0 –4.8 –3.7 –2.5 –1.3 –0.2 1.0

–6
.0

–4
.8

–3
.7

–2
.5

–1
.3

–0
.2

1.
0

(e) May-Hassel, Parasite (Sp. 1)

True PRESS ∆(n
1
* )

P
re

di
ct

ed
 P

R
E

S
S

∆(
x 1*

)

–1.0 0.7 2.3 4.0 5.7 7.3 9.0

–1
.0

0.
7

2.
3

4.
0

5.
7

7.
3

9.
0
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(i) LVR-T2-point, Prey (Sp. 1)
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(j) LVR-T2-point, Predator (Sp. 2)
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(k) LVR-T2-cycle, Prey (Sp. 1)
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(l) LVR-T2-cycle, Predator (Sp. 2)
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series.	Visual	examination	of	 residual	plots	 is	 recommended	 (Ives	
et	al.,	2003;	Vik,	Brinch,	Boutin,	&	Stenseth,	2008),	which	we	sys-
tematically	produced	during	 the	analysis	 (Supporting	 Information	
S3).	 At	 low	 process	 error	 level,	 these	 plots	 often	 displayed	 the	
curved	 relationships	 typical	 of	 nonlinearities	 unaccounted	 for,	 as	
exemplified	in	Figure	4a.	As	process	error	increased	to	levels	com-
monly	observed	 in	 the	 field	 (σ2	=	0.1-0.5,	Dennis,	Kemp,	&	Taper,	
1998;	 Dennis	 et	al.,	 2001),	 these	 curved	 relationships	 became	
harder	 and	harder	 to	detect,	 to	 the	point	where	 they	 could	 very	

well	become	unnoticed	(Figure	4b).	Hence,	even	if	looking	at	the	re-
siduals	is	a	crucial	step	of	the	modelling	process,	failing	to	observe	
curved	relationships	is	not	a	proof	of	absence	of	nonlinearities,	es-
pecially	for	noisy	systems.	Fitting	both	linear	and	nonlinear	models	
to	ecological	time	series	can	be	recommended,	even	though	a	bit	
cumbersome	in	practice.	Comparison	between	the	fitted	linear	and	
nonlinear	models	can	provide	some	insights	on	the	type	and	impor-
tance	of	nonlinearities	existing	in	the	underlying	models,	which,	in	
turn,	controls	the	amount	of	information	that	can	be	extracted	by	

FIGURE 3  	Comparison	of	the	median	predictions	of	the	species’	response	to	a	PRESS	perturbation	obtained	from	a	fitted	MAR(1)	model	
(y-axis)	with	the	actual	response	in	the	simulated	model	(x-axis).	Responses	are	expressed	as	change	in	ln-populations	densities.	Each	plot	is	based	
on	1000	simulations,	each	having	a	unique	parameter	set	for	the	underlying	model,	and	each	dot	corresponds	to	one	simulation.	The	colourscale	
for	dots	(upper-left	plot)	illustrates	the	distance	between	the	true	change	and	the	median	prediction	in	terms	of	interquantile	range,	that	is,	a	value	
of	0.5	means	that	the	true	change	lies	beyond	the	95%	prediction	interval	derived	from	the	bootstrapped	distribution	of	the	predictions.	The	blue	
thick	lines	show	the	perfect	(y = x)	match.	The	thin	dashed	lines	show	the	actual	regression	y ~ x

F IGURE  4  	Autocorrelation	function	for	the	residuals	(uppermost	panels)	and	plots	of	the	residuals	(y-axis)	against	species	ln-abundances	
(x-axis)	for	two	selected	simulations	of	the	Ricker	model	at	low	(a)	and	high	(b)	process	error	levels.	Patterns	typical	from	unaccounted	
nonlinearities	(e.g.	curvilinear	relationships	in	the	residual	plots)	are	clearly	observed	in	the	low-process	error	simulation,	but	are	much	more	
difficult	to	detect	for	the	high-process	error	simulations
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a	MAR(1)	model	together	with	the	type	and	strength	of	biases	that	
can	be	expected.	As	often	pointed	out	(Ives,	1995;	Perretti,	Munch,	
&	Sugihara,	2013),	linear	models	are	so	much	easier	to	fit	and	use	
than	nonlinear	models	that	even	in	the	presence	of	nonlinearities,	
their	use	can	be	preferred.	But,	as	we	demonstrated,	knowledge	of	
the	 type	of	nonlinearities	 at	work	allows	 to	anticipate	 the	biases	
entailed	in	the	use	of	a	linear	approximation.

4.3 | What is the quality of interaction strengths 
estimates and dynamical approximation offered by a 
MAR(1) model?

MAR(1)	models	do	provide	information	on	the	sign	of	net		effects	
among	species,	but	do	not	reliably	recover	their	actual	values	when	
the	 underlying	 dynamics	 are	 nonlinear,	 as	 shown	 by	 the	 loss	 of	
correlation between B and J	 outside	 of	 the	Gompertz	 case.	 The	
general	expectation	is	that	MAR(1)	models	pass	unexplained	vari-
ability	onto	the	process	error	matrix	Σ,	and	they	do	so;	 the	ratio	
of	fitted	versus	true	process	error	(Σ11∕σ

2

1
 and Σ22∕σ

2

2
)	is	indeed	in-

flated	for	all	data-generating	models	but	the	Gompertz	(Supporting	
Information	S4,	fig.	S4.7).	This	is	good	statistical	behaviour,	as	we	
prefer	 unexplained	 variability	 to	 be	 passed	 onto	 process	 error	
rather	than	onto	other	MAR(1)	parameters	such	as	biotic	interac-
tions,	 to	avoid	biased	estimates.	Still,	our	 results	 show	 that	 such	
transfer	of	variability	to	variance	terms	does	not	completely	pre-
vent	net	biotic	 interactions	 from	getting	distorted	by	underlying	
nonlinearities.

To	understand	any	ecological	system's	dynamics,	errors	on	the	
ranks	 and	 signs	 of	 the	 community	 matrix	 elements	 are	 the	 most	
problematic.	 Overall,	 these	 errors	 are	 rare,	 but	we	 identified	 two	
situations	in	which	they	are	more	likely	to	occur.	In	competitive	sys-
tems	with	nonlinear	dynamics,	the	net	effect	of	a	competitor	on	a	
target	species,	revealed	by	off-diagonal	B	elements,	might	be	missed	
when	the	target	species	is	submitted	to	strong	environmental	con-
trol.	With	 models	 presenting	 density	 dependence	 of	 Ricker	 type,	
overcompensation	might	be	missed	due	to	the	lack	of	detection	of	
negative	diagonal	B	elements.	Lastly,	many	aspects	of	the	mapping	
between B and J	 are	 lost	when	 the	underlying	 dynamics	 have	no	
stable	equilibrium	and	even	if	this	is	expected,	one	should	be	partic-
ularly	careful	when	interpreting	or	projecting	MAR(1)	models	fitted	
to	such	dynamics.

4.3.1 | MAR(1) models and overcompensatory  
dynamics

MAR(1)	 models	 display	 in	 theory	 overcompensatory	 dynamics	
for	 a	 species	 whenever	 its	 diagonal	B	 matrix	 element	 is	 negative.	
Therefore,	 observing	 a	 negative	 fitted	B	 diagonal	 element	 is	 often	
interpreted	as	an	indication	that	the	corresponding	species	displays	
overcompensatory	 dynamics	 (Hampton	 et	al.,	 2013;	 Ripa	 &	 Ives,	
2003).	However,	detecting	overcompensation	with	log-linear	models	
is	known	to	be	difficult	from	previous	results	on	single-species	models	
(Barraquand,	Pinot,	Yoccoz.	&	Bretagnolle,	2014).	Overcompensation	

happens	with	 Ricker	 dynamics	 at	 high	 intrinsic	 growth	 rate.	 In	 our	
Ricker-based	data-generating	models,	overcompensation	is	expected	
as	 soon	 as	 the	 intrinsic	 growth	 rate	 r	 becomes	 superior	 to	 1	 (Kot,	
2001,	Supporting	 Information	S1,	section	3.4).	This	 is	also	the	case	
with	 most	 simulations	 from	 the	 LVR	 model,	 even	 though	 the	 dy-
namics	 is	complexified	by	predation	 (Figure	5a):	negative	values	on	
the	 Jacobian	 diagonal	 also	 relate	 to	 simulations	with	 higher	 intrin-
sic	growth	rate	for	the	prey	(Figure	5b).	Since	both	MAR(1)	and	LVR	
models	show	overcompensation	when	B or J	diagonal	elements	are	
negative,	 one	 can	 reasonably	 expect	 that	 overcompensation	 in	 the	
LVR	model	should	be	picked-up	by	fitting	a	MAR(1)	model.	However,	
only	a	third	of	negative	j11	values	had	their	fitted	counterpart	b11	also	
negative	(Figure	5c),	which	means	that	MAR(1)	models	often	missed	
overcompensation	when	 it	 was	 present.	 Detecting	 overcompensa-
tion	is	an	important	aspect	of	studying	ecological	dynamics.	It	allows,	
for	example,	 for	better	anticipation	of	biases	 in	population	viability	
analysis	 (Sabo,	Holmes,	&	Kareiva,	2004).	Faulty	assumptions	about	
the	shape	of	density	dependence,	combined	with	overcompensatory	
intrinsic	population	dynamics,	can	lead	to	strongly	biased	estimated	
effects	of	autocorrelated	covariates,	especially	when	autocorrelation	
is	negative	(Linden,	Fowler,	&	Jonzén,	2013).	The	reasons	for	which	
overcompensatory	dynamics	would	be	picked	up	by	MAR(1)	models	
in	some	cases,	but	not	in	others,	is	unclear	and	would	require	further	
work.	 Still,	we	observed	 that	 in	 cases	when	overcompensatory	dy-
namics	were	missed,	 fitted	process	error	Σ11	was	systematically	 in-
flated	(Figure	5d),	most	likely	because	unaccounted	variability	due	to	
overcompensatory	dynamics	is	passed	onto	the	process	error.	Hence,	
when	one	suspects	that	overcompensation	is	at	play	in	a	time	series	
fitted	by	a	MAR(1)	model,	inflated	process	error	could	be	an	indica-
tion	that	the	model	just	missed	it.

4.3.2 | Limit cycles

The	dominant	norms	of	 the	B	matrices	obtained	 from	 fitted	MAR(1)	
models	almost	always	indicated	stable	dynamics	(dominant	norm		<	1),	
even	when	the	data-generating	model	had	no	stable	point.	This	resulted	
in	a	complete	mismatch	between	B and J	with	LVR-T2-cycle,	because	in	
that	case	the	dominant	norm	of	J	is	above	1	(due	to	the	escape	of	trajec-
tories	from	the	equilibrium	to	settle	on	the	limit	cycle).	This	is	expected:	
the	fitted	MAR(1)	model	ascribes	this	dynamical	behaviour	to	the	only	
possible	cyclic	behaviour	it	can	generate,	quasi-cycle	with	stable	equi-
librium	point.	MAR(1)	models	will	systematically	produce	fixed	equilib-
rium	points	even	if	the	true	attractor	is	not	a	point.	This	emphasizes	that	
stability	indicators	obtained	from	a	MAR(1)	model,	which	heavily	rely	on	
the	properties	of	the	estimated	B	matrix	(Ives	et	al.,	2003),	may	be	more	
or	less	appropriate	depending	on	the	type	of	attractors.	In	cases	such	as	
limit	cycles,	the	mapping	from	B to J	is	severely	distorted,	which	in	turn	
limits	the	interpretation	one	can	make	from	stability	indicators.	Testing	
for	the	existence	of	a	single	equilibrium	point,	or	at	least	investigating	
the	consequences	of	their	absence,	is	therefore	an	important	step	when	
attempting	to	derive	stability	measures	from	MAR(1)	model	fit	(see	for	
example	Britten	et	al.,	2014),	and	can	be	achieved	by	fitting	alternative	
nonlinear	models	to	data	(Ives	et	al.,	2008).
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4.4 | The predictive performance of MAR(1) models

Fitted	MAR(1)	models	produced	a	meaningful	short-term	forecast	in	
roughly	three	cases	out	of	four	for	competitive	and	host–parasitoid	
dynamics,	which	in	our	view	constitutes	a	reasonable	performance.	
One	 should	 expect	 a	 slight	 decrease	 in	MAR(1)	 forecast	 accuracy	
with	nonlinear	predator–prey	systems	and	high	process	error.	This	
echoes	the	study	of	Ward	et	al.	(2014)	in	which	a	poorer	forecast	ac-
curacy	with	log-linear	autoregressive	models,	among	other	methods,	
was	evidenced	for	highly	variable	time	series.

Long-term	PRESS	predictions,	on	the	other	hand,	can	provide	ro-
bust	 information	 on	 the	 direction	 of	 species’	 responses,	 but	 not	 on	
their	magnitude.	In	case	of	competition	models,	overestimation	of	the	
change	in	species	1	ln-abundance	could	be	surprisingly	severe,	up	to	a	
factor	100.	This	is	due	to	how	intraspecific	regulation	acts	in	the	under-
lying	dynamics.	In	a	single	population	following	a	Gompertz	dynamics,	
the	population	increase	in	ln-abundance	from	one	time	step	to	another	
is	a	linear	function	of	intraspecific	ln-abundance,	nt+1−nt = r−αnt.	The	
equilibrium	 ln-abundance	 in	 this	 case	 is	 simply	 r

α
,	 and	 the	 expected	

change	in	equilibrium	ln-abundance	following	a	PRESS	perturbation	P 
is	q

α
×P,	 that	 is,	a	 linear	function	of	the	PRESS	scaled	by	intraspecific	

regulation.	If	intraspecific	regulation	is	nonlinear,	for	example,	as	in	the	
Ricker	 model	nt+1−nt = r−αent,	 the	 expected	 change	 in	 equilibrium	
ln-abundance	following	a	PRESS	perturbation	is	ln

(

1+
qP

r

)

,	that	 is,	a	

ln-linear	function	of	the	PRESS	mediated	by	the	species’	growth	rate.	
Hence,	predicting	the	PRESS	effect	as	a	linear	function	when	it	actually	
is	ln-linear	can	result	in	a	major	bias.	The	same	reasoning,	albeit	more	
complex	 analytically,	 applies	 to	 our	 competition-	 and	 predator–prey	
systems	 in	which	 intraspecific	regulation	follows	either	the	Ricker	or	
the	Beverton–Holt	form.	Therefore,	it	is	probably	safe	to	assume	that	
in	 any	 ecological	 systems	 in	which	 the	 growth	 function	of	 the	pop-
ulation	decreases	nonlinearly	with	density,	 the	predicted	effect	 of	 a	
PRESS	perturbation	on	that	population	will,	depending	on	whether	the	
PRESS	is	positive	or	negative,	most	likely	be	either	over-	or	underesti-
mated,	respectively,	by	a	fitted	MAR(1)	model.

Biased	PRESS	predictions	can	have	strong	implications	for	manage-
ment.	In	the	fisheries	context,	MAR(1)	models	have	been	used	to	inves-
tigate	the	effect	of	PRESS	perturbations	 (fishing	 intensity,	Lindegren	
et	al.,	2009,	and	climate	 forcing,	Lindegren	et	al.,	2010)	 in	 the	Baltic	
Sea,	with	conclusions	regarding	the	levels	of	sustainable	fishing	of	cod.	
Fishing	 release	on	 cod	 is	 similar	 to	 the	environmental	PRESS	 in	our	
simulations:	it	has	a	positive	effect	on	population	growth	rates.	As	the	
system	considered	 therein	cannot	be	 related	 to	Gompertz	dynamics	
in	a	mechanistic	sense	(it	includes	prey–predator	relationships	instead	
of	competition,	and	encompasses	several	trophic	levels),	the	resulting	
PRESS	 predictions	 potentially	 overestimate	 the	 effect	 of	 fishing	 re-
lease,	which	suggests	that	avoidance	of	collapse	could	be	more	likely	
in	MAR(1)	than	in	reality.	Other	studies	have	used	log-linear	MAR(1)	

F IGURE  5  	Recovery	of	
overcompensation.	(a)	For	one	simulation	
of	the	LVR	model	in	which	r	=	1.96,	
relationship	between	prey	density	at	times	
t	(x-axis)	and	t +	1	(y-axis).	The	scatterplot	
displays	the	curvilinear	pattern	typical	
from	overcompensation.	(b)	statistical	
distribution	of	j11	for	the	LVR	model,	
when	the	underlying	dynamics	of	the	prey	
has	low	(r	<	1,	blue)	and	high	(r	>	1,	red)	
growth	rate.	Most	j11	values	are	negative	
in	the	latter	case.	(c)	Statistical	distribution	
of	r	across	1000	LVR	simulations,	spread	
between	three	cases:	When	the	sign	of	
j11	was	correctly	predicted	by	b11	either	
positive	(blue)	or	negative	(green),	and	
when	negative	j11 would not be recovered 
in b11	(red).	(d)	Statistical	distribution	
across	1000	LVR	simulations	of	the	bias	
on	the	process	error,	spread	between	the	
same	cases	as	in	(c).	Mismatch	between	
the	signs	of	j11	(negative)	and	b11	(positive)	
lead	to	inflated	Σ11.	These	results	are	
extracted	from	the	set	of	simulation	
experiments	in	which	simulated	process	
error	on	species	1	σ2
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models	 to	 predict	 the	 responses	 of	 coral	 reefs	 to	 climate	 change	
(Cooper	et	al.,	2015;	Gross	&	Edmunds,	2015),	we	advise	to	do	so	with	
caution	when	only	one	type	of	density-dependence	is	considered.

4.5 | Complexifying our experiment: Observation 
error and food web models

In	this	study,	we	used	mainly	2-species	models	because	they	allow	
to	vary	broadly	the	parameter	space	and	they	constitute	a	suitable	
starting	 point	 to	 foster	 understanding,	 by	 analytical	 derivation	 of	
Jacobian	matrices	J	of	the	underlying	dynamics	and	comparison	to	
community	matrices	B	 in	MAR(1)-models.	As	we	 focused	primarly	
on	the	type	of	nonlinearities	at	play,	other	topics	such	as	the	inclu-
sion	of	observation	errors,	the	colour	of	environmental	noise	or	sys-
tems	of	higher	dimensionality	are	open	avenues	 for	 further	study.	
We	have	nonetheless	made	some	progresses	regarding	observation	
errors	and	high	dimensionality.

4.5.1 | Observation error

Adding	observation	error	to	stochastic	discrete-time	dynamics	has	
been	 already	 investigated	 by	 Lindén	 and	 Knape	 (2009)	 who	 sug-
gested	 possible	 biases	 in	 the	 detection	 of	 environmental	 effect	
when	observation	errors	were	not	accounted	for	while	present.	On	
the	other	hand,	there	are	a	number	of	identifiability	issues	when	in-
cluding	 observation	 errors	without	 prior	 knowledge	 of	 their	mag-
nitude	 (Auger-Méthé	 et	al.,	 2016;	 Knape,	 2008).	 For	 some	 of	 our	
data-generating	models	(Gompertz,	Ricker	and	Beverton–Holt),	we	
added	various	 levels	of	observation	errors	both	to	our	simulations	
and	to	 the	 fitted	MAR(1)	models	 (Supporting	 Information	S5).	Our	
results	confirmed	the	 identifiability	problems	already	encountered	
by	others:	when	neither	observation	error	nor	process	error	is	set	to	
a	fixed	value,	some	of	the	observation	error	can	be	transfered	to	the	
process	error—or	vice-versa—sometimes	to	a	large	extent	(fig.	S5.1).	
Our	recommendation	is	therefore	to	include	observation	error	only	
when	prior	knowledge	of	its	magnitude	exists,	and	if	this	knowledge	
can	be	used	to	constrain	model	fit	(see	S5	for	details).

4.5.2 | From small modules to networks

Results	 from	 our	 food	 web	 numerical	 experiment	 confirmed	 our	
2-species	 results:	 the	 robustness	 of	 interaction	 sign	 inference	 to	
nonlinearities	holds	 in	higher	dimensional	 systems	of	 similar	 infor-
mation	 content/parameters	 ratio.	 This	 last	 point	 is	 of	 importance:	
because	of	the	increase	in	the	number	of	MAR(1)	parameters	fitted	
to	a	food	web,	 time	series	 length	had	to	be	significantly	extended	
to	 allow	 for	 a	 reasonable	MAR(1)	 fit.	 That	 time	 series	 length	 con-
strains	the	estimation	of	MAR(p)	models	 is	one	of	the	basic	tenets	
of	 econometrics	 and	 time	 series	 statistics	 (Lutkepohl,	 2005);	 in	
this	paper,	we	assumed	time	series	 long	enough	that	we	know	the	
MAR(1)	 models	 can	 by	 themselves	 be	 estimated,	 if	 no	 additional	
nonlinearities	 are	 considered.	 Fitting	 the	 food	web	model	 to	 time	
series	showed	clearly,	for	instance,	that	time	series	longer	than	100	

need	to	be	considered	(see	Supplementary	Information	S2)	or	addi-
tional	sparsity	constraints	have	to	be	implemented	(see	below).	We	
investigated	the	robustness	of	our	results	to	time	series	length	T by 
repeating	our	simulation	experiment	for	T	=		25,	50,	and	200	points,	
in	the	2-species	models.	We	observed	that	interaction	sign	inference	
remains	remarkably	good	for	those	other	lengths,	but	the	short-term	
predictive	ability	declines	when	T	declines	(Supporting	Information	
S4,	 Section	 5).	 As	 an	 empirical	 rule,	 we	 suggest	 that	 time	 series	
length	should	be	at	least	5	times	greater	than	the	number	of	a	priori	
nonzero	elements	in	B	in	order	to	correctly	recover	interaction	signs.	
In	other	words,	we	propose	to	satisfy	T/(n2(1−s))	>	5,	in	which	n	is	the	
number	of	species	and	s	the	proportion	of	zeroes	in	the	B	matrix.

Many	challenges	remain	to	thoroughly	evaluate	the	application	
of	MAR(1)	models	to	food	webs.	A	key	issue	where	much	statistical	
progress	is	ongoing	is	model	selection	in	high-dimensional	systems	
(Basu	&	Michailidis,	2015;	Charbonnier,	Chiquet,	&	Ambroise,	2010;	
Michailidis	 &	 d’Alché	 Buc,	 2013;	 Mutshinda,	 O’Hara,	 &	 Woiwod,	
2011;	Ovaskainen	et	al.,	2017),	where	the	number	of	potential	pa-
rameters	almost	always	outgrow	the	size	of	the	dataset	(this	would	
have	 occurred	 even	 with	 12	 species	 for	 T	=	100).	 Regularization	
(Basu	&	Michailidis,	2015)	or	dimension	reduction	(Ovaskainen	et	al.,	
2017)	 techniques	may	allow	to	 fit	 large	MAR(1)	models	 to	shorter	
time	series	than	we	do	here,	though	we	believe	that	a	proper	evalua-
tion	of	interaction	(sign)	recovery	may	require	stricter	evaluation	cri-
teria	than	those	currently	employed	(see	Supporting	Information	S2).

A	sometimes	neglected	issue	that	becomes	even	more	important	
as	 assumptions	 on	web	 topology	 are	 introduced	 for	model	 fitting	
(e.g.	 sparsity,	 latent	variables	 structuring	B),	 is	 that	 the	underlying	
topology	 of	 the	 interaction	web	 is	 never	 fully	 known.	 Thus,	 close	
attention	should	be	paid	to	the	consequences	of	mis-specifying	the	
topology	of	net	interaction	strength	prior	to	MAR(1)	fitting,	and	how	
robust	MAR(1)	model	estimations	are	to	increases	in	the	proportion	
of	hidden	players	(e.g.	nonmonitored	species	or	forcing	factors,	an	
old	yet	vexing	problem	of	community	ecology;	see	Schaffer,	1981).

5  | CONCLUSION

By	 closely	 examining	 the	 link	 between	 different	 types	 of	 nonlinear	
community	dynamics	and	MAR(1)-approximations	thereof,	we	aimed	
to	promote	an	appreciation	of	how	MAR(1)	models	work	in	practice,	as	
well	as	their	(inevitable)	limitations.	MAR(1)	models	are	powerful	tools	
to	make	sense	of	noisy	community	time	series,	approximate	commu-
nity	dynamics,	make	short-term	predictions	and	infer	the	signs	of	spe-
cies	net	interaction	strengths.	This	flexibility	makes	them	a	premium	
tool	for	ecologists.	However,	our	study	shows	that	not	accounting	for	
existing	nonlinearities	in	the	underlying	dynamics	(1)	weakens	the	in-
ference	 that	 can	 be	made	 from	MAR(1)	 to	mechanistic	 parameters,	
(2)	impairs	estimation	of	the	values	of	net	effects	among	species,	and	
even	 distort	 the	 approximation	 of	 J	 to	 the	 point	 that	 overcompen-
sation	 or	 net	 interspecific	 interactions	 can	 be	missed	 (for	 nonlinear	
predator–prey	 or	 competitive	 dynamics,	 respectively),	 (3)	 decreases	
predictive	performances,	especially	for	long-term	(PRESS)	predictions	
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of	responses	to	altered	environmental	conditions	when	species	exhibit	
self-regulating	 dynamics	 and	 (4)	 inflates	 process	 error	 estimates	 (or	
both	process	and	observation	error	estimates	 if	both	are	modelled),	
especially	when	the	underlying	dynamics	have	no	stable	equilibrium.

When	applying	MAR(1)	to	time	series,	we	therefore	recommend	
to	 identify	possible	 sources	of	nonlinearities	as	a	companion	mod-
elling	effort.	Not	necessarily	 to	 find	a	 replacement	 for	 the	MAR(1)	
model	-	the	technical	difficulties	of	fitting	nonlinear	models	are	well	
known,	 and	 they	 often	make	 the	 fit	 of	 a	 simpler	 linear	model	 the	
better	option;	but,	having	information	on	the	type	of	nonlinearities	
possibly	at	play	in	the	underlying	dynamics	can	help	to	interpret	the	
output	of	the	linear	model	fit,	and,	based	on	the	results	herein,	pre-
dict	the	consequences	of	not	accounting	for	them.	If	strong	nonlin-
earities	 are	 expected,	 a	 possible	 solution	 is	 to	 fit	models	 in	which	
temporal	dependence	is	extended	over	more	than	one	time	step	[e.g.	
ARMA(p,q)	models	 (Ives,	Abbott,	&	Ziebarth,	 2010)	 and	 their	mul-
tivariate	counterparts],	 as	 some	nonlinearities	can	be	expressed	as	
time	lags	(Turchin,	2003).	However,	with	more	than	one	time	lag	in	a	
multispecies	context,	the	connection	with	theoretical	models	could	
become	even	more	difficult,	so	the	gains	in	inferential	and	predictive	
performance	would	 have	 to	 be	weighted	 by	 the	 costs	 in	 terms	 of	
model interpretation.
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