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Abstract
1.	 Multivariate autoregressive (MAR) models are an increasingly popular technique to 
infer interaction strengths between species in a community and to predict the com-
munity response to environmental change. The most commonly employed MAR(1) 
models, with one time lag, can be viewed either as multispecies competition models 
with Gompertz density dependence or, more generally, as a linear approximation of 
more complex, nonlinear dynamics around stable equilibria. This latter interpreta-
tion allows for broader applicability, but may come at a cost in terms of interpreta-
tion of estimates and reliability of both short- and long-term predictions.

2.	 We investigate what these costs might be by fitting MAR(1) models to simulated 
2-species competition, consumer-resource and host–parasitoid systems, as well as 
a larger food web influenced by the environment. We review how MAR(1) coeffi-
cients can be interpreted and evaluate how reliable are estimates of interaction 
strength, rank, or sign; accuracy of short-term forecasts; as well as the ability of 
MAR(1) models to predict the long-term responses of communities submitted to 
environmental change such as PRESS perturbations.

3.	 The net effects of species j on species i are usually (90%-95%) well recovered in 
terms of sign or rank, with the notable exception of overcompensatory dynamics. In 
actual values, net effects of species j on species i are not well recovered when the 
underlying dynamics are nonlinear. MAR(1) models are better at making short-term 
qualitative forecasts (next point going up or down) than at predicting long-term re-
sponses to environmental perturbations, which can be severely over- as well as 
underestimated.

4.	 We conclude that when applying MAR(1) models to ecological data, inferences on 
net effects among species should be limited to signs, or the Gompertz assumption 
should be tested and discussed. This particular assumption on density-depend-
ence (log-linearity) is also required for unbiased long-term predictions. Overall, we 
think that MAR(1) models are highly useful tools to resolve and characterize com-
munity dynamics, but we recommend to use them in conjunction with alternative, 
nonlinear models resembling the ecological context in order to improve their 
interpretation in specific applications.
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1  | INTRODUC TION

Resolving how species in a community interact with each other 
and respond to environmental change is a fundament of commu-
nity ecology, and multivariate autoregressive (MAR) models pro-
vide one approach to do so. MAR models originally gained traction 
as “Vector Autoregressive Models” in econometrics (Lutkepohl, 
2005; Sims, 1980), to account for temporal dependencies be-
tween time series, predict responses to economic shocks, and infer 
prediction-based causality (Detto et al., 2012; Granger, 1969). In 
neuroscience, they are used to reveal connectivity between brain 
regions (Harrison, Penny, & Friston, 2003; Rogers, Katwal, Morgan, 
Asplund, & Gore, 2010; Seth, Barrett, & Barnett, 2015). In ecology, 
they are applied to infer species “interaction strength,” a crucial 
but multifaceted notion in community ecology (see Novak et al., 
2016; Wootton & Emmerson, 2005) which in a broad sense rep-
resents the intra- and interspecific net effects of species abun-
dances on population growth rates. Their use is also advocated to 
identify environmental drivers of community dynamics (Fischer, 
Frost, & Ives, 2001; Francis et al., 2012; Hall et al., 2009; Hampton 
et al., 2008; Huber & Gaedke, 2006; Klug, Fischer, Ives, & Dennis, 
2000; Lindegren, Möllmann, Nielsen, & Stenseth, 2009; Mac Nally 
et al., 2010; Scheef, Hampton, & Izmest’eva, 2013), to predict the 
fate of communities submitted to environmental changes (Cooper, 
Spencer, & Bruno, 2015; Gross & Edmunds, 2015; Ives, 1995; Ives, 
Carpenter, & Dennis, 1999), or extract measures of community sta-
bility and resilience (Britten et al., 2014; Gross & Edmunds, 2015; 
Ives et al., 1999; Klug & Cottingham, 2001; Lindegren et al., 2010). 
This broad use of MAR models in ecology arises from the connec-
tion of MAR(1) models (with lag of one time-step) to mathemat-
ical models of community dynamics (Ives, Dennis, Cottingham, 
& Carpenter, 2003). Today, MAR modelling has been brought to 
a general audience thanks to the design of user-friendly R pack-
ages (Hampton et al., 2013; Holmes, Ward, & Wills, 2012; Holmes, 
Ward, & Scheuerell, 2014), and even though most of the early MAR 
applications in ecology focused on lake or marine systems, the 
approach has also taken up in terrestrial ecology (Almaraz & Oro, 
2011; Mutshinda, O’Hara, & Woiwod, 2009).

MAR(1) models offer to ecologists a practical tool to study 
time series that is also well rooted in ecological theory, as they can 
be viewed as a first-order approximation of unknown, nonlinear 
dynamics around a stable equilibrium (Ives et al., 2003). Hence, 
MAR(1) models can be fitted to a large number of systems whose 
underlying dynamics are unknown, as long as stationarity can be 
safely assumed for the time series at hand. Once fitted, MAR(1) 
models are essentially a multispecies Gompertz dynamics (Dennis 
& Taper, 1994; Ives et al., 2003; Supporting Information S1). In a 

Gompertz competition model, the expected growth for a given 
species at times t+1 is a linear function of its ln-density and of the 
ln-density of its competitors at times t. The linear assumption of 
the Gompertz model is convenient when it comes to model fitting 
(Ives, 1995) because growth rates are expressed in a logarithmic 
scale. However, density-dependencies other than Gompertz are 
likely to occur in real systems, for example, when trophic rela-
tionships are involved as we have no mechanistic predator–prey 
model with Gompertz density dependence. Yet, very little is 
known regarding the robustness of MAR(1) models to departures 
from ln-linearity in the underlying, data-generating dynamics. In 
his seminal paper, Ives (1995) provided some answers regarding 
the robustness of MAR(1) models to departures from ln-linearity, 
using a model of three competing prey following a Lotka–Volterra 
type dynamics with Ricker density-dependence and of one pred-
ator with a type II functional response. As Ives (1995) stated, the 
simulated example was “moderately complex and therefore pre-
sented a considerable challenge to the prediction techniques.” 
The results were encouraging, proving that meaningful predic-
tions could be obtained for such a system. However, general con-
clusions cannot be drawn from a single simulated experiment with 
a single parameter set and model structure. A thorough evaluation 
is currently critically needed, as the applications of MAR modelling 
in community ecology are increasing, while there is a controversy 
regarding the usefulness of linear approximations for unravelling 
ecological dynamics from observed time series. On the one hand, 
MAR(1) models are still the base for recent methodological de-
velopments in high-dimensional models (Ovaskainen et al., 2017), 
while on the other hand, some studies have suggested that linear 
autoregressive approaches may be inappropriate to model nonlin-
ear ecological dynamics and have proposed alternative nonlinear 
fitting approaches to infer species interactions (Sugihara et al., 
2012; Suzuki, Yoshida, Nakanishi, & Fukuda, 2017).

This study therefore provides a thorough evaluation of the 
performance of MAR(1) models when fitted to unknown nonlinear 
dynamics. To do so, we first briefly review the basic formulation 
and assumptions of MAR(1) models. We then show how a wider 
range of models of ecological communities relate to MAR(1), by 
addressing an array of nonlinear stochastic models represent-
ing competitor, predator–prey, and host–parasitoid interactions, 
as well as a larger food web. The nonlinearities we explore 
occur in the form of nonlinear self regulation such as in Ricker 
or Beverton–Holt models, possibly leading to overcompensatory 
dynamics with Ricker, and as nonlinear functional responses in 
enemy-victim models (predator–prey or host–parasitoid systems). 
For each model, we present equilibria and Jacobian matrices to 
demonstrate how these models link to the MAR(1) formulation. To 
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test the robustness of fitted MAR(1) models to nonlinearities in 
ecological dynamics we extensively sample the parameter space 
of each model to produce a large set of simulated time series of 
interacting species subjected to three different levels of process 
error to which we fit a MAR(1) model. From these, we evaluate 
the capacity of the fitted MAR(1) model to (1) provide information 
about the ecological processes at play in the underlying ecological 
dynamics, (2) infer interaction strengths and approximate the un-
derlying community dynamics, (3) predict short-term dynamics as 
well as long-term changes induced by altered mean environmental 
conditions.

2  | MATERIAL S AND METHODS

2.1 | MAR(1) theory

A detailed description of the formulation of MAR(1) models and how 
they connect to more mechanistic models derived from ecological 
theory is provided in Supporting Information S1, sections 1 & 2. The 
standard equation for a MAR(1) model describing the dynamics of a 
vector x of time series is:

This equation can be interpreted as a multispecies Gompertz 
competitive community dynamics, in which x are species ln-abun-
dances, the vector of intercept a corresponds to the zero ln-den-
sity growth rate; the matrix B relates to the intra- and interspecific 
competition coefficients, C corresponds to the environmental 
effect on species growth rates and wt is a multivariate-normally 
distributed error vector with mean 0 and variance-covariance 
matrix Σ.

The applicability of MAR(1) models is not restricted to Gompertz 
dynamics, for Ives et al. (2003) showed a mapping between B and 
the Jacobian matrix J for a general nonlinear model. If species 
ln-abundance nt+1 is a nonlinear, stochastic function of abundances 
nt and environmental covariates ut such that nt+1 = f(nt,ut), which is 
stationary around equilibrium n*, the linear approximation of this 
process around the equilibrium abundances n* and for environmen-
tal variables standardized to mean 0 simplifies to:

where x now represents the deviation of ln-abundances from equi-
librium (xt = nt−n∗), J is the Jacobian matrix of partial derivatives 
with respect to species ln-abundances and Q is the matrix describ-
ing the effect of the environment on species growth rates modelled 
as rt = r + Qut. By comparing equation (1) and (2) it is clear that B 
corresponds to J, C corresponds to Q and that the intercept vector 
a is a zero vector, since the ln-abundances are centred around the 
equilibrium point. In community ecology, J is often referred to as 
the community matrix (although the term “community matrix” en-
compasses other forms, see Novak et al., 2016) and can be used to 
define interaction strengths. The ln-transformation before centring 

of the species abundance data is essential to the stochastic context 
because the process error on population growth rates is generally 
ln-normal (Royama, 1992) and all the theory for MAR(1) models is 
developed for Gaussian process error.

2.1.1 | Short-term forecasts and long-term 
predictions following environmental “PRESS” 
perturbations

A fitted MAR(1) model such as Equation 1 can be directly applied 
to predict species ln-abundances for the next time step, given that 
current ln-abundances and covariates are known. Such forecasts 
can support management and conservation of natural populations 
(Ward, Holmes, Thorson, & Collen, 2014). They are obtained under 
the constraining assumption that the system is at its dynamic equi-
librium, that is, the means of the stationary distributions of spe-
cies ln-abundances and environmental covariates remain constant 
through time.

MAR(1) models can also be used to predict the fate of the com-
munity over longer periods, in response to a change in the mean of 
the environmental covariates (i.e. a “PRESS” perturbation Bender, 
Case, & Gilpin, 1984). Such change could be, for example, a sudden 
and sustained increase in temperature. From the mean stationary 
distribution of xt at equilibrium derived from Equation 1 (Ives, 1995; 
Klug & Cottingham, 2001), the expected change in species equi-
librium ln-abundances following an environmental perturbation 
Δu = u2−u1 becomes

Equation 3 provides a simple formulation to predict long-term 
changes in species ln-abundances following environmental change, 
explicitly disentangling changes due to species interactions in 
(I − B)−1 from changes due to environmental forcing CΔu.

2.2 | Simulating ecological dynamics

Because we focus on how nonlinearities affect the performance of 
fitted MAR(1) models when analysing community dynamics, we used 
low-dimensional, 2-species systems, to explore in detail the conse-
quences of disregarding such nonlinearities. In addition, we also con-
sidered a larger food web (see Supporting Information S2 for details). 
We used six 2-species, discrete-time models to simulate ecological 
dynamics (Table 1). Three competition models were implemented with 
either Gompertz, Ricker or Beverton–Holt density dependence. Prey–
predator dynamics was simulated with the Lotka–Volterra model, 
with and without a type II functional response. Lastly, host–parasi-
toid dynamics was simulated with the May–Hassell model (Hassell, 
2000; May, 1978). Without stochasticity, each but one of these mod-
els displays a stable equilibrium point. The Lotka–Volterra model with 
type II functional response can be parameterized to produce either a 
stable equilibrium point or a stable limit cycle, and we treated both 
separately.

(1)xt+1=a+Bxt+Cut+wt,wt∼MVN(O,Σ)

(2)xt+1≈ Jxt+Qut

(3)Δx∗ = (I−B)−1CΔu.
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In each model, stochasticity was introduced in the species 
growth rate as rt = r + qUt + wt, where wt ~ N(0, σ2) and Ut represents 
an external environmental driver with a moderately complex auto-
correlation structure (AR(5) model, including some autocorrelation 
over several timesteps, see Supplementary Information S3 for how 
to generate plots of the simulations) exerting some control on spe-
cies growth. In each model, only species 1 was affected by the en-
vironmental variable (q = 0 for species 2). To study the effect of the 
intensity of process error on the robustness of MAR(1) models, we 
considered three scenarios. Process error on species 1 was set to 
be either negligible (σ2

1
= 0.01), on par with the strength of the en-

vironmental signal (σ2
1
= 0.1) and well above it (σ2

1
= 0.5). For species 

2, process error was kept fixed at the intermediate level (σ2
2
= 0.1). 

Such range of process error matches what is observed in the field 

(Dennis, Desharnais, Cushing, Henson, & Costantino, 2001; Jonzén, 
Pople, Grigg, & Possingham, 2005).

2.2.1 | Gompertz competition

The discrete-time Gompertz 2-species competition model (see 
Supporting Information S1, section 3.1 for a complete description) 
serves as a control in our study as its parameters show a perfect 
mapping with the fitted coefficients of a MAR(1) model. The equi-
librium ln-abundances derived from Equation 1 are n∗

1
=

α12r2 − r1α22

α21α12 −α11α22
 

and n∗
2
=

α21r1 − r2α11

α21α12 −α11α22
, and the Jacobian matrix is:

(4)J=

(

1−α11 −α12

−α21 1−α22

)

.

TABLE  1 Name, ecological significance, and values of all parameters used in our data-generating models. LVR : Lotka-Volterra model in 
discrete-time with Ricker density-dependence; LVR-T2, same model with a Type II Holling functional response instead. Min and max values 
refer to the bounds of the uniform distribution used for parameter simulation

Model Notation Ecological meaning Min value Max value

Common to all models q Environmental effect on species 1 growth rate 0.01 0.5

Gompertz α11 Intraspecific competition for species 1 0.01 1.9

α12 Competitive effect of species 2 on species 1 0.01 0.5

α21 Competitive effect of species 1 on species 2 0.01 0.5

α22 Intraspecific competition for species 2 0.01 1.9

r1 Zero-log-density growth rate for species 1 0.5 2

r2 Zero-log-density growth rate for species 2 0.5 2

Ricker α11 Intraspecific competition for species 1 0.01 1.9

α12 Competitive effect of species 2 on species 1 0.01 0.5

α21 Competitive effect of species 1 on species 2 0.01 0.5

α22 Intraspecific competition for species 2 0.01 1.9

r1 Intrinsic growth rate for species 1 0.5 2

r2 Intrinsic growth rate for species 2 0.5 2

Beverton–Holt α11 Intraspecific competition for species 1 0.01 1.9

α12 Competitive effect of species 2 on species 1 0.01 0.5

α21 Competitive effect of species 1 on species 2 0.01 0.5

α22 Intraspecific competition for species 2 0.01 1.9

r1 Intrinsic growth rate for species 1 0.1 5

r2 Intrinsic growth rate for species 2 0.1 5

LVR α Intraspecific competition for species 1 (prey) 0.01 0.9

r Intrinsic growth rate for species 1 (prey) 0.5 2

γ Predator (species 2) attack rate 0.01 0.5

ε Predator (species 2) assimilation efficiency 0.1 0.5

μ Predator (species 2) mortality rate 0.1 0.8

LVR-T2 h Handling time of prey items by the predator 0.01 0.1

May-Hassell r Intrinsic growth rate of the host 0.5 2

c Number of female parasitoids sprouting from host 0.01 0.9

b Searching efficiency by the parasitoid 0.01 0.5

l Aggregation parameter for the parasitism distribution 0.01 0.9
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Because all Jacobian elements relate directly to one single param-
eter of the Gompertz model, the elements of a B matrix from a fitted 
MAR(1) model can be interpreted ecologically in terms of intra- and 
interspecific competition strengths.

2.2.2 | Ricker competition

As Ives et al. (2003); Ives, Einarsson, Jansen and Gardarsson (2008), 
we use a 2-species competition model with Ricker density depend-
ence to mimic Lotka–Volterra competition in discrete time (Supporting 
Information S1, section 3.2). For simplicity, we refer to it as the “Ricker 
competition” model, leaving the Lotka–Volterra denomination for 
Prey–Predator models (see next section). The Ricker competition model 
differs from the continuous time version and from the Beverton–Holt 
dynamics (see eqs. 17–21 in Supporting Information S1) by its ability 
to promote cycles and chaos at high growth rates. This system has 
equilibrium densities n∗

1
= ln

(

α12r2 − r1α22

α21α12 −α11α22

)

 and n∗
2
= ln

(

α21r1 − r2α11

α21α12 −α11α22

)

, and the Jacobian is:

Now that equilibrium values enter the Jacobian, its elements cor-
respond to a mixture of parameters relating to different ecological 
processes (here intra- and interspecific competition). This is why fit-
ted B matrices are often said to be phenomenological: their elements 
describes the net effect of one species on another, but because of 
the mixture it is impossible to link such observed net effect unambi-
giously to a given ecological process.

2.2.3 | Other ecological dynamics considered

The complete set of derivations of equilibria and Jacobian matrices 
for the four other ecological dynamics is presented in Supporting 
Information S1. The third competition model used, Beverton–Holt 
(Supporting Information S1, section 3.3), is usually more stable 
than its Ricker counterpart (Kot, 2001) but displays a more intricate 
Jacobian. We also simulated three types of Lotka–Volterra type 
predator–prey dynamics. In the first (“LVR”) the prey had Ricker den-
sity-dependence and the predator consumed prey and died at fixed 
rates (Supporting Information S1, section 3.4). An important feature 
of this model is that prey equilibrium abundance is not affected by 
its growth rate (Supporting Information S1), and hence the PRESS 
perturbation imposed on the prey only affects the predator. In the 
second predator–prey model (“LVR-T2”), the predator has a type II 
functional response (Supporting Information S1, section 3.5). This 
model is akin to the Rosenzweig–MacArthur model, but its discrete 
nature allows for a larger range of dynamical behaviours (e.g. chaos). 
Depending on its parameterization, the LVR-T2 can either present 
a stable equilibrium or it can display limit cycles. Because we sus-
pected MAR(1) models might handle the two dynamical behaviours 
differently, we treated them as two separate models, termed “LVR-
T2-point” and “LVR-T2-cycle.” Evaluating how MAR(1) would approxi-
mate the dynamics produced by LVR-T2-cycle is of particular interest 

as this dynamics violates the assumption of stable equilibrium point. 
Finally, host–parasitoid dynamics were simulated from the May–
Hassell model (Hassell, 2000; May, 1978) (Supporting Information 
S1, section 3.6). All these models display intricate Jacobian matrices 
and therefore constitute a real challenge for the MAR(1) model.

Despite their mathematical complexity, these 2-species models 
may appear as highly idealized representations of ecological sys-
tems. Therefore, we also simulated a food web dynamics (12 spe-
cies, inspired from the Gatun Lake case study, Aufderheide, Rudolf, 
Gross, & Lafferty, 2013) to complement our study of MAR(1) per-
formances on small modules with a more realistic network context. 
The modelled food web had 20% connectance and was simulated 
with Lotka–Volterra–Ricker (LVR) and Gompertz dynamics. The 
models were parameterized with biological constraints maintaining 
feasibility of the equilibrium and realistic species abundance distri-
butions (i.e. more abundant basal species and slower dynamics for 
predators). MAR(1) models were fitted to simulated time series of 
800 time steps in order to keep the ratio of information in the data 
and model dimensionality on par with our 2-species modules (we 
also fitted the full model to time series of 100 time steps, which 
neither provided a satisfactory model fit nor was comparable to 
the two-species numerical experiment, see Section 4.5). The de-
tails regarding the set-up, simulation and analysis of this food web 
experiment are to be found in Supporting Information S2.

2.2.4 | Design of the simulation experiment and 
MAR(1) model fitting

To generate ecological time series from the simulation models, we 
first chose parameter values by random draws from uniform distri-
butions, bounded within a realistic range of values (Table 1). We kept 
only the time series in which both species ln-abundances (before 
centring) were bounded between −20 and 20 (to avoid vanishingly 
small and exploding populations), and we considered only feasible 
attractors (nonnegative equilibrium densities) that resulted in a sta-
ble probability distribution of abundance values (point equilibrium or 
limit cycle). After 1000 burn-in time steps, we recorded abundances 
and the environmental variable Ut during 100 time steps (Figure 1). 
Such sample size is on the comfortable side of the range of time 
series length obtained through annual or seasonal monitoring, but 
as a sensitivity test, we also used time series consisting of 25, 50 
and 200 points. We then fitted a MAR(1) model to this dataset, and 
stored the estimates and confidence intervals for elements of B and 
of the vector of environmental effects C. The MAR(1) models were 
fitted using the MARSS package (Holmes et al., 2012) in R, with the 
default EM algorithm. Confidence intervals were computed using 
the estimated Hessian matrix, or were obtained through parametric 
bootstrap (as implemented in the MARSS package) if that estimation 
failed. Parametric bootstrap was not used systematically for com-
puting time reasons, but showed similar results for a tested subset 
(not shown). For each model structure and process error level for 
species 1, 1000 simulation experiments were performed with the 
parameters drawn at random and independently.

(5)J=

(

1−α11e
n∗
1 −α12e

n∗
2

−α21e
n∗
1 1−α22e

n∗
2

)

.



1980  |    Methods in Ecology and Evolu
on CERTAIN et al.

The R code for fitting MAR(1) models, analysing and plotting 
the results of the 2-species simulation experiments is provided in 
Supporting Information S3.

2.3 | Evaluating MAR(1) performances

2.3.1 | How does B relate to ecological processes?

As shown previously, the B matrix of a fitted MAR(1) model ap-
proximates J which, in turn, summarizes interaction strengths by 
blending together parameters describing the ecological processes 
at work in the underlying dynamics (hereafter denoted “mecha-
nistic parameters”). Except in the Gompertz case, the mapping 
between J elements and the mechanistic parameters of the 

underlying dynamics is intricate (Supporting Information S1, sec-
tion 3). Still, it may be tempting to interpret B in ecological terms, 
and identify its elements e.g. as strength of intra- or interspe-
cific competition, predation or parasitism. Therefore, we evalu-
ate how risky such interpretations may be (when the underlying 
model is not Gompertz) by identifying the statistical relationships 
between coefficients of the fitted B matrix and the mechanistic 
parameters.

2.3.2 | How does B approximate the Jacobian 
J of the underlying dynamics?

To evaluate how well B estimates J, we compared the true values of 
the Jacobian matrix elements ( jij) against their fitted counterparts 

F IGURE  1   Workflow of MAR(1) model evaluation
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(bij), using correlations and slopes of linear regression between (bij) 
and ( jij) and estimated bias (bij − jij). From the standard error values 
provided for each fitted bij, we estimated how often the true values 
of jij lied within the 95% confidence intervals given by the fit of the 
MAR(1) model. We also reported how often the ranks and signs of B 
match the ranks and signs of J. Finally, we compared the dominant 
eigenvalue of B and J as it is one measure of the system stability and 
can be interpreted as a return rate to the equilibrium after a pertur-
bation (Ives et al., 2003).

2.3.3 | Do MAR(1) models accurately capture the 
environmental forcing and provide reliable short- and 
long-term predictions?

To check for recovery of the environmental effect by the MAR(1) 
model, we compared the fitted environmental effects c11 and c12 
as well as their 95% confidence intervals to the environmental 
forcing parameters (q and 0, as only species 1 is affected by the 
environment).

We used the Absolute Scaled Error (ASE, Hyndman & Koehler, 
2006) on the next point of the simulated data series as a quanti-
tative measure of short-term forecast accuracy. ASE is a scale in-
variant measure of forecast accuracy that allows comparison across 
datasets with different scales of variation, is less sensitive to out-
liers and has already been used to evaluate the forecast accuracy 
of MAR(1) models, among others, on real time series (Ward et al., 
2014). ASE  <  1 indicates a better forecast, on average, than a naïve 
one-step forecast which simply considers the last observation as 
the forecast for the next one. For each model structure, species and 
process error level, we reported how often the ASE was above 1 
across the 1000 simulations. As a qualitative measure of the forecast 
accuracy, we also reported how often across the 1000 simulations 
the fitted MAR(1) model would accurately predict the trend of the 
next point, i.e. whether the next point would lie below or above the 
last observed value.

Finally, to evaluate the ability of the fitted MAR(1) model to pre-
dict the long term effect of a change in environmental conditions, we 
considered the effect of a PRESS perturbation in which the mean of 
Ut would shift from 0 to 4 (e.g. mimicking an abrupt temperature in-
crease or eutrophication triggered by nutrient input). True expected 
long-term change in equilibrium abundances for both species Δn∗

1
 and 

Δn∗
2
 was derived from the species equilibrium abundances provided in 

Supporting Information S1 for each simulation. They were compared 
to the predictions Δx∗

1
 and Δx∗

2
 from Equation (3) using fitted MAR(1) 

parameters. For each simulation, we applied parametric bootstrap 
to Equation 3 by randomly drawing coefficients for B and C using 
means and standard errors obtained from the fitted MAR(1) model. 
We obtained 1000 predictions and considered that their median was 
the MAR(1) prediction of the effect of the PRESS perturbation. We 
finally calculated, from these boostrapped predictions, the quantile to 
which the true change corresponded, which characterize the statisti-
cal distance between the prediction from MAR(1) and the true PRESS 
perturbation.

3  | RESULTS

This section reports all the summary statistics of our simulation ex-
periment together with illustrations of the most important results. 
More detailed results are available in Supporting Information S4, 
which comprises a set of figures presenting correlations between 
B and mechanistic parameters, numerical results regarding the ap-
proximation of J by B, short-term forecasts, PRESS predictions, and 
the results of the sensitivity analysis on time series length. Lastly, 
Supporting Information S5 considers additional scenarios where an 
observation error is added.

3.1 | How do B elements relate to mechanistic 
parameters?

As expected, the mapping between the fitted B matrix and mech-
anistic parameters of the underlying dynamics is clear when the 
underlying dynamics is Gompertz but becomes increasingly chal-
lenging with more nonlinear dynamics. The Jacobian matrix for the 
Lotka–Volterra–Ricker predator–prey model illustrates this blending 
of mechanistic parameters fairly well (Equation 6, parameters de-
fined in Table 1).

We observe therefore no direct correlation between B matrix 
elements and mechanistic parameters, when all are allowed to 
vary randomly (Table 2, where the results are conditional upon 
the parameter bounds specified in Table 1). For example, b21 
represents the net effect of species 1 on species 2. It does cor-
relate to α21, the competitive effect of species 1 on species 2, 
in both Gompertz and Ricker competitive dynamics. But there 
is no such correlation between fitted and mechanistic param-
eters in the case of prey–predator dynamics, the net effect of 
the prey (species 1) on the predator (species 2) mostly depends 
on the predator's mortality rate. This is expected from the theo-
retical formulation of j21 (Equation 6 and Supporting Information 
S1, section 3.4), assuming that the underlying dynamics at play 
is known. However, for Beverton–Holt and May–Hassell dynam-
ics, the same fitted element b21 unexpectedly correlates to the 
strength of environmental forcing q even though environmental 
forcing was explicitly accounted for in the MAR(1) model. Similar 
patterns emerge with other Jacobian elements, for example the 
fitted intraspecific density dependences b11 and b22 correlate to 
intraspecific competition α11 and α22 in the Gompertz case but 
relates to intrinsic growth rates otherwise (Table 2). Again, this is 
not surprising given the importance of the intrinsic growth rate 
in models with Ricker density dependence. Still, these examples 
illustrate well that the ecological process(es) to which B elements 
relate might not be those we intuitively expect, and that any de-
tailed ecological interpretation of B matrix elements when the 
underlying dynamics is unknown can be challenging, and in the 
worst cases, misleading.

(6)J=

(

1−
αμ

εγ
−r+

αμ

εγ

μ 1

)
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3.2 | How do B elements relate to net interspecific 
interactions and intraspecific population regulation?

Signs of diagonal B matrix elements reflect the presence or absence 
of overcompensation (negative in case of overcompensation), while 
signs of off-diagonal elements give the directions of the net effects of 
the interspecific interactions. We considered sign recovery to be suc-
cessful when 90% of simulations gave correct sign (sign(Bij) = sign(Jij)). 
This was the case for 80% of our scenarios and B elements (Table 3). 
Cases in which sign recovery failed can be split between inter- and 
intraspecific interactions. First, interspecific interaction signs were 
slightly less well recovered for nonlinear competition (c. 90% of cases 
with successful sign recovery, 75% in the worst cases for Ricker and 
Beverton–Holt Dynamics) than for enemy-victim models (prey–pred-
ator and host–parasitoid dynamics), which performed very well (cor-
rect sign recovered in >95% of cases). Second, overcompensation, 
denoted by negative diagonal element in J, was present in Ricker 
competition and LVR model but was not always recovered in the sign 
of b11 (Figure 2a, Table 3). The LVR model performed especially poorly 
in that respect (<80% of sign recovery, 60% at high process error).

Correlations and slopes of linear regressions suggested close 
relationships between the values of B and J elements in Gompertz 
and Beverton–Holt models, without notable bias (i.e. slopes not 
different from one, Figure 2, Supporting Information S4 section 2). 
Such relationships deteriorate in models with Ricker density-de-
pendence, due to a systematic bias with B elements and an in-
crease in the variability of the estimates (Figure 2). Concerning the 
diagonal elements, the strength of over- or undercompensation 
(intraspecific density-dependence) tends to be underestimated 
for species 1 in prey–predator models (Figure 2a) and overesti-
mated for species 2 in the May–Hassell model (see Supporting 
Information S4, fig. 4.5). For off-diagonal elements, underestima-
tion of the magnitude of interspecific interactions was also at play 
in Ricker-type models (Ricker competition and LVR, LVR-point and 
LVR-cycle) (Figure 2b, c, Supporting Information S4, Fig. 4.3 and 
4.4). Doubling the time series length did not improve how well B 
estimated J (Supporting Information S4, section 5). This lack of 
precision in estimates should, in theory, lead to larger confidence 
intervals. However, upon examination (Figure 2, Table 3), all mod-
els but Gompertz have a large proportion of CIs missing the sim-
ulated J elements, and more so as time series length increased 
(Supporting Information S4, section 5). This is especially true for 
enemy-victim models. As an example, if we average over the three 
process error levels, 53% of LVR and LVR-T2-point b12 CIs did not 
include the “true” j12 value.

Process error also affected whether interspecific interactions 
were recovered by the MAR(1) model, and additional observation 
error generally decreased the recovery rate (Supporting Information 
S5). Figure 2c shows that increasing process error on species 1 led 
to a better recovery of its effect on species 2 (b21). Conversely, 
decreasing process error on species 1 improved the estimation of 
b12 (Figure 2b). In other words, increased process error (due to e.g. 
environmental variance) in the growth rate of the focal species im-
pairs estimation of effects of other species, while increased process 
errors in the growth rate of other species improves the estimation of 
their effects on the focal species.

The dominant eigenvalue of B was inferior to 1 in more than 95% 
of cases, even in the presence of data generated by LVR-T2-cycle 
for which the dominant eigenvalue is greater than 1 by definition. 
Correlation between the dominant eigenvalue of B and J was very 
good for Gompertz, Beverton Holt and May–Hassell, fairly good in 
the case of Ricker, LVR and LVR-T2-point and poor with LVR-T2-cycle 
(Table 3), suggesting that when the underlying dynamics has a stable 
equilibrium, the MAR(1) approximation is able to reproduce accu-
rately its stability properties sensu Ives et al. (2003).

3.3 | Do MAR(1) models accurately capture 
environmental forcing and provide reliable short- and 
long-term predictions?

The environmental forcing on species 1 was well captured by MAR(1) 
models across all data-generating models (Table 4, Supporting 
Information S4). Qualitative forecasts from MAR(1) models were 
moderate to fair, with often at least 70% correctly predicted trend 
for the next unobserved point of the time serie (Table 4) but rarely 
more than 90%. Qualitative forecasts obtained for nonlinear preda-
tor–prey models were the less accurate. The results on the accuracy 
of quantitative short-term forecasts measured by ASE are very simi-
lar, with predator–prey dynamics as well as Beverton–Holt competi-
tion models not so well predicted by MAR(1). Lastly, process error 
intensity had a notable negative effect on the accuracy of species 1 
forecast with all data-generating models.

PRESS predictions were rather accurate for Gompertz and May–
Hassell simulations (Figure 3a,b,e,f, Table 4, fig. S4.6) but more prob-
lematic otherwise. In the Ricker (Figure 3c,d) and the Beverton–Holt 
(fig. S4.6) competition models, future equilibrium ln-abundances of 
species 1 were strongly and systematically overestimated, while for 
species 2 they were underestimated. They were, however, mostly in the 
right direction (>90% of cases for species 1 and >75% of cases for spe-
cies 2, Table 4). For predator–prey models, in which only the predator's 

F IGURE  2   Comparison of fitted B elements (y-axis) with their true J counterparts (x-axis) for (a) b11, (b) b12, (c) b21 and (d) b22. In each 
panel, rows correspond to the underlying model (from top to bottom: Gompertz, Ricker and LVR) and columns correspond to process error 
intensity on species 1. Each graph is based on 1000 simulations, each having a unique parameter set for the underlying model. Each dot 
corresponds to one simulation; blue dots correspond to cases where the true value jij lies within the 95% confidence interval obtained for bij 
from the MAR(1) fit, pink dots display cases where the true value lies outside the 95% confidence interval. The blue line corresponds to the 
diagonal y = x, indicating perfect match. The dashed line shows the actual regression line of jij ~ bij
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equilibrium ln-abundance is supposed to change following the PRESS 
perturbation (cf. Supporting Information S1, sections 3.4 and 3.5), 
MAR(1) still predicted significant deviations for the prey in up to 20% 
of the cases (with LVR-T2-point at low process error, fig. S4.6) while 
the predator's response was in general overestimated (Figure 3h,j,l). 
Lastly at high process error, the sign of the predator's response could 
be mis-predicted in up to 30% of simulations (Figure 3j,l, Table 4).

3.4 | Do 2-species results hold in a food web 
context ?

We observed a notable difference in the correspondence between 
B and J for on- and off-diagonal elements (Supporting Information 
S2), suggesting that net interspecific interaction strengths were less 
well estimated than net intraspecific interaction strength in such 
larger webs. There were relatively few differences in MAR(1) perfor-
mances in terms of interspecific interaction sign recovery between 
Gompertz and LVR, corroborating our results on 2-species systems 
that interaction sign recovery is robust to nonlinearities. The under-
estimation of interaction strength reported for the 2-species LVR 
was visible at the base of the food web, but not at the upper levels, 
where the correlations between B and J were also weaker. Such up-
per-level interactions were therefore less well estimated, but it is im-
portant to note that they were also less strong by construction. This 
is notably due to the low abundances of the high trophic levels that 
decrease their Jacobian values. Similarly to the 2-species models, the 
environmental effects were overall very well recovered when strong 
enough. Overcompensation was recovered as well. Finally, whereas 
PRESS-predictions were accurate for 2-species Gompertz model, 
they were rather poor for both Gompertz and LVR food webs, as er-
rors in estimation of net interactions ripple through the web.

4  | DISCUSSION

By deriving and quantifying the accuracy, bias and predictive ability of 
fitted MAR(1)-models using simulated data from seven types of com-
petitive, predator–prey and host–parasitoid systems, as well as a larger 
food web, with nonlinear stochastic dynamics and varying process 
error levels, we have provided a thorough test of the MAR(1) approach 
for multispecies dynamics. Our findings illustrate the importance of 
assuming that the studied system exhibits Gompertz density-depend-
ence for any other inference than interaction sign. This assumption is 
a stern prerequisite for interpreting numerical values of the MAR(1) 
interaction matrix B. While we can specify mechanistic competition 
models of the Gompertz type, in most enemy–victim scenarios we 
cannot, so that B elements have to be interpreted in most cases in 
terms of net interaction strengths blending mechanistic parameters.

Except for diagonal elements in cases of overcompensatory dy-
namics, high confidence can be put in the sign of B elements. Thus, 
the direction of net interactions in a community can be assessed 
using MAR(1). Depending on the underlying dynamics at play, how-
ever, the magnitude of point estimates and confidence intervals 

of B may poorly match the actual values of the community matrix 
J. MAR(1) models accurately identified the environmental forcing 
acting on a species in all types of tested dynamics. Predictions of 
long-term responses to sustained environmental changes, however, 
tended to be either over- or underestimated for all but 2-species 
host–parasitoid and Gompertz systems. In the following sections, 
we discuss these findings in details, attempt to elucidate the rea-
sons behind discrepancies, and provide some guidance on interpre-
tation and use of MAR(1) models fitted to ecological data.

4.1 | The ecological significance of MAR(1) 
model parameters

Predictions regarding which B elements should be related to which 
mechanistic parameter could theoretically be made from the for-
mulations of J (see Supporting Information S1) but only if the un-
derlying dynamics at play are known. When they are not, zero B 
matrix coefficients should not be interpreted as a lack of ecological 
interactions between individuals, while nonzero should be inter-
preted as net interaction strength without a direct relation to the 
ecological processes at work. Another result important for the in-
terpretation of estimated MAR(1) parameters was the relationship 
between the strength of the environmental forcing and B elements 
in the Beverton–Holt, LVR-T2-cycle and May–Hassell models. This 
shows that when the underlying dynamics is not Gompertz, some 
part of the environmental forcing is passed onto B and interpreted 
by MAR(1) as an interspecific effect, hence contributing to the mis-
match in value between B and J . As the strength of environmental 
forcing is still rather accurately predicted even for these models, it is 
however likely that, in our simulations, only a small fraction of envi-
ronmental forcing is passed onto B.

Beyond ecological interpretation, these observations also have 
implications for model building strategies. Some studies either restrict 
a priori the range of MAR(1) models investigated, or evaluate a posteri-
ori the MAR(1) model they obtain according to “ecological plausibility” 
( Fischer et al., 2001; Hampton, Scheuerell, & Schindler, 2006; Huber 
& Gaedke, 2006; Ives et al., 1999). An interaction is then said to be 
plausible when the value of the B element can be easily interpreted 
in ecological terms (e.g. negative interactions between competitors). 
However, given the often idiosyncratic nature of the relationship be-
tween B and ecological processes at play in the underlying dynamics 
(see Supporting Information S1), it might well be that the phenomeno-
logical approximation provided by the fit of a MAR(1) model, despite 
not being “ecologically plausible,” is still a better approximation of the 
net effects among species than another model restricted to suppos-
edly “plausible” auto- and cross-correlations.

4.2 | The Gompertz assumption of linearity on a 
log-scale

Given its importance for model interpretation, testing the Gompertz 
assumption should appear common sense—it is after all checking 
model fit. But it is easier said than done with short ecological time 
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(f) May-Hassel, Host (Sp. 2)
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series. Visual examination of residual plots is recommended (Ives 
et al., 2003; Vik, Brinch, Boutin, & Stenseth, 2008), which we sys-
tematically produced during the analysis (Supporting Information 
S3). At low process error level, these plots often displayed the 
curved relationships typical of nonlinearities unaccounted for, as 
exemplified in Figure 4a. As process error increased to levels com-
monly observed in the field (σ2 = 0.1-0.5, Dennis, Kemp, & Taper, 
1998; Dennis et al., 2001), these curved relationships became 
harder and harder to detect, to the point where they could very 

well become unnoticed (Figure 4b). Hence, even if looking at the re-
siduals is a crucial step of the modelling process, failing to observe 
curved relationships is not a proof of absence of nonlinearities, es-
pecially for noisy systems. Fitting both linear and nonlinear models 
to ecological time series can be recommended, even though a bit 
cumbersome in practice. Comparison between the fitted linear and 
nonlinear models can provide some insights on the type and impor-
tance of nonlinearities existing in the underlying models, which, in 
turn, controls the amount of information that can be extracted by 

FIGURE 3   Comparison of the median predictions of the species’ response to a PRESS perturbation obtained from a fitted MAR(1) model 
(y-axis) with the actual response in the simulated model (x-axis). Responses are expressed as change in ln-populations densities. Each plot is based 
on 1000 simulations, each having a unique parameter set for the underlying model, and each dot corresponds to one simulation. The colourscale 
for dots (upper-left plot) illustrates the distance between the true change and the median prediction in terms of interquantile range, that is, a value 
of 0.5 means that the true change lies beyond the 95% prediction interval derived from the bootstrapped distribution of the predictions. The blue 
thick lines show the perfect (y = x) match. The thin dashed lines show the actual regression y ~ x

F IGURE  4   Autocorrelation function for the residuals (uppermost panels) and plots of the residuals (y-axis) against species ln-abundances 
(x-axis) for two selected simulations of the Ricker model at low (a) and high (b) process error levels. Patterns typical from unaccounted 
nonlinearities (e.g. curvilinear relationships in the residual plots) are clearly observed in the low-process error simulation, but are much more 
difficult to detect for the high-process error simulations
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a MAR(1) model together with the type and strength of biases that 
can be expected. As often pointed out (Ives, 1995; Perretti, Munch, 
& Sugihara, 2013), linear models are so much easier to fit and use 
than nonlinear models that even in the presence of nonlinearities, 
their use can be preferred. But, as we demonstrated, knowledge of 
the type of nonlinearities at work allows to anticipate the biases 
entailed in the use of a linear approximation.

4.3 | What is the quality of interaction strengths 
estimates and dynamical approximation offered by a 
MAR(1) model?

MAR(1) models do provide information on the sign of net effects 
among species, but do not reliably recover their actual values when 
the underlying dynamics are nonlinear, as shown by the loss of 
correlation between B and J outside of the Gompertz case. The 
general expectation is that MAR(1) models pass unexplained vari-
ability onto the process error matrix Σ, and they do so; the ratio 
of fitted versus true process error (Σ11∕σ

2

1
 and Σ22∕σ

2

2
) is indeed in-

flated for all data-generating models but the Gompertz (Supporting 
Information S4, fig. S4.7). This is good statistical behaviour, as we 
prefer unexplained variability to be passed onto process error 
rather than onto other MAR(1) parameters such as biotic interac-
tions, to avoid biased estimates. Still, our results show that such 
transfer of variability to variance terms does not completely pre-
vent net biotic interactions from getting distorted by underlying 
nonlinearities.

To understand any ecological system's dynamics, errors on the 
ranks and signs of the community matrix elements are the most 
problematic. Overall, these errors are rare, but we identified two 
situations in which they are more likely to occur. In competitive sys-
tems with nonlinear dynamics, the net effect of a competitor on a 
target species, revealed by off-diagonal B elements, might be missed 
when the target species is submitted to strong environmental con-
trol. With models presenting density dependence of Ricker type, 
overcompensation might be missed due to the lack of detection of 
negative diagonal B elements. Lastly, many aspects of the mapping 
between B and J are lost when the underlying dynamics have no 
stable equilibrium and even if this is expected, one should be partic-
ularly careful when interpreting or projecting MAR(1) models fitted 
to such dynamics.

4.3.1 | MAR(1) models and overcompensatory  
dynamics

MAR(1) models display in theory overcompensatory dynamics 
for a species whenever its diagonal B matrix element is negative. 
Therefore, observing a negative fitted B diagonal element is often 
interpreted as an indication that the corresponding species displays 
overcompensatory dynamics (Hampton et al., 2013; Ripa & Ives, 
2003). However, detecting overcompensation with log-linear models 
is known to be difficult from previous results on single-species models 
(Barraquand, Pinot, Yoccoz. & Bretagnolle, 2014). Overcompensation 

happens with Ricker dynamics at high intrinsic growth rate. In our 
Ricker-based data-generating models, overcompensation is expected 
as soon as the intrinsic growth rate r becomes superior to 1 (Kot, 
2001, Supporting Information S1, section 3.4). This is also the case 
with most simulations from the LVR model, even though the dy-
namics is complexified by predation (Figure 5a): negative values on 
the Jacobian diagonal also relate to simulations with higher intrin-
sic growth rate for the prey (Figure 5b). Since both MAR(1) and LVR 
models show overcompensation when B or J diagonal elements are 
negative, one can reasonably expect that overcompensation in the 
LVR model should be picked-up by fitting a MAR(1) model. However, 
only a third of negative j11 values had their fitted counterpart b11 also 
negative (Figure 5c), which means that MAR(1) models often missed 
overcompensation when it was present. Detecting overcompensa-
tion is an important aspect of studying ecological dynamics. It allows, 
for example, for better anticipation of biases in population viability 
analysis (Sabo, Holmes, & Kareiva, 2004). Faulty assumptions about 
the shape of density dependence, combined with overcompensatory 
intrinsic population dynamics, can lead to strongly biased estimated 
effects of autocorrelated covariates, especially when autocorrelation 
is negative (Linden, Fowler, & Jonzén, 2013). The reasons for which 
overcompensatory dynamics would be picked up by MAR(1) models 
in some cases, but not in others, is unclear and would require further 
work. Still, we observed that in cases when overcompensatory dy-
namics were missed, fitted process error Σ11 was systematically in-
flated (Figure 5d), most likely because unaccounted variability due to 
overcompensatory dynamics is passed onto the process error. Hence, 
when one suspects that overcompensation is at play in a time series 
fitted by a MAR(1) model, inflated process error could be an indica-
tion that the model just missed it.

4.3.2 | Limit cycles

The dominant norms of the B matrices obtained from fitted MAR(1) 
models almost always indicated stable dynamics (dominant norm  < 1), 
even when the data-generating model had no stable point. This resulted 
in a complete mismatch between B and J with LVR-T2-cycle, because in 
that case the dominant norm of J is above 1 (due to the escape of trajec-
tories from the equilibrium to settle on the limit cycle). This is expected: 
the fitted MAR(1) model ascribes this dynamical behaviour to the only 
possible cyclic behaviour it can generate, quasi-cycle with stable equi-
librium point. MAR(1) models will systematically produce fixed equilib-
rium points even if the true attractor is not a point. This emphasizes that 
stability indicators obtained from a MAR(1) model, which heavily rely on 
the properties of the estimated B matrix (Ives et al., 2003), may be more 
or less appropriate depending on the type of attractors. In cases such as 
limit cycles, the mapping from B to J is severely distorted, which in turn 
limits the interpretation one can make from stability indicators. Testing 
for the existence of a single equilibrium point, or at least investigating 
the consequences of their absence, is therefore an important step when 
attempting to derive stability measures from MAR(1) model fit (see for 
example Britten et al., 2014), and can be achieved by fitting alternative 
nonlinear models to data (Ives et al., 2008).
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4.4 | The predictive performance of MAR(1) models

Fitted MAR(1) models produced a meaningful short-term forecast in 
roughly three cases out of four for competitive and host–parasitoid 
dynamics, which in our view constitutes a reasonable performance. 
One should expect a slight decrease in MAR(1) forecast accuracy 
with nonlinear predator–prey systems and high process error. This 
echoes the study of Ward et al. (2014) in which a poorer forecast ac-
curacy with log-linear autoregressive models, among other methods, 
was evidenced for highly variable time series.

Long-term PRESS predictions, on the other hand, can provide ro-
bust information on the direction of species’ responses, but not on 
their magnitude. In case of competition models, overestimation of the 
change in species 1 ln-abundance could be surprisingly severe, up to a 
factor 100. This is due to how intraspecific regulation acts in the under-
lying dynamics. In a single population following a Gompertz dynamics, 
the population increase in ln-abundance from one time step to another 
is a linear function of intraspecific ln-abundance, nt+1−nt = r−αnt. The 
equilibrium ln-abundance in this case is simply r

α
, and the expected 

change in equilibrium ln-abundance following a PRESS perturbation P 
is q

α
×P, that is, a linear function of the PRESS scaled by intraspecific 

regulation. If intraspecific regulation is nonlinear, for example, as in the 
Ricker model nt+1−nt = r−αent, the expected change in equilibrium 
ln-abundance following a PRESS perturbation is ln

(

1+
qP

r

)

, that is, a 

ln-linear function of the PRESS mediated by the species’ growth rate. 
Hence, predicting the PRESS effect as a linear function when it actually 
is ln-linear can result in a major bias. The same reasoning, albeit more 
complex analytically, applies to our competition- and predator–prey 
systems in which intraspecific regulation follows either the Ricker or 
the Beverton–Holt form. Therefore, it is probably safe to assume that 
in any ecological systems in which the growth function of the pop-
ulation decreases nonlinearly with density, the predicted effect of a 
PRESS perturbation on that population will, depending on whether the 
PRESS is positive or negative, most likely be either over- or underesti-
mated, respectively, by a fitted MAR(1) model.

Biased PRESS predictions can have strong implications for manage-
ment. In the fisheries context, MAR(1) models have been used to inves-
tigate the effect of PRESS perturbations (fishing intensity, Lindegren 
et al., 2009, and climate forcing, Lindegren et al., 2010) in the Baltic 
Sea, with conclusions regarding the levels of sustainable fishing of cod. 
Fishing release on cod is similar to the environmental PRESS in our 
simulations: it has a positive effect on population growth rates. As the 
system considered therein cannot be related to Gompertz dynamics 
in a mechanistic sense (it includes prey–predator relationships instead 
of competition, and encompasses several trophic levels), the resulting 
PRESS predictions potentially overestimate the effect of fishing re-
lease, which suggests that avoidance of collapse could be more likely 
in MAR(1) than in reality. Other studies have used log-linear MAR(1) 

F IGURE  5   Recovery of 
overcompensation. (a) For one simulation 
of the LVR model in which r = 1.96, 
relationship between prey density at times 
t (x-axis) and t + 1 (y-axis). The scatterplot 
displays the curvilinear pattern typical 
from overcompensation. (b) statistical 
distribution of j11 for the LVR model, 
when the underlying dynamics of the prey 
has low (r < 1, blue) and high (r > 1, red) 
growth rate. Most j11 values are negative 
in the latter case. (c) Statistical distribution 
of r across 1000 LVR simulations, spread 
between three cases: When the sign of 
j11 was correctly predicted by b11 either 
positive (blue) or negative (green), and 
when negative j11 would not be recovered 
in b11 (red). (d) Statistical distribution 
across 1000 LVR simulations of the bias 
on the process error, spread between the 
same cases as in (c). Mismatch between 
the signs of j11 (negative) and b11 (positive) 
lead to inflated Σ11. These results are 
extracted from the set of simulation 
experiments in which simulated process 
error on species 1 σ2
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models to predict the responses of coral reefs to climate change 
(Cooper et al., 2015; Gross & Edmunds, 2015), we advise to do so with 
caution when only one type of density-dependence is considered.

4.5 | Complexifying our experiment: Observation 
error and food web models

In this study, we used mainly 2-species models because they allow 
to vary broadly the parameter space and they constitute a suitable 
starting point to foster understanding, by analytical derivation of 
Jacobian matrices J of the underlying dynamics and comparison to 
community matrices B in MAR(1)-models. As we focused primarly 
on the type of nonlinearities at play, other topics such as the inclu-
sion of observation errors, the colour of environmental noise or sys-
tems of higher dimensionality are open avenues for further study. 
We have nonetheless made some progresses regarding observation 
errors and high dimensionality.

4.5.1 | Observation error

Adding observation error to stochastic discrete-time dynamics has 
been already investigated by Lindén and Knape (2009) who sug-
gested possible biases in the detection of environmental effect 
when observation errors were not accounted for while present. On 
the other hand, there are a number of identifiability issues when in-
cluding observation errors without prior knowledge of their mag-
nitude (Auger-Méthé et al., 2016; Knape, 2008). For some of our 
data-generating models (Gompertz, Ricker and Beverton–Holt), we 
added various levels of observation errors both to our simulations 
and to the fitted MAR(1) models (Supporting Information S5). Our 
results confirmed the identifiability problems already encountered 
by others: when neither observation error nor process error is set to 
a fixed value, some of the observation error can be transfered to the 
process error—or vice-versa—sometimes to a large extent (fig. S5.1). 
Our recommendation is therefore to include observation error only 
when prior knowledge of its magnitude exists, and if this knowledge 
can be used to constrain model fit (see S5 for details).

4.5.2 | From small modules to networks

Results from our food web numerical experiment confirmed our 
2-species results: the robustness of interaction sign inference to 
nonlinearities holds in higher dimensional systems of similar infor-
mation content/parameters ratio. This last point is of importance: 
because of the increase in the number of MAR(1) parameters fitted 
to a food web, time series length had to be significantly extended 
to allow for a reasonable MAR(1) fit. That time series length con-
strains the estimation of MAR(p) models is one of the basic tenets 
of econometrics and time series statistics (Lutkepohl, 2005); in 
this paper, we assumed time series long enough that we know the 
MAR(1) models can by themselves be estimated, if no additional 
nonlinearities are considered. Fitting the food web model to time 
series showed clearly, for instance, that time series longer than 100 

need to be considered (see Supplementary Information S2) or addi-
tional sparsity constraints have to be implemented (see below). We 
investigated the robustness of our results to time series length T by 
repeating our simulation experiment for T =  25, 50, and 200 points, 
in the 2-species models. We observed that interaction sign inference 
remains remarkably good for those other lengths, but the short-term 
predictive ability declines when T declines (Supporting Information 
S4, Section 5). As an empirical rule, we suggest that time series 
length should be at least 5 times greater than the number of a priori 
nonzero elements in B in order to correctly recover interaction signs. 
In other words, we propose to satisfy T/(n2(1−s)) > 5, in which n is the 
number of species and s the proportion of zeroes in the B matrix.

Many challenges remain to thoroughly evaluate the application 
of MAR(1) models to food webs. A key issue where much statistical 
progress is ongoing is model selection in high-dimensional systems 
(Basu & Michailidis, 2015; Charbonnier, Chiquet, & Ambroise, 2010; 
Michailidis & d’Alché Buc, 2013; Mutshinda, O’Hara, & Woiwod, 
2011; Ovaskainen et al., 2017), where the number of potential pa-
rameters almost always outgrow the size of the dataset (this would 
have occurred even with 12 species for T = 100). Regularization 
(Basu & Michailidis, 2015) or dimension reduction (Ovaskainen et al., 
2017) techniques may allow to fit large MAR(1) models to shorter 
time series than we do here, though we believe that a proper evalua-
tion of interaction (sign) recovery may require stricter evaluation cri-
teria than those currently employed (see Supporting Information S2).

A sometimes neglected issue that becomes even more important 
as assumptions on web topology are introduced for model fitting 
(e.g. sparsity, latent variables structuring B), is that the underlying 
topology of the interaction web is never fully known. Thus, close 
attention should be paid to the consequences of mis-specifying the 
topology of net interaction strength prior to MAR(1) fitting, and how 
robust MAR(1) model estimations are to increases in the proportion 
of hidden players (e.g. nonmonitored species or forcing factors, an 
old yet vexing problem of community ecology; see Schaffer, 1981).

5  | CONCLUSION

By closely examining the link between different types of nonlinear 
community dynamics and MAR(1)-approximations thereof, we aimed 
to promote an appreciation of how MAR(1) models work in practice, as 
well as their (inevitable) limitations. MAR(1) models are powerful tools 
to make sense of noisy community time series, approximate commu-
nity dynamics, make short-term predictions and infer the signs of spe-
cies net interaction strengths. This flexibility makes them a premium 
tool for ecologists. However, our study shows that not accounting for 
existing nonlinearities in the underlying dynamics (1) weakens the in-
ference that can be made from MAR(1) to mechanistic parameters, 
(2) impairs estimation of the values of net effects among species, and 
even distort the approximation of J to the point that overcompen-
sation or net interspecific interactions can be missed (for nonlinear 
predator–prey or competitive dynamics, respectively), (3) decreases 
predictive performances, especially for long-term (PRESS) predictions 
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of responses to altered environmental conditions when species exhibit 
self-regulating dynamics and (4) inflates process error estimates (or 
both process and observation error estimates if both are modelled), 
especially when the underlying dynamics have no stable equilibrium.

When applying MAR(1) to time series, we therefore recommend 
to identify possible sources of nonlinearities as a companion mod-
elling effort. Not necessarily to find a replacement for the MAR(1) 
model - the technical difficulties of fitting nonlinear models are well 
known, and they often make the fit of a simpler linear model the 
better option; but, having information on the type of nonlinearities 
possibly at play in the underlying dynamics can help to interpret the 
output of the linear model fit, and, based on the results herein, pre-
dict the consequences of not accounting for them. If strong nonlin-
earities are expected, a possible solution is to fit models in which 
temporal dependence is extended over more than one time step [e.g. 
ARMA(p,q) models (Ives, Abbott, & Ziebarth, 2010) and their mul-
tivariate counterparts], as some nonlinearities can be expressed as 
time lags (Turchin, 2003). However, with more than one time lag in a 
multispecies context, the connection with theoretical models could 
become even more difficult, so the gains in inferential and predictive 
performance would have to be weighted by the costs in terms of 
model interpretation.
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