Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia

Type Article
Date 2018-07
Language English
Author(s) Jaspers Cornelia1, 2, Huwer Bastian1, Antajan ElvireORCID3, Hosia Aino4, 5, Hinrichsen Hans-Harald2, Biastoch Arne6, Angel Dror7, Asmus Ragnhild8, Augustin Christina9, Bagheri Siamak10, Beggs Steven E.11, Balsby Thorsten J. S.12, Boersma Maarten8, 13, Bonnet Delphine14, Christensen Jens T.12, Daenhardt Andreas15, Delpy Floriane16, Falkenhaug Tone17, Finenko Galina18, 19, Fleming Nicholas E. C.20, Fuentes Veronica21, Galil Bella22, Gittenberger Arjan23, 24, Griffin Donal C.20, Haslob Holger25, Javidpour Jamileh26, Kamburska Lyudmila27, Kube Sandra28, Langenberg Victor T.29, Lehtiniemi Maiju30, Lombard Fabien31, Malzahn Arne13, 42, Marambio Macarena21, Mihneva Veselina32, Moller Lene Friis33, Niermann Ulrich34, Okyar Melek Isinibilir35, Ozdemir Zekiye Birinci36, Pitois Sophie37, Reusch Thorsten B. H.2, Robbens Johan38, Stefanova Kremena39, Thibault Delphine16, 43, Van Der Veer Henk W.40, Vansteenbrugge Lies38, Van Walraven Lodewijk40, Wozniczka Adam41
Affiliation(s) 1 : Tech Univ Denmark, DTU Aqua, Natl Inst Aquat Resources, Kemitorvet B 201, DK-2800 Lyngby, Denmark.
2 : Helmholtz Ctr Ocean Res, GEOMAR, Evolutionary Ecol Marine Fishes, Kiel, Germany.
3 : IFREMER, French Res Inst Explorat Sea, Boulogne Sur Mer, France.
4 : Univ Bergen, Univ Museum Bergen, Dept Nat Hist, Bergen, Norway.
5 : IMR, Bergen, Norway.
6 : Helmholtz Ctr Ocean Res, GEOMAR, Theory & Modelling, Kiel, Germany.
7 : Univ Haifa, Dept Maritime Civilizat, Haifa, Israel.
8 : Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, List Auf Sylt, Germany.
9 : Univ Rostock, Inst Biosci, Appl Ecol & Phycol, Rostock, Germany.
10 : AREEO, Iranian Fisheries Sci Inst, Inland Waters Aquaculture Res Ctr, Anzali, Iran.
11 : AFBI, Sustainable Agrifood Sci Div, Belfast, Antrim, North Ireland.
12 : Aarhus Univ, Dept Biosci, Aarhus, Denmark.
13 : Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Helgoland, Germany.
14 : Univ Montpellier, Lab MARBEC, Montpellier, France.
15 : Univ Hamburg, IHF, Hamburg, Germany.
16 : Univ Toulon & Var, Aix Marseille Univ, CNRS, IRD,MIO, Marseille, France.
17 : IMR, Flodevigen, Norway.
18 : IMBR, Anim Physiol & Biochem, Sevastopol, Ukraine.
19 : IMBR, Anim Physiol & Biochem, Sevastopol, Russia.
20 : Queens Univ, Sch Biol Sci, Belfast, Antrim, North Ireland.
21 : CSIC, Inst Marine Sci, Barcelona, Spain.
22 : Tel Aviv Univ, Israel Natl Ctr Biodivers Studies, Steinhardt Museum Nat Hist, Tel Aviv, Israel.
23 : Gittenberger Marine Res Inventory & Strategy GiMa, Leiderdorp, Netherlands.
24 : ANEMOON Fdn, Bennebroek, Netherlands.
25 : Johann Heinrich von Thunen Inst TI, Inst Sea Fisheries, Hamburg, Germany.
26 : Helmholtz Ctr Ocean Res, GEOMAR, Expt Ecol 1, Kiel, Germany.
27 : CNR, Inst Ecosyst Study, Verbania, Italy.
28 : Leibniz Inst Balt Sea Res, Warnemunde, Germany.
29 : Deltares, Dept Sustainable Water & Soil Resources, Delft, Netherlands.
30 : Marine Res Ctr, SYKE, Finnish Environm Inst, Helsinki, Finland.
31 : Sorbonne Univ, Observ Oceanol Villefranche Sur Mer, Villefranche Sur Mer, France.
32 : Inst Fishing Resources, Varna, Bulgaria.
33 : Tech Univ Denmark, Danish Shellfish Ctr, DTU Aqua, Nykobing, Denmark.
34 : Marine Ecol, Heiligenhafen, Germany.
35 : Istanbul Univ, Fac Aquat Sci, Dept Marine Biol, Istanbul, Turkey.
36 : Sinop Univ, Fac Fisheries, Sinop, Turkey.
37 : CEFAS, Ctr Environm, Div Environm & Ecosyst Pelag Sci, Lowestoft, Suffolk, England.
38 : Inst Agr & Fisheries Res ILVO, Aquat Environm & Qual, Oostende, Belgium.
39 : BAS, Inst Oceanol, Marine Biol & Ecol Dept, Varna, Bulgaria.
40 : Univ Utrecht, Royal Netherlands Inst Sea Res, Dept Coastal Syst, Texel, Netherlands.
41 : Natl Marine Fisheries Res Inst, Dept Fisheries Oceanog & Marine Ecol, Gdynia, Poland.
42 : SINTEF Ocean, Marine Resources Technol, Trondheim, Norway.
43 : CNRS, IRD, MARBEC, Dept Environm Affairs, Cape Town, South Africa.
Source Global Ecology And Biogeography (1466-822X) (Wiley), 2018-07 , Vol. 27 , N. 7 , P. 814-827
DOI 10.1111/geb.12742
WOS© Times Cited 3
Keyword(s) biological invasions, gelatinous zooplankton, invasion corridors, invasive species, jellyfish, marine connectivity, Mnemiopsis leidyi, range expansion, source populations, source-sink dynamics
Abstract

Aim

Invasive species are of increasing global concern. Nevertheless, the mechanisms driving further distribution after the initial establishment of non‐native species remain largely unresolved, especially in marine systems. Ocean currents can be a major driver governing range occupancy, but this has not been accounted for in most invasion ecology studies so far. We investigate how well initial establishment areas are interconnected to later occupancy regions to test for the potential role of ocean currents driving secondary spread dynamics in order to infer invasion corridors and the source–sink dynamics of a non‐native holoplanktonic biological probe species on a continental scale.

Location

Western Eurasia.

Time period

1980s–2016.

Major taxa studied

‘Comb jelly’ Mnemiopsis leidyi.

Methods

Based on 12,400 geo‐referenced occurrence data, we reconstruct the invasion history of M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match the temporal and spatial spread dynamics with large‐scale connectivity patterns via ocean currents. Additionally, genetic markers are used to test the predicted connectivity between subpopulations.

Results

Ocean currents can explain secondary spread dynamics, matching observed range expansions and the timing of first occurrence of our holoplanktonic non‐native biological probe species, leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after cold winters were followed by rapid recolonizations at a speed of up to 2,000 km per season. Source areas hosting year‐round populations in highly interconnected regions can re‐seed genotypes over large distances after local extinctions.

Main conclusions

Although the release of ballast water from container ships may contribute to the dispersal of non‐native species, our results highlight the importance of ocean currents driving secondary spread dynamics. Highly interconnected areas hosting invasive species are crucial for secondary spread dynamics on a continental scale. Invasion risk assessments should consider large‐scale connectivity patterns and the potential source regions of non‐native marine species.

Full Text
File Pages Size Access
Publisher's official version 14 2 MB Open access
Supporting Information Appendix 1 4 295 KB Open access
Supporting Information Appendix 2 1 MB Open access
Supporting Information Appendix 3 8 748 KB Open access
Top of the page

How to cite 

Jaspers Cornelia, Huwer Bastian, Antajan Elvire, Hosia Aino, Hinrichsen Hans-Harald, Biastoch Arne, Angel Dror, Asmus Ragnhild, Augustin Christina, Bagheri Siamak, Beggs Steven E., Balsby Thorsten J. S., Boersma Maarten, Bonnet Delphine, Christensen Jens T., Daenhardt Andreas, Delpy Floriane, Falkenhaug Tone, Finenko Galina, Fleming Nicholas E. C., Fuentes Veronica, Galil Bella, Gittenberger Arjan, Griffin Donal C., Haslob Holger, Javidpour Jamileh, Kamburska Lyudmila, Kube Sandra, Langenberg Victor T., Lehtiniemi Maiju, Lombard Fabien, Malzahn Arne, Marambio Macarena, Mihneva Veselina, Moller Lene Friis, Niermann Ulrich, Okyar Melek Isinibilir, Ozdemir Zekiye Birinci, Pitois Sophie, Reusch Thorsten B. H., Robbens Johan, Stefanova Kremena, Thibault Delphine, Van Der Veer Henk W., Vansteenbrugge Lies, Van Walraven Lodewijk, Wozniczka Adam (2018). Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia. Global Ecology And Biogeography, 27(7), 814-827. Publisher's official version : https://doi.org/10.1111/geb.12742 , Open Access version : https://archimer.ifremer.fr/doc/00440/55133/