FN Archimer Export Format PT J TI Magma-driven, high-grade metamorphism in the Sveconorwegian Province, southwest Norway, during the terminal stages of Fennoscandian Shield evolution BT AF SLAGSTAD, Trond ROBERTS, Nick M. W. COINT, Nolwenn HOY, Ingjerd SAUER, Simone KIRKLAND, Christopher L. MARKER, Mogens ROHR, Torkil S. HENDERSON, Iain H. C. STORMOEN, Martin A. SKAR, Oyvind SORENSEN, Bjorn Eske BYBEE, Grant AS 1:1;2:2;3:1;4:1,3;5:1,4;6:5;7:1;8:1;9:1;10:1,6;11:1;12:6;13:7; FF 1:;2:;3:;4:;5:;6:;7:;8:;9:;10:;11:;12:;13:; C1 Geol Survey Norway, POB 6315 Sluppen, N-7491 Trondheim, Norway. British Geol Survey, NERC Nat Environm Res Council Isotope Geosci Lab, Nottingham NG12 5GG, England. Univ Oslo, Dept Geosci, POB 1047 Blindern, N-0316 Oslo, Norway. IFREMER Inst Francais Rech Exploitat Mer, Unite Rech Geosci Marines, F-29280 Plouzane, France. Curtin Univ, Western Australian Sch Mines, Dept Appl Geol, Ctr Explorat Targeting Curtin Node, Perth, WA 6102, Australia. Norwegian Univ Sci & Technol, Dept Geosci & Petr, Sem Saelands Veg 1, N-7491 Trondheim, Norway. Univ Witwatersrand, Sch Geosci, Private Bag 3, ZA-2050 Johannesburg, South Africa. C2 NGU, NORWAY BRITISH GEOL SURVEY, UK UNIV OSLO, NORWAY IFREMER Inst Francais Rech Exploitat Mer, Unite Rech Geosci Marines, F-29280 Plouzane, France. UNIV CURTIN, AUSTRALIA UNIV SCI & TECHNOL NORWEGIAN, NORWAY UNIV WITWATERSRAND, SOUTH AFRICA IN DOAJ IF 2.847 TC 41 UR https://archimer.ifremer.fr/doc/00444/55552/57143.pdf https://archimer.ifremer.fr/doc/00444/55552/57144.pdf https://archimer.ifremer.fr/doc/00444/55552/57145.pdf https://archimer.ifremer.fr/doc/00444/55552/57146.xls https://archimer.ifremer.fr/doc/00444/55552/57147.xls https://archimer.ifremer.fr/doc/00444/55552/57148.xls https://archimer.ifremer.fr/doc/00444/55552/57149.xlsx https://archimer.ifremer.fr/doc/00444/55552/57150.xls https://archimer.ifremer.fr/doc/00444/55552/57151.pdf https://archimer.ifremer.fr/doc/00444/55552/57152.pdf https://archimer.ifremer.fr/doc/00444/55552/57153.pdf https://archimer.ifremer.fr/doc/00444/55552/57154.pdf https://archimer.ifremer.fr/doc/00444/55552/57155.pdf https://archimer.ifremer.fr/doc/00444/55552/57156.pdf https://archimer.ifremer.fr/doc/00444/55552/57157.pdf https://archimer.ifremer.fr/doc/00444/55552/57158.pdf https://archimer.ifremer.fr/doc/00444/55552/57159.pdf https://archimer.ifremer.fr/doc/00444/55552/57160.pdf https://archimer.ifremer.fr/doc/00444/55552/57161.pdf https://archimer.ifremer.fr/doc/00444/55552/57162.pdf LA English DT Article AB Recently it has been argued that the Sveconorwegian orogeny in southwest Fennoscandia comprised a series of accretionary events between 1140 and 920 Ma, behind a long-lived, active continental margin characterized by voluminous magmatism and high-grade metamorphism. Voluminous magnesian granitic magmatism is recorded between 1070 and 1010 Ma (Sirdal Magmatic Belt, SMB), with an apparent drop in activity ca. 1010-1000 Ma. Granitic magmatism resumed ca. 1000-990 Ma, but with more ferroan (A type) compositions (hornblende-biotite granites). This ferroan granitic magmatism was continuous until 920 Ma, and included emplacement of an AMCG (anorthosite-mangerite-charnockite-granite) complex (Rogaland Igneous Complex). Mafic rocks with ages corresponding to the spatially associated granites suggest that heat from underplated mafic magma was the main driving force for lower crustal melting and long-lived granitic magmatism. The change from magnesian to ferroan compositions may reflect an increasingly depleted and dehydrated lower crustal source. High-grade metamorphic rocks more than similar to 20 km away from the Rogaland Igneous Complex yield meta-morphic ages of 1070-1015 Ma, corresponding to SMB magmatism, whereas similar rocks closer to the Rogaland Igneous Complex yield ages between 1100 and 920 Ma, with an apparent age peak ca. 1000 Ma. Ti-in zircon temperatures from these rocks increase from similar to 760 to 820 degrees C ca. 970 Ma, well before the inferred emplacement age of the Rogaland Igneous Complex (930 Ma), suggesting that long-lived, high-grade metamorphism was not directly linked to the emplacement of the latter, but rather to the same mafic underplating that was driving lower crustal melting. Structural data suggest that the present-day regional distribution of high-and low-grade rocks reflects late-stage orogenic doming. PY 2018 PD APR SO Geosphere SN 1553-040X PU Geological Soc Amer, Inc VL 14 IS 2 UT 000433391400024 BP 861 EP 882 DI 10.1130/GES01565.1 ID 55552 ER EF