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Abstract : 
 
This paper presents an analytical linear model developed to study the behaviour of a buckled 
membrane tidal energy converter. The Euler beam theory and the elongated body theory are used for 
the fluid structure interaction formulation. The effect of electromechanical converters used to convert the 
undulating motion into electrical energy is reproduced by adding a term equivalent to viscous material 
damping. 

The influence of compression force, flaps and hanging conditions is studied, as well as the effects of 
simulated power take-off through internal damping. The system's behaviour is characterized by 
undulating mode, critical flow velocity, motion frequency and amplitude. 

The model shows good agreement in terms of frequency and satisfactory results for the amplitude 
compared to experimental data. The linear assumptions were validated on fluid and structure models as 
a good start for a first analytical model describing the system's physic. The obtained results confirmed 
the benefits of initial stress and optimized damping to the tidal converter for energy harnessing. 

Highlights 

► The behaviour of an undulating membrane tidal energy convertor has been modelized. ► The model 
is linearized to enable light computation. ► Results of frequency, trajectory and hydrodynamic forces fit 
the experiments. ► Optimization of the tidal energy collected is discussed. 
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Nomenclature

A Dimensional maximum amplitude

[Ã] Eigenvector of the equation system
a Non-dimensional amplitude calibration
a1..4 Coefficient for shape function
ãi Modal relative amplitude
[C] Damping matrix
Cd Drag coefficient
D Damping coefficient for material viscosity
D′ Damping coefficient for Power Take-Off
d Cable length
E Young’s modulus
Fflap Flap localized load
Fd Drag force
Fflap Flap force coefficient
Fl Lift force
fd Non-dimensional drag force
fflap Non-dimensional flap force coefficient
fl Non-dimensional lift force
I Quadratic moment
[I] Identity matrix
i Imaginary number
()i, ()j Modal indices
[K] Stiffness matrix
L Total length
L0 Membrane length
La Membrane width
[M ] Mass matrix
mf Fluid linear added mass
ms Solid linear mass
N Number of modes used in calculation
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P Harvested power
p Non-dimensional collected power
Q Linear external load
qj Non-dimensional time function
[R] Calculus matrix
S Frontal area
s Curvilinear coordinate along the beam
T Cable compression force
T Period
t Time
U Upstream flow speed
Uc Critical velocity
u Non-dimensional flow speed
x Horizontal position
y Vertical position
w Fluid velocity orthogonal to the body
β Mass ratio
Γ Non-dimensional cable compression force
γi Eigenvalue of the system
∆P Pressure difference along the beam
δij Kronecker delta
η Non-dimensional beam deflection
θ Local angle with horizon
ι Non-dimensional cable length
λ Wave number
ξ Non-dimensional curvilinear coordinate
ρf Fluid volumic mass
ρs Solid volumic mass
σi Coefficient for shape function
τ Non-dimensional time
φi Non-dimensional shape function
ωi Non-dimensional complex frequency
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1. Introduction25

In these times of energy transition, the idea of using the tidal power
of oceans as a renewable energy source arises again. This source has many
advantages (Tecnomare (1996)) and a lot of research has been done to find the
best way to gather it (Boye et al. (2013)). The corresponding field of research
is mainly aimed on turbine-based technologies (Day (2015)) but several other30

systems have been suggested, based on flow-induced flutter. Various tactics
are being adopted to capture energy from fluid through undulating motion,
based on vortex-induced vibration in cables (Grouthier et al. (2014), Lee and
Bernitsas (2011)), oscillating foils (Kinsey et al. (2011), Xiao and Zhu (2014))
or flexible membranes either distorted by vortex shedding downstream bluff35

bodies (Shi et al. (2013), Taylor et al. (2001)) or set in motion by axial
flow (Doare and Michelin (2011)).

Figure 1: CAD representations of an undulating tidal energy converter

The analytical model presented in this paper is developed to model the
behaviour of the undulating tidal energy converter (Fig. 1, Deporte et al.
(2015)). It is equivalent to a compressed membrane undulating in axial flow.40

The membrane is hung by three semi-rigid arms that allow small motion
freedom at its upstream extremity. Initial stress is applied to the membrane
by cables linking both extremities. They are shorter than the membrane and
buckle it. This enables to give an initial shape presenting a larger frontal area
to the fluid and enabling the system to be put in motion at a slow flow speed.45

When operating, the membrane undulates, activating the electromechanical
converters distributed along the main center line of the structure. We can
observe a propagating wave in the current direction which has a lower celerity
than the fluid velocity. This technology is in development and proposes an
alternative for classical tidal turbines at low current speed (1-3m/s)(J-B.50

Drevet (2016)).
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Many publications propose analytical model to deal with an elastic plate
immersed in an axial uniform flow. We can class these analytical models
according to the way they express the fluid loads. Among all formula-
tions, (Huang (1995), Kornecki et al. (1976) and Watanabe et al. (2001))55

use the Theodorsen formulation to take into account the vortex circulation
around the plate. In continuity, the structure boundaries can be divided
into small panels by the use of the panel method (Tang (2007)) to estimate
more precisely lift and pressure loads. Another approach consists of imposing
continuity of the pressure everywhere except across the plate and of solving60

the pressure distribution into the Fourier space (Eloy et al. (2007), Guo and
Paidoussis (2000)). When the elongated body theory is used, like in (Coene
(1988), Lighthill (1960), Päıdoussis (1998) and Yadakin et al. (2001)), the
potential flow is regarded as the sum of the flow around the structure at rest
and the flow disturbed by the displacement of a small body section. The65

solid motion is in most cases described by an Euler-Bernoulli beam theory.
These models are validated by several experiments on flexible plate or

filament in axial flow with various materials (in term of mass and rigidity),
characteristic lengths and fluid velocities (Lemaitre et al. (2005), Watanabe
et al. (2002), Watanabe et al. (2001)). Most of the cited models are 2D70

according to the experimental behaviour, but some of them have shown the
influence of the aspect ratio (Doare et al. (2011), Eloy et al. (2007)). These
models also highlight the influence of mass ratio, rigidity, flow speed and
induced tension into the beam. However, the range of parameters used in the
works described above are different from our prototype characteristics due to75

differences in application (paper flutter, swimming fish, pipe conveyed fluid).
The power take-off impact on flexible plate is studied in Doare and Miche-

lin (2011), Pineirua et al. (2015), Singh et al. (2012b), and Tang (2007) with
piezoelectric devices. They investigate the intensity and the location of piezo-
electric energy converters, but applied to smaller scale devices in comparison.80

A special feature of this structure is pre-stress imposed by cables. Many
authors take into account an induced tension due to bending (Argentina and
Mahadevan (2005), Eloy et al. (2011), Moretti (2003), Shelley et al. (2005)).
A pre-tension has been introduced in Coene (1988) and Morris-Thomas and
Steen (2009) but in the opposite direction to ours, to stretch the flag. The85

most representative model is Dowell’s model (Dowell (1982)), it represents
a buckled plate submitted to a fluid flow. The tension is expressed as a sum
of the tension forcing the buckling and the one due to bending.
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This paper presents an analytical linear model developed to study the
behaviour of a buckled undulating membrane tidal energy converter. The90

model aims to describe the membrane motion with a simplified formulation.
The Euler beam theory and the elongated body theory are used for the fluid
structure interaction formulation. The effect of electromechanical converters
used to convert the undulating motion into electrical energy is simulated by
adding a term equivalent to viscous material damping. It will lead to a better95

understanding of the influence of main parameters on the system motion. It
will also give an expression of the power collected.

In the following, the hypotheses leading to the formulation of the physical
modelling are first presented. The system is solved as an eigenvalue problem
to find frequency and critical velocity and an approximated equation is used100

to determine the undulation’s amplitude. The model is then compared with
experimental data without power take-off. In section 4, the influence of the
compression cables on the system is studied. In the last part, we extrapolate
the effect of the converters damping coefficient as a simulation of power take-
off and assess some power collecting strategies.105

2. Analytical model

To model the undulating tidal energy converter, an inextensible mem-
brane (Eq. 1) with small deflections is considered submitted to lateral loads.
These hypotheses lead to the Euler-Bernouilli dynamic beam equation (Eq. 2)
to describe the system, where ms is the linear beam mass, EI is the flexural110

rigidity and Q(s, t) is the external linear load. Gravity and buoyancy are
neglected taking into account the very small difference between the mem-
brane density and the water density. The membrane stiffness in the direc-
tion transverve to the flow is higher than in the longitudinal one, making
the transverse motion very small in comparison to the axial one. That is115

why three-dimensional effects are neglected to simplify the problem. These
hypotheses are often used in literature to describe beams or cantilevered
plates motion (see for example: Alben (2008), Eloy et al. (2007), Howell et
al. (2008), Morris-Thomas and Steen (2009), Shelley and Zhang (2011)).

(
∂x

∂s
)2 + (

∂y

∂s
)2 = 1 (1)

120

∂2

∂s2
(EI

∂2y

∂s2
) = −ms

∂2y

∂t2
+Q(s, t) (2)
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The flow is considered incompressible, potential and non-viscous. With
the assumption that the length of the beam is much greater than its width
and thickness, the elongated-body theory can be used (Lighthill (1960)).

Figure 2: Sketch of the undulating membrane in two dimension

A classical result of the elongated-body theory (Lighthill (1960)) is Eq. 3
where mf = ρf

λ
π

is the approximation of added mass for wide flags (Moretti125

(2004)) and w(s, t) the fluid velocity orthogonal to the solid body.

∆P (s, t) = mf (
∂

∂t
+ U

∂

∂s
)w(s, t) (3)

This leads to Eq. 4 for the pressure difference formulation.

∆P = mf (
∂

∂t
+ U

∂

∂s
)2y (4)

Combining Eq. 2 and Eq. 4, we get to Eq. 5 describing the dynamics of
a flexible beam interacting with axial flow.

EI
∂4y

∂s4
+ms

∂2y

∂t2
= −[mfU

2∂
2y

∂s2
+ 2mfU

∂2y

∂s∂t
+mf

∂2y

∂t2
] (5)

130

However, this formulation is not adequate to reproduce the undulating
tidal converters motion. The aspect ratio is close to one which is not suit-
able for the theory used here (Eloy et al. (2007)). Furthermore the small
displacement assumption is exaggerated above critical speed as membrane
amplitude is of the order of L/2. Although these assumptions (aspect ratio,135
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small displacement) are different from our model, the results shown later on
prove that this model can still work on our concept. However if we consider
large displacement we would need to develop non-linear equation and greatly
complexify the model (Alben (2008)). These two limits will be the object of
further improvements of the model.140

It is also necessary to add several parameters to get closer to the specificity
of the system. One of the main differences with other models is that the
membrane is buckled and compressed by lateral cables (Fig. 1 and Fig. 2).
We also consider the arms that hang the membrane and the flaps at the
upstream and downstream ends.145

Figure 3: Sketch of the linear model used to model the undulating membrane

To take the buckling into account, we consider the same formulation as
Morris-Thomas and Steen (2009) with an opposite sign of the tension (Dowell
(1982)). This formulation is equivalent to a force tangent to the membrane’s
downstream extremity : Thyp on Fig. 3, which is close to Treal in the small
angle hypothesis. Moreover, we suppose that this force is constant, while in150

fact it oscillates around a mean value depending on the membranes shape
and position (Träsch et al (2017)). We decomposed the compression force
in two components: one responsible for buckling the membrane, the other
one caused by fluid pressure drag resultant. The buckling component is
assumed equal to the Euler critical load for a clamped/free beam, thus with155

an effective length factor of 2, with L the total membrane length. The drag
component Cd is adjusted to fit the experiments (Eq. 6).

TTotal = Tbuckling + Tdrag =
π2 × EI

(2L)2
+

1

2
CdρfSU

2 (6)
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The arms are semi-rigid parts that link the membrane to its support.
They are modelled by an additional membrane length with the same proper-
ties as the membrane. We calculate the membrane length that would have a160

stiffness equivalent to the arm and we add it to membrane length L0 to get
the total modelled membrane length L (Eq. 7). Here, EarmsIarms = 11.04EI
The equivalent length corresponding to the arms does not interact with the
fluid. This assumption gives a good representation on deflection at the mem-
brane’s upstream extremity, but accentuates artificially the slope.165

L = L0 + Leqarms = L0 + Larms
3

√
EI

EarmsIarms
(7)

The flaps are rigid extension in the continuities of the membrane extrem-
ities. They enhance lift at extremities and increase motion amplitude. Their
effects are assumed equivalent to local vertical forces equal to the lift force
generated by an uniform flow on an inclined plate of angle θsflap and of the
same area as the flap. Here sflap is the position of the flaps on the membrane.170

In our case it is equivalent to s = Leq.arms for the upsteram flap and s = L for
the downstream flap. We have then a localized load Fflap proportional to
local slope as described by Eq. 8, where δji is Kronecker’s delta.

Fflap = Fflapsθ(s, t)δ
sflap
s = πρfLflapU

2∂y

∂s
δsflaps (8)

We choose to take into account the material damping through the formu-
lation of a visco-elastic Kelvin-Voigt material with D the apparent viscosity.175

The Power Take-Off (PTO) system is also represented as an additional term
of viscous material damping (Eq. 9), as has already been modelled by Singh
et al. (2012b) for the approximation of the effect of piezoelectric films. Here
D′ is the parameter simulating the power conversion, leading to collected
power evaluation.180

Fviscoelastic = (D +D′)
∂5y

∂t∂s4
(9)

All the previous hypotheses permit to represent the undulating membrane
behaviour by the following variational formulation:

EI
∂4y

∂s4
+(mfU

2+T )
∂2y

∂s2
+Fflap

∂y

∂s
δ
sflap
s +(D+D′)

∂5y

∂s4∂t
+2mfU

∂2y

∂s∂t
+(ms+mf )

∂2y

∂t2
= 0

(10)
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3. Resolution and behavioural study

In this section the variational formulation of the system is written in its
non-dimensionalized form. It is then solved by Galerkin decomposition, as-185

suming cantilever natural shape modes and a periodic motion. An eigenvalue
solution leads to the frequency and stability results whereas a different equa-
tion using the cable length is developed to determine the motion amplitude.
Forces are also expressed by the integration of pressure load on the structure.
These parameters are then compared with experimental data obtained with190

a 1:20 scale prototype described in Deporte et al. (2015).

3.1. Resolution steps

In order to simplify the problem and allow a better comparison with the
existing literature, Eq. 10 is written in its non-dimensionalized form. The
non-dimensional parameters used here are the following:195

β =
mf

mf+ms
Mass ratio

u = UL
√

mf

EI
Non-dimensional speed

µ = D+D′

L2
√
EI(mf+ms)

Non-dimensional damping

Γ = L2T
EI

Non-dimensional cable compression force

fflap =
FflapL

3

EI
Non-dimensional flap force coefficient

η = y
L

Non-dimensional beam deflection

ξ = s
L

Non-dimensional curvilinear coordinates

τ = t
L2

√
EI

mf+ms
Non-dimensional time

This brings to the following non-dimensional equation, where the follow-
ing notations are used: ()′ = ∂

∂ξ
and (̇) = ∂

∂τ
:

η′′′′ + (u2 + Γ)η′′ + fflapη
′δ
ξflap
ξ + µη̇′′′′ + 2β1/2uη̇′ + η̈ = 0 (11)

10
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This system is solved with a particular solution, considering a sum of
periodic motions (Eq. 12, 13 and 14) and a constant wavelength (Päıdoussis200

(1998)). The Galerkin solution of variable separation is then applied:

η(ξ, τ) = Re[ΣN
j=1φj(ξ)qj(τ)] (12)

with:
qj(τ) = ãje

iωjτ (13)

and:

φj(ξ) = a1 cosh(λjξ) + a2 sinh(λjξ) + a3 cos(λjξ) + a4 sin(λjξ) (14)

Coefficients a1 to a4 are found through the beam boundary conditions.
We consider here a cantilever beam (clamped-free), such as:205

∀t,


φj(ξ = 0) = 0
φ′j(ξ = 0) = 0
φ′′j (ξ = 1) = 0
φ′′′j (ξ = 1) = 0

This brings us to the following shape functions, visible on Fig. 4 for the
first four natural modes in vacuum of a cantilever beam:

φj(ξ) = a[cosh(λjξ)− cos(λjξ)− σj(sinh(λjξ)− sin(λjξ))]; (15)

where a is a constant and σj is a coefficient depending on the mode:

σj =
sinh(λj)− sin(λj)

cosh(λj) + cos(λj)
(16)

210

λj is part of the natural wavenumbers of cantilever beams:

λj ∈ [1.876, 4.695, 7.855, 10.996, 11.138, 17.279, ...] (17)

11
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Figure 4: First four natural modes of a cantilevered beam

In order to obtain an ordinary differential equation of order 2, we combine
Eq. 11 with Eq. 12, Eq. 13 and Eq. 15, then multiply by φi, and integrate
on interval [0, 1], such as done by Päıdoussis (1998). The system to solve is
then Eq. 18 for j = 1 to N . Here, N=6 modes.215

[M ]q̈j + [C]q̇j + [K]qj = 0 (18)

Mass matrix [M], damping matrix [C] and stiffness matrix [K] are defined
by:

• Mij = dij

• Cij = µλ4jδij + 2β1/2ucij

• Kij = λ4jδij + (u2 + Γ)bij + fflapφ
′
j(ξ

eq.
arms)φi(ξ

eq.
arms) + fflapφ

′
j(1)φi(1);220

with the coefficients:

• bij =
∫ 1
ξeq.arms

φ′′jφidξ

• cij =
∫ 1
ξeq.arms

φ′jφidξ

• dij =
∫ 1
ξeq.arms

φjφidξ

These coefficients are integrated from ξeq.arms to 1: we consider here that225

arms have no mass and no interaction with the fluid flow. The only inter-
action with the system is through the stiffness term, integrated from 0 to
1.

12
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A particular solution of this system (Eq. 18) is in the form of Eq. 13:
q(τ) = ãeγτ = ãeiωτ which is equivalent to consider the following eigenvalue230

problem :
(γ[I]− [R])[Ã] = 0 (19)

Here, [I] is the identity matrix and [Ã] is the eigenvector, set within a
multiplication factor, composed by the relative amplitude of each mode ãj.
The following matrix is also defined by:

[R] =

[
−M−1C −M−1K
I 0

]
(20)

Eigenfrequencies ωj are [R] matrix eigenvalues γj divided by imaginary235

number i. Undulation mode is then selected, knowing that unstable modes
have negative imaginary part of their eigenfrequencies (i.e. positive real part
of their eigenvalue, Päıdoussis (1998)).

Figure 5: R eigenvalues for β = 0.991, µ = 0.0292, 2.47 < Γ < 42.6, 0.10 < u < 11.56.
First mode in green, second mode in blue, third mode in red, fourth mode in yellow. Fifth
and sixth modes are out of the graph (<(γ) < −60).

Fig. 5 shows the Agrand diagram of the membrane’s first modes for dif-
ferent flow speeds. Imaginary part represents the system’s frequency and240

the real part the negative damping. The critical velocity uc can be found
when the real part of the eigenvalue becomes positive, indicating that the
system is unstable. In this case it happens for the second mode at uc = 6.52.
Real dimensional frequencies are then obtained by taking the real part of ω,
multiplying by t/τ and dividing by 2π.245

13
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Eigenmodes are set within a constant. Considering only one excited fre-
quency, we can reduce both factors before φ(ξ) (Eq. 14) and q(τ) (Eq. 13)
to one parameter representing motion amplitude calibration, a. We use the
cable length to define this non-dimensional amplitude calibration. The ca-
ble length is assumed constant, as it limits the position of the membrane’s250

downstream end to a certain distance d to its fixation. The fixation point is
set to be at the origin of the frame (x(0), y(0)) = (0, 0) (Fig. 3), enabling to
write Eq. 21:

x(L)2 + y(L)2 = d2 (21)

The inextensibility equation (Eq. 1) then leads to Eq. 22:

x(s) =
∫ s

0

√
1− (

∂y

∂s
)2ds (22)

Eq. 21 and Eq. 22 are combined, and a first order Taylor expansion on255

the square root is done. Neglecting the 4-order term, and dividing by L2, we
get to Eq. 23, where ι = d/L is the non-dimensional cable length.

1−
∫ 1

0
η′2ds+ η2L = ι2 (23)

From Eq. 12, and considering only one unstable frequency ω, η is ex-
pressed as the sum of the complex conjugates:

η(ξ, τ) =
a

2
(Φ exp(iωτ) + Φ̄ exp(−iωτ)) (24)

Where Φ = ΣN
j=1ãjφj, with ãj the (N+j)th element of the eigenvector260

associated with unstable mode (Eq. 19). Then, we substitute η and separate
terms that are constant in time to those that vary. We obtain Eq. 25:

1− ι2 = 2(
a

2
)2[

∫ 1

0
|Φ′|2ds− |ΦL|2] (25)

Nondimensional amplitude’s formulation is then given by Eq. 26 and A =
max(η × L) = max(a × Re[Φ(1)] × L) is the dimensional amplitude at the
downstream edge.265

a = 2

√√√√ 1− ι2

2(
∫ 1
0 |Φ′|2ds− |Φ1|2)

(26)

14
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3.2. Comparison with experimental data

Figure 6: Pictures of the experimental set-up used to validate the analytical model

The experimental set-up used for comparison and validation of this ana-
lytical model is the one described in Träsch et al (2017). Trials took place in
the flume tank of Ifremer in Boulogne-sur-Mer with a 1/20th scale prototype
which is about 1 m long, 0.8 m wide and 0.004 m thick. It is made of a POM-270

C polyacetal membrane of density ρ = 1600 kg/m3 and Young modulus E =
4.2 GPa [Déporte (2015)].

Rigid flaps at upstream and downstream extremities lengthen the mem-
brane by Lflap = 0.15L each and enhance its undulation motion. Six 0.025L-
wide carbon-epoxy bars have been added in the transverse direction in order275

to increase the transverse stiffness and to ensure a two-dimensional motion.
They also transmit forces to the converters, that are linked to it by hfix =
0.044L-high fixations. Each fixation is separated by 0.2L on the membrane
and linked to dampers through pivot points.

To keep the structure in the middle of the water column, the membrane is280

linked to a rigid vertical frame with three flexible arms of rigidity karm = 6250
N/m. The structure is also stressed by cables linking both extremities that
keep the membrane bended (Figure 6). The cables are d = 0.046L shorter
than the resting distance between their linking points.

The picture on the left of Fig. 6 shows the experimental set-up and the285

one on the right shows a frame with six luminous targets used for motion
tracking. The motion tracking system enables to assess the structures dy-
namic behaviour and to characterise motion in terms of undulation amplitude
and frequency.

Instantaneous deformation resulting from the analytical model and the290

experiments are plotted on Fig. 8, which enables a qualitative visual com-
parison indicating that undulations occur on the same mode for both kind
of results.
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Figure 7: Time variation of downstream end position of analytical model results (blue)
and experiment results (black). Times of frames in Fig. 8 are represented as diamonds.

A period is here divided in eight moments, as shown in Fig. 7, with
downstream tip rising at yL = 0 as the sarting time. Then, for each moment295

(eight in a period), a frame of the membrane instantaneous shape is printed
from the model.

There is a good agreement between the model and experiments shape
results even if a few differences can be noticed. The model underestimates the
curvature at the membrane’s end. Indeed, the cable is not taken into account300

as a boundary condition ruling the shape and the cable force direction is
constant in regard to downstream end. The membrane’s motion during the
experiment wasn’t perfectly symmetric, with a slower inversion during the
rise than during the fall. This difference comes from the effect of gravity and
explains the little phase difference we can observe here. The agreement with305

experiment is overall very good and forms a first validation for the model.
Comparison of frequency between experimental results and the analyti-

cal model is shown on the left of Fig. 9. The model gives good results for
frequency, with good order of magnitude and tendency. There is an almost
linear relation between frequency and current speed, as noticed by Shelley310

et al. (2005) for a true cantilevered plate. The model reproduces this re-
lation, but get a slightly different slope. The critical velocity is a little bit
underestimated.
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Figure 8: Experiment and analytical model snapshots for undulation mode comparison for
u=9.98 during a motion period. Time of each frame is represented on Fig. 7 Membrane
is blue, arm is red and flaps are green. Superimposed in black are shapes measured
in experiments for equivalent configuration and time. Circles indicate motion tracking
targets’ positions.
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Figure 9: Experimental and analytical model comparison of motion frequency (left) and
amplitude at downstream extremity (right). Leq

bras = 0.140L0; Lflap = 0.146L0; β = 0.991;
Cd = 0.6; µ = 0.0292

Results of maximum amplitude for different current velocities are pre-
sented on the right of Fig. 9. It shows that the model gives approximate315

results for absolute amplitude, but with the right tendency. Indeed, it tends
to decrease when the flow speed increases. This is an effect of the cables,
because it is opposite to the tendency one can find in the literature for true
cantilever plate in Eloy et al. (2011) or Tang (2007), for example. The ampli-
tude’s values and slope are however very different, which results in increasing320

errors for the highest values of flow speed. It could come from fluid and solid
non-linear dynamics that are not taken into account in the model.

This model is based on assumptions about boundary conditions and ca-
ble compression force (both about direction and time variation). The fluid
dynamic has been simplified: turbulence and boudary layer, vortex shedding325

and wake effects on the interacting flow have been neglected. Therefore it
should be used for low fluid velocity and small membrane deflection. The
2D hypothesis does not allow to take into account the edge effects. It is lim-
ited to one unstable mode, and does not take into account higher frequencies
when there should be coupled mode flutter. Therefore, the membrane should330

be rigid enough and damped enough to stabilize those modes. The elongated
body theory is used and no gravity was implemented, so the simulated mem-
brane should be with small thickness and density close to the fluid one. The
model can still be used for parametric studies: in the next section the ef-
fect of buckling cables will be studied, then there will be a focus on Power335

Take-Off through damping formulation.
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4. Buckling cables effects on the undulating membrane

The parametric study presented in this chapter will focus on the most
innovative aspect of this model: the buckling cables, through the parameters
Γ and ι. They respectively represent the cable’s effect on frequency/stability340

and motion amplitude of the membrane. The damping factor will be pre-
sented on section 5. The mass ratio influence study is not relevant here
because for an undulating tidal energy converter the fluid added mass is so
heavy in comparison with the linear membrane mass that the mass ratio β
will always be close to 1. Its formulation differs from what is usually used in345

flow-induced vibration literature but is really convenient to solve the system’s
equation (Eq. 10 & 11).

Figure 10: On the left: Effect of compression force on critical speed. On the right:
Influence of cable length on motion amplitude. Leq

bras = 0.140L0; Lflap = 0.146L0; β =
0.991; Cd = 0.6; µ = 0.0292.

Fig. 10 shows on the left the critical current speed as a function of com-
pression force parameter Γ. It is important to underline that during exper-
iments, when we reduce the compression cable length, the critical velocity350

tends to raise. However, it is not in contradiction with the results of this
model because Γ does not change in regards to the compression length. In-
deed, when a lateral displacement is imposed on buckling, the compression
force increases very little above its critical value (Arnoult (2010)). Instead,
the reduction of the cable length increases the eigenmodes and tends to sta-355

bilize the structure. We should also notice that when using a similar model,
there should be a critical Γc above which the system is always unstable even
for u = 0, as in the garden-hose instability (Doare and De Langre (2002)).
Here, Γc = 10.6.
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The influence of the cable compression force coefficient Γ on undulation360

frequency is plotted in the right of Fig. 11. It shows that frequency is strongly
linked with this parameter. An augmentation of the compression force im-
plies an increase in frequency. It can be counter-intuitive but is indeed in
accordance with Dowell (1982). The membrane downstream’s end is most of
the time in the same direction as its motion (Fig. 8), then Γ accelerates the365

membrane’s downstream motion. However when y(L) reaches an extrema,
the tip force is on opposite direction and acts on motion inversion. There-
fore it increases undulation frequency. Fig. 10 highlights the benefits of a
buckled membrane in this case for which the unstability is the objective: the
compression force reduces critical speed and increases frequency.370

Figure 11: Influence of Γ on motion frequency (on the left) and amplitude (on the right).
Leq
bras = 0.140L0; Lflap = 0.146L0; β = 0.991; u = 8.19; Cd = 0.6 and µ = 0.0292.

The results of motion amplitude as a function of cable withdraw length
obtained by Eq. 26 represents well the tendency observed in the experiments,
as indicated by the graph in the left of Fig. 11. A quadratic relationship exists
between a and (1 − ι), as demonstrated in (Träsch et al (2017)) for static
and dynamic buckled membrane in fluid flow. The right graph of Fig. 11375

shows a decrease of motion amplitude as the compression force parameter Γ
increases. Indeed, Γ accelerates motion inversion and enhances membrane
curvature, which tends to reduce maximum amplitude as shown by Eq. 26.

20



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

5. Extrapolation of power take-off

In this section we extrapolate the behaviour of the membrane when un-380

dergoing power take-off (PTO). It is a theoretical investigation to forecast
the effects of power extraction, here considered equivalent as viscous mate-
rial dissipation. There are many ways to extract energy from an undulating
device. The one chosen here could represent conversion by piezoelectric ma-
terials (Singh et al. (2012b)). Power estimates are calculated by Eq. 27,385

in function of D′ (see Eq. 9). p = P
0.5ρfLaAU3 is the non-dimensional col-

lected power, based on the flow power across the frontal area swept by the
membrane (La × A).

P =
1

T

∫ T
0

∫ 1

seqarms

D′ × (ẏ′′)2dsdt (27)

Furthermore, results of frequency, amplitude and critical speed are pre-
sented and interpreted as a function of homogeneous internal damping.390

Figure 12: Effect of damping on motion frequency (on the left) and amplitude (on the
right). Leq

bras = 0.140L0; Lflap = 0.146L0; Γ = 22.6; β = 0.991; u = 8.19; Cd = 0.6.

The effect of more damping as a simulation of power take-off is displayed
on Fig. 12 and 13. We can see a powerful decrease in frequency and increase
in amplitude, caused by a reduction of the flutter mode. However, the higher
the damping coefficient is, the less effect its variations will have on the system.
Frequency should converge toward 0 and amplitude is limited by membrane’s395

length. Damping has an effect that seems opposite to Γ. This last parameter
being set by the device’s properties, there must be an optimal µ maximizing
collected power.

21



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 13: Effect of damping on critical velocity. Leq
bras = 0.140L0; Lflap = 0.146L0;

Γ = 22.6; β = 0.991; Cd = 0.6.

Another effect of damping is its destabilizing effect for lower modes, as
can be noticed on Fig. 13 and Fig. 14. Thus damping lowers critical speed,400

which is not intuitive but was noticed by other authors for similar systems
(Päıdoussis (1998), Singh et al. (2012a)). According to Semler (1991), damp-
ing causes a phase shift between fluid pressure and solid acceleration, increas-
ing the work done by one on the other and thus their interaction, leading to
destabilization. This tendency depends strongly on other parameters, such405

as the mass ratio, β.
Fig. 14 represents the imaginary part of the eigenfrequencies for different

values of the damping coefficient. We can notice that in this configuration
it stabilizes higher modes and destabilize the lower ones. Indeed unstable
modes occur when =(ω) < 0. This can be favourable because it lowers410

cricital velocity uc and avoids parasite modes.
Now that we verified the model validity and investigated on buckling

cables and PTO effects, we can use this analytical model to draft some power
collecting strategies.

Fig. 15 presents the non-dimensional power as a function of damping415

coefficient for different current speeds. We can notice the existence of an
optimal damping coefficient for which the collected power is maximum. This
optimal coefficient is function of current speed, which means that the ability
to regulate this coefficient dynamically according to the incident fluid velocity
would be an asset. In the studied cases, the optimal damping coefficient420

is smaller when the current is faster. This is not intuitive and could be
explained by the fact that the power scales with the damping coefficient but
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Figure 14: Effect of damping on modes stability. black: 1st mode, red: 2nd mode, purple:
3th mode, yellow: 4th mode, cyan: 5th mode, blue: 6th mode. Leq

bras = 0.140L0; Lflap =
0.146L0; Γ = 22.6; β = 0.991; u = 8.19; Cd = 0.6.

Figure 15: Effect of damping on collected power. Leq
bras = 0.140L0; Lflap = 0.146L0;

Γ = 22.6; β = 0.991; u = 8.19; Cd = 0.6.
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with the square of the local deformation speed (Eq. 27). Therefore it is
interesting to decrease damping rate in order to have a faster movement,
even in configurations where the membrane could be more damped.425

However, the increasing error on amplitude estimation (Fig. 9) due to
non linear effects may also impact strongly this result.

6. Conclusions and perspectives

In this article we have presented a simple linear analytical model of an un-
dulating tidal energy converter. We used the elongated body theory (Lighthill430

(1960)) with an approximation of added mass for wide flags (Manela and
Howe (2009)). The membrane was modelled using Euler beam theory with
Kelvin-Voigt damping. The other elements (flaps, arms, compression cables)
where represented by basic physics formulation such as buckling critical load
for the cables tension and thin hydrofoil theory for the flaps. The set of ordi-435

nary differential equations has been resolved with a method from Päıdoussis
(1998). Undulating mode, frequency, amplitude and critical speed results are
close enough to experimental results to validate the model for its application
at low flow speed. The significant role of buckling cables has been underlined
thanks to its simplified formulation as compression force and its major im-440

pact on undulation amplitude. To represents the power take off system, we
used material internal damping. We confirmed that for a given set of param-
eters, there is an optimal damping coefficient for which the collected power
is maximum. This optimal damping coefficient varies with the fluid velocity.
The model highlights the main parameters’ influence such as compression445

force Γ, cable length ι and material damping µ. It shall be very usefull for
optimization schemes because of its quick computation.

This model is a first step to evaluate the feasability of an analytical model
to represent the motion of an undulating membrane tidal energy converter.
However, next model versions should differ in the PTO representation, as450

the conversion system for undulating membrane tidal energy converter will
be based on linear actuator (Deporte et al. (2015)). Improvements could
make the model more precise considering non-linearities in membrane deflec-
tion (Yadakin et al. (2001)) and cable compression force. It should minimize
errors and would help us get rid of most impacting hypotheses. Another455

fluid model, for example based on discrete vortex method with wake imple-
mentation should also greatly improve the description of the system dynam-
ics (Tang (2007)). The model could also represent the third dimension to
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evaluate the importance of aspect ratio. But what could be gained in pre-
cision would be lost in computation time. A good compromise has to be460

found considering that this model has been developed to be used for multi-
parameters optimization.
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