FN Archimer Export Format PT J TI Combined effects of antifouling biocides on the growth of three marine microalgal species BT AF DUPRAZ, Valentin STACHOWSKI-HABERKORN, Sabine MENARD, Dominique LIMON, Gwendolina AKCHA, Farida BUDZINSKI, Helene CEDERGREEN, Nina AS 1:1,2;2:1;3:1;4:3;5:1;6:4,5;7:6; FF 1:;2:PDG-RBE-BE-LEX;3:PDG-RBE-BE-LEX;4:;5:PDG-RBE-BE-LEX;6:;7:; C1 IFREMER, Lab Ecotoxicol, Rue Ile dYeu,BP 21105, F-44311 Nantes 03, France. Univ Nantes, UFR Sci Tech, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 03, France. LABOCEA, Unite R&D, 120 Ave Rochon, F-29280 Plouzane, France. Univ Bordeaux, Lab Phys Tox Chim Environm, UMR 5805, EPOC, 351 Cours Liberat,CS 10004, F-33405 Talence, France. CNRS, Lab Phys Tox Chim Environm, UMR 5805, EPOC, 351 Cours Liberat,CS 10004, F-33405 Talence, France. Univ Copenhagen, Dept Plant & Environm Sci, Frederiksberg, Denmark. C2 IFREMER, FRANCE UNIV NANTES, FRANCE LABOCEA, FRANCE UNIV BORDEAUX, FRANCE CNRS, FRANCE UNIV COPENHAGEN, DENMARK SI NANTES SE PDG-RBE-BE-LEX IN WOS Ifremer jusqu'en 2018 copubli-france copubli-europe copubli-univ-france IF 5.108 TC 31 UR https://archimer.ifremer.fr/doc/00445/55695/57362.pdf LA English DT Article DE ;Diuron;Irgarol;Pyrithione;Copper;Microbial ecotoxicology;Mixture model AB The toxicity of the antifouling compounds diuron, irgarol, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and copper was tested on the three marine microalgae Tisochrysis lutea, Skeletonema marinoi and Tetraselmis suecica. Toxicity tests based on the inhibition of growth rate after 96-h exposure were run using microplates. Chemical analyses were performed to validate the exposure concentrations and the stability of the compounds under test conditions. Single chemicals exhibited varying toxicity depending on the species, irgarol being the most toxic chemical and Cu the least toxic. Selected binary mixtures were tested and the resulting interactions were analyzed using two distinct concentration-response surface models: one using the concentration addition (CA) model as reference and two deviating isobole models implemented in R software; the other implementing concentration-response surface models in Excel®, using both CA and independent action (IA) models as reference and three deviating models. Most mixtures of chemicals sharing the same mode of action (MoA) were correctly predicted by the CA model. For mixtures of dissimilarly acting chemicals, neither of the reference models provided better predictions than the other. Mixture of ZnPT together with Cu induced a strong synergistic effect on T. suecica while strong antagonism was observed on the two other species. The synergy was due to the transchelation of ZnPT into CuPT in the presence of Cu, CuPT being 14-fold more toxic than ZnPT for this species. The two modelling approaches are compared and the differences observed among the interaction patterns resulting from the mixtures are discussed. PY 2018 PD OCT SO Chemosphere SN 0045-6535 PU Pergamon-elsevier Science Ltd VL 209 UT 000442714400086 BP 801 EP 814 DI 10.1016/j.chemosphere.2018.06.139 ID 55695 ER EF