FN Archimer Export Format PT J TI A numerical study of tropical cyclone-induced sediment dynamics on the Australian North West Shelf BT AF DUFOIS, Francois LOWE, Ryan J. RAYSON, Matthew D. BRANSON, Paul M. AS 1:1,2,3,4;2:1,2,3;3:1,3;4:1,3,5; FF 1:PDG-ODE-DYNECO-DHYSED;2:;3:;4:; C1 Univ Western Australia, UWA Oceans Inst, Crawley, WA, Australia. Univ Western Australia, ARC Ctr Excellence Coral Reef Studies, Crawley, WA, Australia. Univ Western Australia, Oceans Grad Sch, Crawley, WA, Australia. DHYSED, IFREMER, DYNECO, Plouzane, France. CSIRO Oceans & Atmosphere, Crawley, WA, Australia. C2 UNIV WESTERN AUSTRALIA, AUSTRALIA UNIV WESTERN AUSTRALIA, AUSTRALIA UNIV WESTERN AUSTRALIA, AUSTRALIA IFREMER, FRANCE CSIRO, AUSTRALIA SI BREST SE PDG-ODE-DYNECO-DHYSED IN WOS Ifremer jusqu'en 2018 copubli-int-hors-europe IF 3.235 TC 7 UR https://archimer.ifremer.fr/doc/00449/56078/57601.pdf https://archimer.ifremer.fr/doc/00449/56078/57602.pdf LA English DT Article DE ;ROMS;COAWST;sediment transport model;tropical cyclone;surface waves;sediment pathways AB Owing to their strong forcing of the ocean surface, tropical cyclones strongly modify the hydrodynamics of Australia's North West Shelf (one of the world's tropical cyclone hotspots), which in turn plays a dominant role in its sediment dynamics. Previous modeling studies have focused on describing the short term sediment dynamics during individual tropical cyclones, but have lacked validation of the responses using field observations. As a consequence, the long term cumulative impact of the tropical cyclones on the residual sediment transport pathways at the shelf scale remains unclear. In this study we apply a sediment transport model over the North West Shelf, validate its performance using an extensive field dataset, and implement a 14 year‐long model simulation to assess the sediment fluxes. The model results confirm the overwhelming role tropical cyclones play on sediment transport processes over most of the shelf, despite each cyclone only influencing a small portion of the shelf at a particular time. Overall we identified 19 tropical cyclone events over the 14 year period, which despite accounting for less than 5% of time, were found to drive the majority of both the suspended sediment alongshore and seaward cross‐shore transport. The results revealed significant inter‐annual variability of the tropical cyclone‐induced sediment dynamics with greater suspended transport during the 3 consecutive Ningaloo Niño years (2011‐2013) where sea surface temperatures off northwestern Australia were anomalously warm with elevated tropical cyclone activity. PY 2018 PD AUG SO Journal Of Geophysical Research-oceans SN 2169-9275 PU Amer Geophysical Union VL 123 IS 8 UT 000445188900004 BP 5113 EP 5133 DI 10.1029/2018JC013939 ID 56078 ER EF