

Supplementary Information for

The gravity of human impacts mediates coral reef conservation gains

J.E. Cinner,^{1*} Eva Maire^{1,2}, Cindy Huchery¹, M. Aaron MacNeil^{3,4}, Nicholas A. J.
Graham^{1,5}, Camilo Mora⁶, Tim R. McClanahan⁷, Michele L. Barnes¹, John N.
Kittinger^{8,9}, Christina C. Hicks^{1,5}, Stephanie D'Agata^{2,7,10}, Andrew Hoey¹, Georgina G.
Gurney¹, David A. Feary¹¹, Ivor Williams¹², Michel Kulbicki¹³, Laurent Vigliola¹⁰,
Laurent Wantiez ¹⁴, Graham J. Edgar¹⁵, Rick D. Stuart-Smith¹⁵, Stuart A. Sandin¹⁶,
Alison Green¹⁷, Marah J. Hardt¹⁸, Maria Beger^{19,20}, Alan Friedlander^{21,22}, Shaun K.
Wilson^{23,24}, Eran Brokovich²⁵, Andrew J. Brooks²⁶, Juan J. Cruz-Motta²⁷, David J.
Booth²⁸, Pascal Chabanet²⁹, Charlotte Gough³⁰, Mark Tupper³¹, Sebastian C.A. Ferse³²,
U. Rashid Sumaila³³, Shinta Pardede⁷, David Mouillot^{1,2}

Corresponding author

Professor Joshua E. Cinner Email: Joshua.cinner@jcu.edu.au

This PDF file includes:

Figs. S1 to S4 Tables S1 to S5

Fig. S1 | Standardized effect size of social drivers and environmental covariates, including 95% uncertainty intervals (thin lines), and 50% (thick lines) for A) the full biomass model (including top predators); B) targeted fish biomass model (excluding top predators); C) the top predators presence/absence model; and D) untargeted Biomass model.

Sig S2| Model- predicted relationships for targeted-only fish biomass excluding top predators/ Blue-marine reserves, red=openly fished, green= restricted fishing. Shaded areas represent 95% confidence intervals.

Figure S3 | Model-predicted trends in A) fish biomass and B) probability in encountering top predators with reserves broken into small (<28km²- purple) and large(orange). Shaded areas represent 95% confidence intervals.

Figure S4 | Comparison of conservation gains between targeted (A) and untargeted (B) fish biomass models. Note: models plotted here on the arithmetic scale were linear on the log-scale used for estimation.

Table S1 | List of fish families included in the study, their common name, and whether they are commonly targeted in artisanal coral reef fisheries. Due to varying tastes, values, and preferences, not all families listed as target species will necessarily be targeted in ever coral reef fishery. X means not included in category. Note: Targeting of reef fishes can vary by location due to gear, cultural preferences, and a range of other considerations.

Fish family	Common family	Fishery target	Top predator	
	name			
Acanthuridae	Surgeonfishes	All	Х	
Balistidae	Triggerfishes	Non-	Х	
		Target<20cm;		
		Target >20cm		
Carangidae	Jacks/Trevallies	<50cm	>50cm	
Carcharhinidae	Sharks	Х	All	
Diodontidae	Porcupinefish	Non-Target	Х	
Ephippidae	Spadefishes	All	Х	
Ginglymostomatidae	Sharks	Х	All	
Haemulidae	Grunts/Sweetlips	All	Х	
Heterodontidae	Sharks	Х	All	
Kyphosidae	Sea	All	Х	
	Chubs/Drummers			
Labridae	Wrasses and	Non-	Х	
	Parrotfish	Target<20cm;		
		Target >20cm		
Lethrinidae	Emperors	All	Х	
Lutjanidae	Snappers	All not included in Selected speci		
		top predators	over 50cm	
Monacanthidae	Filefish	Non-Target	X	

Mullidae	Goatfishes	All	Х
Nemipteridae	Coral Breams	All	Х
Pinguipedidae	Sand perch	Non-Target	Х
Pomacanthidae	Angelfishes	Non-	Х
		Target<20cm;	
		Target >20cm	
Serranidae	Groupers	<50cm	>50cm
Siganidae	Rabbitfishes	All	Х
Sparidae	Porgies	All	Х
Sphyraenidae	Barracuda	<50cm	>50cm
Sphyrnidae	Sharks	Х	All
Synodontidae	Lizardfish	Non Target	Х
Tetraodontidae	Pufferfish	Non Target	Х
Zanclidae	Moorish Idol	Non Target	Х

Table S2	Travel time estimates by land cover type. Adapted from Nelson ((2008)
----------	---	--------

Global Land Cover Class	Speed associated (km/h)
Tree cover, broadleaved, deciduous & evergreen, closed;	1
regularly flooded Tree Cover, Shrub, or Herbaceous Cover	
(fresh, saline, & brackish water)	
Tree cover, broadleaved, deciduous, open	1.25
(open= 15-40% tree cover)	
Tree cover, needle-leaved, deciduous & evergreen, mixed	1.6
leaf type; Shrub Cover, closed-open, deciduous &	
evergreen; Herbaceous Cover, closed-open; Cultivated and	
managed areas; Mosaic: Cropland / Tree Cover / Other	
natural vegetation, Cropland / Shrub or Grass Cover	
Mosaic: Tree cover / Other natural vegetation; Tree Cover,	1.25
burnt	
Sparse Herbaceous or sparse Shrub Cover	2.5
Water	20
Roads	60
Track	30
Artificial surfaces and associated areas	30
Missing values	1.4

Table S3 | Targeted biomass model comparisons using AIC, Δ AIC and conditional R² between different types of gravity considering 3 buffer sizes (50, 250 and 500 km) and 3 exponents (travel time to the power of 1, 2 and 3). Δ AIC is calculated from the most parsimonious model (the lowest AIC) which is provided by the gravity within 500km-buffer and using square travel time.

Model	Sites with population within buffer (n=2233)	AIC	ΔΑΙϹ	Conditional R ²
50km-gravity				
Travel time	1682	7146	16	0.59
Travel time ²	1682	7138	8	0.60
Travel time ³	1682	7138	8	0.60
250km-gravity				
Travel time	1860	7153	23	0.59
Travel time ²	1860	7135	5	0.59
Travel time ³	1860	7140	10	0.60
500km-gravity				
Travel time	1937	7176	46	0.60
Travel time ²	1937	7130	0	0.59
Travel time ³	1937	7186	56	0.57

Table S4 | Model fit estimates for both targeted fish biomass and top predator are measured with the marginal R-squared, which describes the proportion of variance explained by the fixed factors alone, and conditional R-squared, which describes the proportion of variance explained by both the fixed and random factors. The relative importance of each variable is also presented for both targeted fish biomass and top predator models. To get those, all the possible models (i.e. all the possible combination of variables) are ranked using AICc, and all models within $\Delta AICc<3$ of the top ranked model are kept. The relative importance of each variable is based on the sum of Akaike weights of all the possible models (i.e. all the possible combination of variables) in which the variable is present.

Variables	Targeted biomass model	Top predator model	
Model fit estimates			
marginal R-squared	0.18	0.47	
conditional R-squared	0.58	0.63	
Relative variable importance			
Management*Gravity	0.13	0.57	
Management	0.14	1	
Gravity	1	1	
Local population growth	0.43	0.31	
Reef fish landings	0.21	0.35	
Population size	0.26	0.51	
Tourism	0.50	0.51	
Voice and accountability	0.21	0.31	
Human Development Index	0.22	0.34	
Census method	0.60	Х	
Total sampling area	1	1	
Habitat	0.89	1	
Depth	1	1	
Productivity	0.16	0.32	

Table S5| List of nation/states included in the study, and number of reef sites by management type.

COUNTRY	OPENLY FISHED	RESTRICTED	HIGH COMPLIANCE RESERVES
AMERICAN SAMOA (AM SAM)	96	8	0
AUSTRALIA	0	91	15
BELIZE	3	9	0
BRAZIL	0	6	12
BRITISH INDIAN OCEAN TERRITORY	0	6	36
CAYMAN ISLANDS	3	0	0
COLOMBIA	3	0	0
COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS (MARIANA)	70	0	2
COMORO ISLANDS	7	0	0
CUBA	0	0	3
EGYPT	6	0	0
FEDERATED STATES OF MICRONESIA	1	0	0
FIJI	15	1	0
FRENCH POLYNESIA	122	0	0
GUAM	9	4	1
HAWAII	221	1	2
INDONESIA (INDO)	90	108	2
JAMAICA	8	2	0
KENYA	23	0	9
KIRIBATI	50	0	0
MADAGASCAR (MADA)	38	0	0
MALDIVES	0	40	1
MARSHALL ISLANDS	15	0	0
MAURITIUS	10	0	4
MAYOTTE	8	0	0
MEXICO (MEX)	3	0	6
MOZAMBIQUE (MOZ)	18	2	4
NETHERLANDS ANTILLES	0	14	0
NEW CALEDONIA (NEW CAL)	224	10	0
OMAN	8	0	0
PALAU	0	2	0
PANAMA	13	0	0
PAPUA NEW GUINEA (PNG)	18	10	0

PHILIPPINES	1	0	0
PACIFIC REMOTE ISLAND AREAS (PRIA)	0	111	0
REUNION	14	0	0
SEYCHELLES (SEY)	0	53	3
SOLOMON ISLANDS	60	0	2
TANZANIA	37	0	4
TONGA	6	0	0
VENEZUELA	7	7	0