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A novel probabilistic forecast system predicting
anomalously warm 2018-2022 reinforcing the
long-term global warming trend
Florian Sévellec 1,2 & Sybren S. Drijfhout2,3

In a changing climate, there is an ever-increasing societal demand for accurate and reliable

interannual predictions. Accurate and reliable interannual predictions of global temperatures

are key for determining the regional climate change impacts that scale with global tem-

perature, such as precipitation extremes, severe droughts, or intense hurricane activity, for

instance. However, the chaotic nature of the climate system limits prediction accuracy on

such timescales. Here we develop a novel method to predict global-mean surface air tem-

perature and sea surface temperature, based on transfer operators, which allows, by-design,

probabilistic forecasts. The prediction accuracy is equivalent to operational forecasts and its

reliability is high. The post-1998 global warming hiatus is well predicted. For 2018–2022, the

probabilistic forecast indicates a warmer than normal period, with respect to the forced trend.

This will temporarily reinforce the long-term global warming trend. The coming warm period

is associated with an increased likelihood of intense to extreme temperatures. The important

numerical efficiency of the method (a few hundredths of a second on a laptop) opens the

possibility for real-time probabilistic predictions carried out on personal mobile devices.
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Many studies have focused on the attribution of climate
change from global to local scales1. These studies relate
variations in observations with variations in external

forcing to explain, or partially explain, the observed changes. For
example, changes in global-mean surface air temperature (GMT)
can be partially attributed to variations in external climatic for-
cing, such as volcanic eruptions or aerosol and greenhouse gas
emissions2 (Fig. 1). However, there still remains a residual to this

forced component (Fig. 1e), which can be interpreted as the
internal variability of the climate. This variability, because of its
dominance over the forced trend on interannual to decadal
timescales (Fig. 1g), is at the heart of interannual climate
prediction3,4, and the goal of our study. Moreover, since volcanic
eruptions are unpredictable by essence and aerosol and green-
house gas emissions depend on socio-economic choices, further
improvement of climate predictions will mainly occur through
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Fig. 1 Attribution of observed global-mean surface air temperature (GMT) and sea surface temperature (SST). a, b The total (red) annual, (purple) 5-year
and (blue) 10-year variations in GMT and SST measured from 1880 are decomposed (through an attribution method based on multivariate linear
regression onto volcanic eruptions, aerosol concentration, and greenhouse gas concentration2) into c, d a forced contribution and e, f a residual.
g, h Relative variance of forced and residual GMT and SST changes as a function of the duration of these changes. Variations are mainly controlled by the
residual, rather than forcing on interannual to decadal timescales. The observed GMT are from NASA GISS temperature data, and SST is from the NOAA
ERSSTv5 record
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better, more accurate predictions of the internal variability. This
conclusion is also true for the global-mean sea surface tempera-
ture (SST) studied here (Fig. 1).

In this study, we predict this internal variability through the
use of transfer operators trained by GMT and SST variations
simulated by 10 climate models from the Coupled Model Inter-
comparison Project phase 5 (CMIP5)5. This methods allows to
determine skillful and reliable probabilistic forecasts of GMT and
SST. Using this method to predict the future, the outcome is that
the current climate has a large likelihood to reach a warmer than
normal period over the next 5 years on top of the forced global
warming trend.

Results
Probabilistic forecast system. To make climate predictions we
developed a PRObabilistic foreCAST system (PROCAST sys-
tem) based on transfer operators. This method has been suc-
cessfully used in a large range of scientific studies from
statistical physics6 to geophysical fluid mechanics7–9. The basic
principle behind the use of transfer operators is a statistical
approach to rationalize the chaotic behavior of the system. The
transfer operators gather the information from all known,
previous state transitions (or trajectories in the phase space),
allowing the computation of the system evolution from its
current state to new states in a probabilistic manner. In this
sense it can be related to the analog methodologies10–12. Here
the climate state is evaluated through the one-dimensional
phase space defined by either GMT or SST, whereas the state
transitions are based on GMT or SST evolutions simulated by
climate models from the CMIP5 database (see Methods for
further details).

The evolution of the annual GMT and SST anomalies for the
10 climate models is estimated from the temperature anomaly
relative to the ensemble mean in each individual climate model
ensemble (see Methods for further details). This procedure
separates internal variability from the forced signal. The anomaly
of GMT or SST in the observational record is computed by
removing the part that can be attributed to external forcing (see
Methods for further details).

The CMIP5 GMT and SST anomalies consist of centered
distributions with a standard deviation of the annual mean of 0.1
and 0.07 K, respectively. For GMT, the modeled standard
deviation is slightly weaker than the observed one (0.12 K), but
remains in good agreement: <9% of relative difference. On the
other hand, for SST, the standard deviation of the distribution in
the CMIP5 is significantly weaker than in the observations (0.13
K), with a relative difference of 43%. Hence for SST, the modeled
distribution is renormalized to fit the standard deviation of the
observations.

To define the transfer operators, we split the phase space in
24 states and computed the probability of transition between the
24 states based on the ~10 000 transitions provided by the CMIP5
database (see Fig. 2 and Method for further details). Hence the
transfer operators are a natural tool for conditional probability
forecasts. Indeed, we evaluate the probability of future system
states based on the condition that the system is in its current
state. To gain insight on the method we applied the transfer
operators to the 24 possible states. This shows that for all possible
initial conditions the probability density function slowly con-
verges to the total density distribution with a timescale of ~10
years (see Fig. 3 for an example of the asymptotic convergence).
This is accomplished through the slow converge of the mean
probability and the spread of the probability distribution.
However, the computed probability density distribution is more
intricate than simply described by the evolution of its mean and

standard deviation. Indeed, within the information restricted to
the reduced phase space of GMT or SST, the method allows to
follow the evolution of the complete probability density function
over time (Fig. 3).

Hence, this method is valid under four assumptions: GMT or
SST information is enough for GMT or SST prediction; all model
trajectories are statistically equivalent; the common component of
each model reflects its forced component; and stationarity of the
statistics of anomalies in a changing climate scenario (these
assumptions are further described in the Methods). In particular,
the severe truncation of the phase space to a single variable
implies that different climate states with equivalent GMT or SST
are all aggregated in the probabilistic approach of the transfer
operators. However, as it will be fully described later, PROCAST
is skillful for interannual GMT and SST prediction despite these
four assumptions. This, a posteriori, confirms that despite these
assumptions not being strictly true, they are reasonable given the
aims of our study.

Evaluation metrics and perfect model approach. Now that the
transfer operators are defined and its general behavior described,
we first estimate the predictive skill of our method in a perfect
model framework. This means that we predict trajectories of the
numerical models, rather than of real observations. This allows to
estimate the predictive skill in the best possible scenario, since it
avoids the intrinsic bias or error between models and observa-
tions. The probabilistic distribution is computed for up to 10-year
lags (1–10 years ahead) and for annual to 10-year averaged
data.

To estimate the validity of our probabilistic predictions we use
two different measures: the coefficient of determination—R2,
which shows the skill of the mean prediction; and the reliability,
which measures the accuracy of the spread in the prediction.

Schematic of the Transfer Operator method
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Fig. 2 Schematic of the Transfer Operator method. The computation of the
transfer operators follows four steps: first, the predicted metric (GMT and
SST) is split in a number of different states based on its intensity (8 in the
schematic, 24 for the real forecast system); then, the number of trajectories
from the CMIP5 database in each state is counted (Ni, blue numbers); as a
third step, for each state, the number of corresponding trajectories found
after the prediction delay is counted (ni,j, red numbers); finally, the
probability of transition from ith state to jth is given by ni,j/Ni. This
sequence is repeated for 10 different prediction delays and 10 averaging
times of trajectories (both are varied from 1 to 10 years, by 1 year time step)
building the range of transfer operators required for
prediction
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These two measures can be mathematically expressed as:
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where t is time, i is the possibility or state index, o(t) is the
observation, and xi are the predicted possibilities with probability
pi(t). The bar denotes an average over time or sum over
possibilities depending on the superscript. (Our equation of the
reliability is an extension for non-stationary statistic of the
previously suggested definition13.) The coefficient of determina-
tion, when multiplied by 100, gives the percentage of variance of
the observations explained by the prediction. Since the system is
chaotic (there is a degree of uncertainty around the mean
prediction), it is expected that the prediction cannot represent the
observation perfectly, even if the model represents perfectly
reality. Hence, the reliability measures the accuracy of this
prediction error. When a reliable prediction has large skill (~1)
we expect the prediction uncertainty to be small. On the other
hand, when a reliable prediction system has low skill (~0) we
expect the prediction uncertainty to be as big as the observed
variance. In this context, and regardless of its skill, a reliable
prediction system always needs to have a reliability close to 1.
Hence, despite that a high value of R2 is preferable for a skillful
prediction, the reliability is arguably more important to estimate

the usefulness of the prediction system. Indeed, a reliable
prediction system can be used for probabilistic forecasts and risk
assessments, even if it has low skill14,15.

To evaluate the quality of our prediction system, skill and
reliability are computed for all lags and averaging times. For
comparison, we use persistence as our null hypothesis (i.e., initial
values in our hindcast for all hindcast times). Within the perfect
model approach, all the trajectories in the selected models of the
CMIP5 database have been tested. This reveals two main results:
PROCAST is able to surpass persistence for all averaging
timescales and hindcast lags for GMT and SST; and prediction
skills are often larger than 0.5 on annual to interannual timescales
(Fig. 4). It also reveals the excellent reliability of PROCAST (as
expected within a perfect model approach) with a value of 1
(within a 6% and 3% errors for GMT and SST, respectively) for all
averaging timescales and hindcast lags (Fig. 4c, d).

To further test the predictive skill and reliability of PROCAST
we have assessed them in an imperfect model approach (i.e.,
removing outputs of one model from the transfer operators
computation and using them as pseudo-observations). We find
that PROCAST is still able to perform at the same level of
accuracy than within the perfect model approach with a slight
decrease of the coefficient of determination of less than 0.01 for
all lags and averaging times tested.

Hindcast skills and predictions of the post-1998 hiatus. After
having tested PROCAST in a perfect model setting, we now test
the exact same system with real observations. (Note that no
retuning before going to observations has been applied.) We
reproduce the skill analysis with the observed internal variability,
estimated as anomalies from the forced component in GMT and
SST (Fig. 1). For this purpose we computed retrospective
predictions of the past, or hindcasts, from 1880 to 2016. This
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Fig. 3 Example of a probabilistic interannual prediction for 5-year GMT anomalies using the transfer operators. Evolution of the predicted density
distribution of GMT for hindcast lags of a 1 year, b 2 years, c 5 years, and d 10 years (red histogram). Vertical blue lines indicate the initial condition; the
gray histograms in the background represent the asymptotic, climatological distribution; vertical black lines correspond to the mean, ±1, and ±2 standard
deviations of the asymptotic, climatological distribution
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procedure allows a full estimate of the predictive ability of
our prediction system in the most realistic and operational set-
ting. (Examples of hindcasts for 5-year averages are shown in
Fig. 5a, b.)

As before, the probabilistic distribution is computed for up to
10-year lags and for annual to 10-year averaged data. Similar to
the perfect model approach, skill values decrease from 1 to 0
depending on the lags (Fig. 5). Focusing on a 5-year mean
prediction of SST, we still have a skill for 5-year lags of ~30%
(Fig. 5d), suggesting our ability to accurately forecast part of the
SST variations for the next 5 years. More generally the skills are
always better than persistence (except for a few averaging times
and hindcast lags of SST). Also reliability remains close to 1, even
when the skill is low, suggesting that even for low skills we are
sampling an accurate range of possible future states. The same

holds for predictions of GMT, but with slightly reduced skill
compared to SST. This demonstrates the usefulness of PROCAST
for probabilistic predictions.

The root mean square error averaged for hindcast lags from 1
to 9 years for annual GMT is 0.105 K. This is strictly identical to
the value reported for DePreSys in 2007 (the operational Decadal
Prediction System of the Met-Office)16. When averaged over the
hindcast lags from 1 to 5 years, the root mean square error of
PROCAST is 0.104 K, whereas it is 0.151 K for the latest version
of DePresys (DePreSys3, D. Smith, personal communication).
This indicates that PROCAST is 37% more accurate than
DePreSys3 for interannual predictions of GMT. This comparison
is slightly biased, however, since DePreSys predicts the absolute
temperature, whereas we only predict the anomaly from the
forced part. However, the forced part of the variability is arguably
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Fig. 4 Interannual hindcast skills of GMT and SST within a perfect model approach. a, b Skill of the prediction measured by the coefficient of determination
—R2—between model observations and mean prediction for different hindcast lags and averaging times. The coefficient of determination between model
observations and persistence (i.e., the null hypothesis of prediction) is also computed to give a benchmark. Thick contour lines represent values of 0.5, thin
dashed—lower skill, and thin solid—higher skill, with contour intervals of 0.1; and hatching shows skill lower than the persistence. c, d Reliability of the
prediction for different hindcast lags and averaging times. Note the absence of hatched region in a and b denoting the better skill than persistence for all
hindcast lags and averaging times. Also, note the flat pink color in c and d corresponding to a good reliability close to 1 for all hindcast lags and averaging
times, as expected in a perfect model approach. e, f Difference between the coefficient of determination for the hindcasts with observations and within a
perfect model approach (a and b vs. Fig. 5c, d for GMT and SST). For all hindcast lags and averaging times, the skill is better for observations than for the
perfect model approach. Thick black lines are for zero values, thin black lines are positive values with a contour interval of 0.05
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the most predictable, since the external forcing is imposed
accurately during hindcasts. Furthermore, the accurate probabil-
istic approach of PROCAST also differs from DePreSys, which
can only diagnose a probabilistic prediction from a relatively
small ensemble (~10 members), limiting its statistical accuracy
and overall reliability. More specifically, PROCAST reliability for
annual GMT is almost perfect with an averaged value for hindcast
lags from 1 to 5 years of 1 (prediction spread is as big as the
prediction error on average), whereas it is 2.3 for DePreSys3
(prediction spread is 2.3 times as small as the prediction error on
average). This relatively weak reliability of DePreSys3 is a sign of
the under-dispersion of the ensemble in comparison with its
prediction error and of an over-confident prediction system.
Hence, PROCAST appears to be better suited for probabilistic
predictions and risk assessments of extremes. Finally, and

probably more importantly, the numerical cost is without
comparison. Doing a 10-year forecast using PROCAST takes
22 ms, and can be easily done on a laptop almost instantaneously.
On the other hand, a 10-year forecast using DePreSys3 (which
corresponds to a 10-member ensemble) takes a week on the Met-
Office supercomputer, accessible only to a small number of
scientists. This difference in numerical cost has to be put into
perspective, though. PROCAST takes advantage of the freely
available CMIP5 database, which is an incredibly expensive
numerical exercise of the worldwide climate science community.
Also, unlike PROCAST, DePreSys3 is not specifically trained for a
single-variable prediction, so that the entire climate state is
predicted in one forecast. This is obviously beneficial.

To further identify the usefulness of PROCAST we tested its
prediction skill for the recent global warming hiatus17. We define
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this recent hiatus as the post-1998 decade cooling seen in GMT
anomaly (Fig. 1e). This cooling totally offsets the forced warming
(Fig. 1c) leading to a plateau in the observed, total warming
(Fig. 1a). PROCAST is indeed able to reproduce the decade-long
cooling anomaly (Fig. 6) for all averaging timescales tested (1–10
years). The coefficient of determination is 0.52 on average (for
averaging timescales ranging from 1 to 5 years and could be as
high as 0.6 or 0.64 for 1 and 5-year time averages, respectively.
This suggests that 60% and 64% of the annual and 5-year
variations, respectively, are accurately predicted for a decade long.
For these two examples the correlation coefficient is also high
with values of 0.63 and 0.64. Despite some error in its exact
intensity (especially when focusing on mean prediction) or the
details of its annual variations, this shows that an event such as
the post-1998 hiatus could not have been missed using
PROCAST (especially when acknowledging the predictive
spread). In particular our probabilistic forecast framework shows
that a decade-long hiatus was always a likely outcome (always
well within 1 standard deviation of our prediction), even if not the
most likely, especially after 7 years. Because the amplitude is
somewhat lower than observed, it would be consistent if a small
part of the hiatus was indeed caused by external forcing, although
the main part would be due to internal variability18–21. This is a
significant achievement since the recent hiatus can be considered
as a statistical outlier22,23, and only a few of the CMIP5 models
simulated such a strong and long pause in global warming24. This
places PROCAST among the state-of-the-art prediction systems,
which have been able to retrospectively predict the recent global
warming hiatus25,26. Other starting dates have been tested (such
as 2002) and always allow PROCAST to capture the long-term

hiatus, but to a lesser degree the exact interannual variation of the
decades.

When compared with the perfect model predictions, the
predictive skill in PROCAST is (always) better for real-world
predictions (Fig. 4e, f) than in the perfect model approach. In
particular, the skill is improved by up to 30% on interannual
timescales, and is especially better for SST. This behavior has
been previously reported for other variables and prediction
systems27–29 and seems to be related to a weaker signal-to-noise
ratio in models than in observations.

It is also interesting to note that skill and reliability are
improved by the addition of information from more models
rather than by selecting a subset of the best models (i.e., models
giving the best skill when used alone to train the Transfer
Operator). This means that the transfer operators built with only
the best models have lower skill than the transfer operators built
with all 10 climate models. Moreover, removing any single model
from the set of 10 does not significantly lower the skill, suggesting
that convergence has been reached when using 10 climate models.

Our analysis also shows that SST has better skill than GMT for
all tested hindcast lags and averaging times. This suggests that the
ocean is improving the hindcast skill and is more predictable than
the continental surface temperature encompassed in GMT. This
result is consistent with previous analyses suggesting the ocean as
a source of predictability and limiting the continental predict-
ability to marine-influenced regions30,31.

Forecasting the future. After the skill of the method has been
assessed, we compute a probabilistic forecast of GMT and SST
from 2018 to 2027 (Figs. 7 and 8), focusing on three averaging

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

–0.2

0

0.2

1-
yr

 a
ve

r.
 (

K
)

GMT anomaly [R2=0.6, CC: 0.63]

Predictions of the post-1998 hiatus

a

19
40

19
50

19
60

19
70

19
80

19
90

20
00

20
10

0

0.5

1
With obs. forced component

With obs. forced component

With obs. forced component

d

70
–7

1

75
–7

6

80
–8

1

85
–8

6

90
–9

1

95
–9

6

00
–0

1

05
–0

6

10
–1

1

15
–1

6
–0.2

0

0.2

2-
yr

 a
ve

r.
 (

K
)

GMT anomaly [R2=0.33, CC: 0.17]b

40
–4

1

50
–5

1

60
–6

1

70
–7

1

80
–8

1

90
–9

1

00
–0

1

10
–1

1
0

0.5

1
e

68
–7

2

73
–7

7

78
–8

2

83
–8

7

88
–9

2

93
–9

7

98
–0

2

03
–0

7

08
–1

2

13
–1

7

Time (yr) Time (yr)

–0.1

0

0.1

5-
yr

 a
ve

r.
 (

K
)

GMT anomaly [R2=0.64, CC: 0.64]c

38
–4

2

48
–5

2

58
–6

2

68
–7

2

78
–8

2

88
–9

2

98
–0

2

08
–1

2
0

0.5

f

Fig. 6 Predictions of the post-1998 hiatus observed through GMT anomalies. Observation and prediction of GMT anomalies averaged over a 1 year,
b 2 years, and c 5 years. Hiatus is defined as the post-1998 decade (blue line) showing a decrease of GMT anomalies partially or totally offsetting the
forced trend. Decadal prediction means and standard deviations (red circles and vertical lines, respectively) are obtained using PROCAST initialized in 1998
(red squares). Prediction skills are computed through the coefficient of determination (R2) and the correlation coefficient (CC) over the post-1998 decade.
d–f are equivalent to a–c with the addition of the observed component attributed to forcing (purple lines)

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05442-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3024 | DOI: 10.1038/s41467-018-05442-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


times: 1-, 2-, and 5-year averages. We also considered longer
averaging times, such as a 10-year averaging period, but these all
show forecast probabilities almost equivalent to the climatological
probability (Table 1). Similarly, for long enough lags or forecast
times (i.e., a decade) the predictions always converge to the cli-
matological values (Figs. 7 and 8a–c).

With shorter time averages our probabilistic forecast for 2018
(based on data up to 2017) suggests a higher likelihood of warm
events for both GMT and SST (Figs. 7 and 8d), with a probability
of higher temperature than predicted by the forcing alone of 58%
and 75% for GMT and SST, respectively. This corresponds to an

expected warm anomaly of 0.02 and 0.07 K for GMT and SST,
which would reinforce the forced warm trend. To describe the
expected warm event in greater details, we can classify the
temperature anomaly as moderate (lower than 1 standard
deviation), intense (bigger than 1 standard deviation and lower
than 2 standard deviations), and extreme (bigger than 2 standard
deviations). This classification suggests that moderate warm
events are the most likely for 2018 GMT and SST. This can be
further diagnosed by looking at the relative changes of
probabilities from the climatological probability (Figs. 7 and
8g). This suggests that intense and extreme cold events have the
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lowest risk in 2018 (i.e., largest change of occurrence compared to
climatology), with an occurrence decrease of more than 60% and
100% for GMT and SST, respectively.

On longer timescales, for the 2018–2019 average, anomalous
warm events remain the most likely event (Figs. 7 and 8e), with
an expected intensity of 0.03 and 0.07 K for GMT and SST. For
this period, intense GMT warm anomalies show the maximum
changes in likelihood compared to climatology (Fig. 7h). For SST
the maximum change in likelihood is an increase of extreme
warm events (Fig. 8h).

For the forecasted 5-year averaged temperatures (i.e., for the
period 2018–2022), the predictions differ. For GMT, the
predictions suggest a balanced probability between warm and

cold events (Fig. 7f) on top of the forced trend, with a small
relative reduction of expected occurrence of extreme cold and a
small relative increase of expected occurance of extreme warm
events (Fig. 7i). For SST, the forecast still suggests an anomalous
warm event for the period 2018–2022 with an expected value of
0.05 K (Fig. 8f). The forecast also suggests a relative increase of
the probability of extreme warm events for SST over this period,
by up to 400% (Fig. 8i).

Discussion
It is now well understood that global warming is not a smooth
monotonous process32. Variations around the continuous
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warming can even dominate the trend on decadal
timescales23,25,33, as was the case for the hiatus event in the
early twenty-first century17,18. In this study we used
CMIP5 simulations to train a statistical model to predict varia-
tions of GMT and SST with respect to the forced trend on
interannual to decadal timescales. The statistical model is based
on the Transfer Operator framework that transforms determi-
nistic trajectories into probabilistic ones. Hence, our derived
prediction system is naturally fitted for probabilistic forecasts, and
is named PROCAST.

For both metrics we show that our prediction system is able to
be more accurate than persistence within a perfect model
approach. We also showed the ability of PROCAST to be reliable
even when skills are low, suggesting the usefulness of the pre-
dictive system and of its probabilistic approach on interannual to
decadal timescales.

To further identify the accuracy of PROCAST, we computed a
range of historical hindcasts from 1880 to 2016 of the GMT and
SST anomalies (defined as the residuals after removing the forced
components2). For the whole period, and with a start date every
year, we evaluated the predictive skill and reliability for 1- to 10-
year lags and for annual to decadal variations. This evaluation
reveals that the prediction skills (measured through the coeffi-
cient of determination) outperformed the skills obtained within a
perfect model approach. In particular, a retrospective prediction
using PROCAST is able to capture the decade-long post-1998
global warming hiatus (Fig. 6).

Beyond the predictive skills, the reliability of PROCAST is
high, suggesting that PROCAST is also able to predict the possible
range of GMT and SST anomalies with their associated prob-
ability, making it well fit for probabilistic forecasts and risk
assessment. For example, the post-1998 hiatus has been shown to
be a likely outcome of PROCAST, despite being considered as a
statistical outlier22,23. Also, the high reliability suggests that the 10
climate models used to train PROCAST represent accurately the
statistics of the observations. Despite intrinsic limitations and
biases, this reinforces the high potential of climate models for
understanding the climate system.

Using our novel forecast system, we made interannual pre-
dictions for the future. These predictions suggest that 2018 has a
high probability of having a warm anomaly (58% and 75%)
compared to the forced trend, with expected anomalies of 0.02
and 0.07 K for GMT and SST, respectively. This occurs through
the significant decrease of likelihood of extreme cold events (cold
events bigger than 2 standard deviations). For the next 2 years,
both GMT and SST suggest a likelihood of warm events of more
than 64% and 74%, respectively. This is mostly due to an increase
of the likelihood of intense warm events (between 1 and 2 stan-
dard deviations) for GMT and of extreme warm events for SST.
On even longer timecales, GMT suggests an almost perfectly
balanced probability between warm and cold events, whereas SST
suggests a higher probability of warm events of 69% for
2018–2022, with a dramatic increase of up to 400% for an
extreme warm event likelihood.

Overall, PROCAST suggests that the current warm anomaly
recorded in GMT and SST is expected to continue for up to the
next 5 years (Table 1), and even possibly for longer for SST.
PROCAST shows better skill than DePreSys3 (the latest version
of the operational Decadal Prediction System of the Met-Office),
with extremely accurate reliability. Whereas classical forecast
systems give the entire climate state in a single prediction, but are
numerically costly (need of supercomputers), PROCAST is
extremely efficient numerically but forecasts only a single metric.
However, this efficient system can be easily transferred to predict
other relevant changes of the climate system, such as precipita-
tion, and to focus on regional scales more aligned with societal

demand. This also opens the possibility of giving access to climate
forecast, and possible subsequent regional climate impacts that
scale with GMT or SST (such as precipitation extremes34, severe
droughts35, or intense hurricane activity36, for instance), to a
wider scientific community (without the need for supercomputer)
and to the general public by running a simple application on a
personal portable device.

Methods
Computation of transfer operators for GMT and SST anomalies. The statistics
needed to develop the transfer operators6–9 followed a multimodel approach using
10 climate models. The GMT and SST data are estimated based on historical
simulations followed by the Representative Concentration Pathway 8.5 simulations.
These simulations were gathered from the CMIP5 database5. The 10 models are
(with the number of ensemble members used in square brackets): “CCSM4” [6];
“CNRM-CM5” [5]; “CSIRO-Mk3-6-0” [10]; “CanESM2” [5]; “HadGEM2-ES” [3];
“IPSL-CM5A-LR” [4]; “FIO-ESM” [3]; “MPI-ESM-LR” [3]; “MIROC5” [3]; and
“EC-EARTH” [16]. These models have been selected from the CMIP5 database
because they have at least three members and the required data fields. For each
model, to obtain the trajectory anomalies, the multi-member mean is removed
from individual trajectories. Finally, for the purposes of this study GMT and SST
are time averaged using a simple running average set to T= 1, 2, 3, 4, 5, 6, 7, 8, 9,
and 10 years.

To determine the transfer operators we split the one-dimensional phase space
defined by GMT or SST with a uniform resolution of η. Individual grid box lengths
are 6σ/η where σ is the standard deviation of GMT or SST. (The most extremes
boxes reached infinity to cover the entire phase space, including extreme cases.) We
set η= 24 for numerical applications. This number allows a good balance between
high resolution (number of boxes) and reliable statistics (number of transition in
each boxes). With these numbers the Transfer Operator is able to represent 24
different states with 500 individual transitions on average to build an accurate
statistical transition between states.

Further increase of the number of states does not show any improvement in the
accuracy of the forecast system in terms of skill nor reliability (as evaluated through
last century hindcasts). Considerations to use a two-dimensional (2D; by using the
first-time derivative) and three-dimensional (3D; by using both first- and second-
time derivatives) phase spaces to define the transfer operators have also been given,
but did not show any improvement of the method.

It is fundamental to note that we severely reduced the phase space of the climate
dynamics by considering a one-dimensional phase space defined by GMT or SST.
In this context, different climate states with equivalent GMT or SST are simply
aggregated in the probabilistic approach of our statistical model. Arguably, for 2D
or 3D variables this approach is invalid without further adjustments, as the models
fundamentally differ in background state and patterns of variability. For globally
averaged variables, like temperature, this is much less the case, as regional
atmospheric and ocean dynamics have much less impact on these variables and
their evolution is more governed by thermodynamics common to all models. As a
result, the multimodel mean ensemble is often used for best guesses of historical
evolution and future projections32. The skillfulness of PROCAST suggests that such
severe truncation indeed allows accurate and reliable prediction of global mean
temperature.

The transfer operators are built by evaluating the number of trajectories from
the entire multimodel database in each state (individual grid box) and then
evaluating the number of these trajectories ending-up in each possible state after a
given transition time (τ). The ratio of these two numbers gives the probability from
a trajectory in an initial state to end-up in a final state after a time τ (Fig. 2). The
probability of state transition is repeated for τ= 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 years,
leading to 10 transfer operators for each of the 10 averaging times T (so a total of
100 transfer operators).

Hence, this method allows to propagate any probability density function
forward in time. Examples of statistical transitions starting from current GMT (i.e.,
values of 2013–2017) for the 5-year average trajectories (T= 5 years) and for
transition timescale of τ= 1, 2, 5, and 10 years are given in Fig. 3.

The full computation of all the requested transfer operators on a typical laptop
takes ~30 s and can be saved for future use.

It is crucial to note that we do not apply a single Transfer Operator successively
(e.g., applying the 1-year Transfer Operator twice to get a 2-year prediction). In
contrast, we apply a range of transfer operators sequentially (i.e., applying the 1-
year Transfer Operator for 1-year prediction, applying the 2-year Transfer
Operator for 2 years, and so on). The essential difference with the traditional use of
transfer operators (i.e., applied successively as a Markovian chain) is that we do not
require that the 2-year Transfer Operator is equal to applying the 1-year Transfer
Operator twice successively. So, we need to, and did, establish all different transfer
operators for different lags separately and independently. This method indeed
allows us to avoid the need for a Markovian chain (and its required properties),
which, as a result, is not verified in our reduced single-variable space6, and is
probably not valid either37. It should be emphasized that our method is closer to a
conditional probabilistic prediction (where the condition is based on the current
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GMT or SST) than to the traditional use of Transfer Operator within a Markovian
chain.

As described in the main text, our method is valid under a few assumptions:
first, GMT or SST information is enough for GMT or SST prediction; second, all
model trajectories are statistically equivalent; third, the common component of
each model reflects its forced component; and fourth, stationarity of the statistics of
anomalies in a changing climate scenario (i.e., non-autonomous system). With
respect to the first assumption, we acknowledge that further refinement is possible,
however, as will be demonstrated, using only globally averaged SAT and SST
information is already enough to arrive at a skillful prediction. Assumption 2:
Model trajectories are in general not statistically equivalent and maybe severely
biased with respect to the real world. For globally averaged temperature, however,
the statistical differences are small, and biases for the SST ensemble as a whole have
been remedied by scaling the standard deviation. (Rescaling of individual SST
trajectories to observation variability does not show improvement in prediction
accuracy and shows lost of reliability in comparison with the global ensemble
rescaling.) Assumption 3 is clearly incorrect, as long as the ensemble size of each
model is finite. However, the error made by this assumption is small enough to
allow skillful prediction. Assumption 4 is also not correct, although generally
applied in climate science. The general assumption is that the perturbation implied
by global warming is too small to fundamentally change the anomalies, or climate
variability (i.e., anomalies and perturbation to the background do not affect each
other). This might be problematic when studying extreme events, whose
occurrences might change in a changing climate. Hence, this assumption is
questionable for certain variables that are subject to order one changes under
climate change, such as, e.g., the Atlantic Meridional Overturning Circulation, or
extremes in the tail of a distribution. However, there is no indication that the
assumption is not approximately valid for GMT, whose variability is for a large part
dominated by El Nño-Southern Oscillation and the Interdecadal Pacific Oscillation.
So, despite these various assumptions, PROCAST is skillful for interannual GMT
and (globally averaged) SST prediction, proving that these assumptions although
not strictly true are reasonable in the context of our study, because they apply in
most cases of variation in GMT and SST.

Computation of internal variability of observed GMT and SST. Observed GMT
and SST are computed as spatial averages (NASA GISS temperature record for
GMT; the NOAA ERSSTv5 record for SST), where spatial gaps in the data are
ignored. The percentage of missing data (important before 1958) does not show
any impact on the prediction skill. The internal variations in GMT and SST in the
observational record are computed as the residual after having removed the part
that can be attributed to external forcing. This attribution is based on a multivariate
linear regression onto volcanic eruptions and greenhouse gases and aerosol con-
centrations2. Hence, for removing the part attributed to external forcing from the
time series of SAT and SST a multiple linear regression analysis is performed. The
approach assumes that globally averaged temperature responds linearly, with some
lag, to the various forcing agents. After removing the average value (we are only
interested in anomalies), we can write:

VðtÞ ¼ εþ Σk
i¼1aiFi t � lið Þ; ð3Þ

where t is the time, V is the total GMT or SST, k is the number of forcings
considered (i.e., three: greenhouse gases, aerosol concentrations, and volcanoes),
ai is the regression coefficient, Fi is the forcing time series, li is the lag by which
temperature responds to the forcing, and ε is the residual. The forcing time series
are taken from the CMIP5 historical plus RCP4.5 (after 2005 till present) forcing
dataset. We refer to ref. 2 for more details and figures of how the regression
performs.

We also considered subtracting the impact of solar forcing, but have
disregarded this for three reasons. First, direct measurements start only in 1978. If
we limit ourselves to this period the length of the time series is shortened and
thereby limits the robustness of any computed prediction skill. Second, for longer
time series solar forcing is based on a reconstruction, which appears to be unstable

leading to large unrealistic trends degrading the prediction skill. Third, solar
irradiance is weak compared to other forcing and internal variability2. Hence,
including it in the internal variability hardly affects the results.

Model availability. The model developed and used during the current study are
available from the corresponding author on request.

Data availability. The datasets analyzed and/or generated during the current study
are available from the CMIP5 and KNMI Climate Explorer webpage and/or from
the corresponding author on request.
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