FN Archimer Export Format PT J TI Transport and storage of anthropogenic C in the North Atlantic Subpolar Ocean BT AF RACAPE, Virginie ZUNINO, Patricia MERCIER, Herle LHERMINIER, Pascale BOPP, Laurent PEREZ, FIz F GEHLEN, Marion AS 1:1,2;2:3;3:3;4:2;5:1,4;6:5;7:1; FF 1:;2:;3:;4:PDG-ODE-LOPS-OH;5:;6:;7:; C1 CEA CNRS UVSQ, CEA Saclay, LSCE, IPSL, Bat 712, F-91190 Gif Sur Yvette, France. IFREMER, CNRS IFREMER IRD UBO, Lab Oceanog Phys & Spatiale, UMR 6523, Plouzane, France CNRS IFREMER IRD UBO, Lab Oceanog Phys & Spatiale, CNRS, UMR 6523, Plouzane, France. Ecole Normale Super, Dept Geosci, 24 Rue Lhomond, F-75005 Paris, France. CSIC, Inst Invest Marinas, Eduardo Cabello 6, Vigo 36208, Spain. C2 IPSL, FRANCE IFREMER, FRANCE CNRS, FRANCE ENS, FRANCE CSIC, SPAIN SI BREST SE PDG-IRSI-COA PDG-ODE-LOPS PDG-ODE-LOPS-OH UM LOPS IN WOS Ifremer jusqu'en 2018 DOAJ copubli-france copubli-europe IF 3.951 TC 6 UR https://archimer.ifremer.fr/doc/00454/56587/58275.pdf https://archimer.ifremer.fr/doc/00454/56587/58276.pdf https://archimer.ifremer.fr/doc/00454/56587/58277.pdf https://archimer.ifremer.fr/doc/00454/56587/58278.pdf https://archimer.ifremer.fr/doc/00454/56587/58279.pdf https://archimer.ifremer.fr/doc/00454/56587/58280.pdf https://archimer.ifremer.fr/doc/00454/56587/58281.pdf https://archimer.ifremer.fr/doc/00454/56587/58282.pdf LA English DT Article CR OVIDE 1 OVIDE 2 OVIDE 3 OVIDE 4 OVIDE 5 BO Thalassa Maria S. Merian AB The North Atlantic Ocean is a major sink region for atmospheric CO2 and contributes to the storage of anthropogenic carbon (Cant). While there is general agreement that the intensity of the meridional overturning circulation (MOC) modulates uptake, transport and storage of Cant in the North Atlantic Subpolar Ocean, processes controlling their recent variability and evolution over the 21st century remain uncertain. This study investigates the relationship between transport, air-sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. Its relies on the combined analysis of a multiannual in situ data set and outputs from a global biogeochemical ocean general circulation model (NEMO-PISCES) at 1/2 degrees spatial resolution forced by an atmospheric reanalysis. Despite an underestimation of Cant transport and an overestimation of anthropogenic air-sea CO2 flux in the model, the interannual variability of the regional Cant storage rate and its driving processes were well simulated by the model. Analysis of the multi-decadal simulation revealed that the MOC intensity variability was the major driver of the Cant transport variability at 25 and 36 degrees N, but not at OVIDE. At the subpolar OVIDE section, the interannual variability of Cant transport was controlled by the accumulation of Cant in the MOC upper limb. At multi-decadal timescales, long-term changes in the North Atlantic storage rate of Cant were driven by the increase in air-sea fluxes of anthropogenic CO2. North Atlantic Central Water played a key role for storing Cant in the upper layer of the subtropical region and for supplying Cant to Intermediate Water and North Atlantic Deep Water. The transfer of Cant from surface to deep waters occurred mainly north of the OVIDE section. Most of the Cant transferred to the deep ocean was stored in the subpolar region, while the remainder was exported to the subtropical gyre within the lower MOC. PY 2018 PD JUN SO Biogeosciences SN 1726-4170 PU Copernicus Gesellschaft Mbh VL 15 IS 14 UT 000440316500003 BP 4661 EP 4682 DI 10.5194/bg-15-4661-2018 ID 56587 ER EF