MANUFACTURE OF "FRESH / WET" AQUACULTURE FEEDS BASED ON BY-CATCHES, FISH BY-PRODUCTS AND ALGAE

Karine Doudard1, Liet Chlim1, Abdellah Ahrailias2, Cyrille Przybyla3, Régis Baron1

1. IFREMER, Unité Biotechnologies et ressources marines, Rue de l’île d’Yeu BP21105, 44311 Nantes cedex 03, France
2. GEPEA, Université de Nantes, CNRS, UMR8144, 37 bd de l’Université, BP 406, 44602 Saint-Nazaire Cedex, France
3. IFREMER, LIMR MARREC, Chemin de Maguelone, 34290 Palavas-les-Flots, France

Introduction

Context

- Focus on available bio resources transformation such as by-catches or fish by-products and marine plants (seaweeds and microalgae)
- Positioning on short supply chains fish feed processing or IMTA
- Wet feed may have benefits for aquaculture
- Natural gelling ability of fish muscle proteins allows texturing feeds

Challenges

- Incorporation of abundant resources readily available / reduction of discards
- Significant reduction of certain energy-consuming steps (such as drying)
- Adequacy with specifications of a nutritional efficient fish feed
- Production of fresh/wet feeds microbiologically safe
- Check and quantify nutritional effects of a wet diet

Wet and Fresh feeds

- Water content similar to live prey → Improvement of feed use
- Reduction (or removal) of the drying step → Energy saving
- Improvement of flavor spreading and palatability for fishes
- Neutral or positive effects on fish growth and survival
- Promotion of fish immunity and protective bacterial flora → Decrease in mortality
- No microbiological stabilization → Issues for storage and transportation
- Short supply chains → Length of storage and transportation limited
- Can be sticky and too soft → Complicating handling and feeding
- Risks of contamination by alteration or pathogenic flora.
- Fish has to consume more wet feed to match nutrient requirements
- Short term storage / Cooking step → Reduce of contamination

Pros

- Natural gelling ability of fish muscle proteins → Texture enhancement
- No microbial stability → Issues for storage and transportation
- Short supply chains → Length of storage and transportation limited
- Can be sticky and too soft → Complicating handling and feeding
- Risks of contamination by alteration or pathogenic flora.
- Fish has to consume more wet feed to match nutrient requirements
- Short term storage / Cooking step → Reduce of contamination

Cons

Raw Materials

Main raw materials potential availability (in France)

- By-catches : 17,000 tons/y
 - By-catches are unwanted / unsold marine organisms
 - Potentially available resource with the implementation of the landing obligation
 - Composition will depend on type, season and location of the fishery
 - Fish by-products : 350,000 tons/y

Main raw materials composition

- Chemical composition of raw materials is evaluated on the pulp part of batches, obtained by mechanical separation, related to dry matter
 - On a batch of by-catches received from a nephrops trawlers working in the Bay of Biscay
 - On a batch of by-products received from a salmon processing factory

Formulation

- Feed formulation is based on nutritional composition of main raw materials relevant to be incorporated - on a dry basis
- Target organism = European sea bass (Dicentrarchus labrax) or rainbow trout (Oncorhynchus mykiss)

Example of optimized formulation

- Carbohydrates source 22%
- Lipids 28%
- By-catches 45%
- Ashes 15%
- Proteins 28%
- Lipids 5%

Corresponding nutritional composition

- Carbohydrates 24%
- Lipids 26%
- Ashes 9%
- Proteins 49%

- Formulation simulations highlight the strong potential of fish raw materials to fit nutritional requirements
- In the example above, a carbohydrate source is needed to optimize the formulation to fit fish requirements. In this frame, seaweeds could be a good candidate as source of carbohydrates
- Some microalgae spp. could also be considered as a potential source of lipids and essential fatty acids in order to complete the diet

Process

Preprocessing step and mix

- Mechanical separation of fishes:
 - Removing bones or ossicles
 - Pretreatment of algae:
 - Decreasing ashes level
 - Improving digestibility
- Shearing along extruder allows denaturation and solubilization of myofibrillar proteins
- Cooking step allows the three-dimensional reorganization of proteins leading to gel formation
- Drying may be favorable for buoyancy, texture and homogenization of feed water content
- No storage for direct fresh feeding
- Short time cold storage will be studied

Perspectives

Several aspects of this project require extensive studies:

- Optimization of feed texture through extrusion, cooking and drying
- Impact of other materials such as seaweeds or microalgae on texture
- Impact of storage conditions on the texture of feeds
- Assessment of microorganisms in raw materials and feeds
- Study of the shelf life of feeds depending on storage conditions
- Evaluation of digestibility and palatability of developed feeds
- Assessment of the feed produced on fish culture (targeted organism) at a pilot scale

Main references

Contact

DOUDARD Karine
Email: karine.doudard@ifremer.fr