

- 1 Effect of light on photosynthetic efficiency of sequestered
- 2 chloroplasts in intertidal benthic foraminifera (Haynesina
- 3 germanica and Ammonia tepida)
- 4 Thierry Jauffrais^{1*}, Bruno Jesus^{2,3*}, Edouard Metzger¹, Jean-Luc Mouget⁴,
- 5 Frans Jorissen¹, Emmanuelle Geslin¹
- 6 [1]{UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers,
- 7 2 Boulevard Lavoisier, 49045 Angers Cedex 1, France}
- 8 [2]{EA2160, Laboratoire Mer Molécules Santé, 2 rue de la Houssinière, Université de
- 9 Nantes, 44322 Nantes Cedex 3, France}
- 10 [3]{BioISI Biosystems & Integrative Sciences Institute, Campo Grande University of
- 11 Lisboa, Faculty of Sciences, 1749-016 Lisboa, Portugal}
- 12 [4] {EA2160, Laboratoire Mer Molécules Santé, Université du Maine, Ave O. Messiaen,
- 13 72085 Le Mans cedex 9, France}
- 14 [*]{The first two authors contributed equally to this work}.
- 15 Correspondence to: T. Jauffrais (thierry.jauffrais@univ-angers.fr)
- 16

17 Abstract

18 Some benthic foraminifera have the ability to incorporate functional chloroplasts from 19 diatoms (kleptoplasty). Our objective was to investigate chloroplast functionality of two 20 benthic foraminifera (Haynesina germanica and Ammonia tepida) exposed to different irradiance levels (0, 25, 70 µmol photon m⁻² s⁻¹) using spectral reflectance, epifluorescence 21 22 observations, oxygen evolution and pulse amplitude modulated (PAM) fluorometry. Our 23 results clearly showed that *H. germanica* was capable of using its kleptoplasts for more than 24 one week while A. tepida showed very limited kleptoplastic ability with maximum 25 photosystem II quantum efficiency (Fv/Fm = 0.4), much lower than H. germanica and decreasing to zero in only one day. Only H. germanica showed net oxygen production with a 26 compensation point at 24 μ mol photon m⁻² s⁻¹ and a production up to 1000 pmol O₂ cell⁻¹ day⁻ 27 ¹ at 300 μ mol photon m⁻² s⁻¹. Haynesina germanica Fv/Fm slowly decreased from 0.65 to 0.55 28 29 in 7 days when kept in darkness; however, it quickly decreased to 0.2 under high light.

1 Kleptoplast functional time was thus estimated between 11 and 21 days in darkness and 2 between 7 and 8 days at high light. These results emphasize that studies about foraminifera 3 kleptoplasty must take into account light history. Additionally, this study showed that the 4 kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast 5 resupply from foraminifera food source. The advantages of keeping functional chloroplasts 6 are discussed but more information is needed to better understand foraminifera feeding 7 strategies.

8 1 Introduction

9 Benthic foraminifera colonize a wide variety of sediments from brackish waters to deep-sea 10 environments and can be the dominant meiofauna in these ecosystems (Gooday 1986; Pascal 11 et al. 2009). They may play a relevant role in the carbon cycle in sediments from deep sea 12 (Moodley et al. 2002) to brackish environments (Thibault de Chanvalon et al. 2015). Their 13 secondary role in organic carbon cycling in aerobic sediments contrasts with their strong 14 contribution to anaerobic organic matter mineralisation (Geslin et al. 2011) and they can be 15 responsible for up to 80% of benthic denitrification (Pina-Ochoa et al. 2010; Risgaard-16 Petersen et al. 2006). Some benthic foraminiferal species are known to sequester chloroplasts 17 from their food source and store them in their cytoplasm (Lopez 1979; Bernhard and Bowser, 18 1999) in a process known as kleptoplasty (Clark et al. 1990). A kleptoplast is thus a 19 chloroplast, functional or not, that was "stolen" and integrated by an organism. Kleptoplastic 20 foraminifera are found in intertidal sediments (e.g. Haynesina, Elphidium and Xiphophaga) 21 (Lopez 1979; Correia and Lee 2000, 2002a, b; Goldstein et al. 2010; Pillet et al. 2011), low 22 oxygenated aphotic environments (Nonionella, Nonionellina, Stainforthia) (Bernhard and 23 Bowser 1999; Grzymski et al. 2002) and shallow-water sediments (Bulimina elegantissima) 24 (Bernhard and Bowser, 1999).

The role of chloroplasts sequestered by benthic foraminifera is poorly known and 25 26 photosynthetic functions have only been studied in a few mudflat species (Elphidium 27 williamsoni, Elphidium excavatum and Haynesina germanica) (Lopez 1979; Cesbron pers. comm.). Amongst the deep-sea benthic foraminifer living in the aphotic zone, only 28 29 Nonionella stella has been studied (Grzymski et al. 2002). The authors suggest that the 30 sequestered chloroplasts in this species may play a role in the assimilation of inorganic nitrogen, even when light is absent. It has also been hypothesised that chloroplast retention 31 32 may play a major role in foraminiferal survival when facing starvation periods or in anoxic

environments (Cesbron pers. comm.). Under these conditions, kleptoplasts could potentially
 be used as a carbohydrate source, and participate in inorganic nitrogen assimilation
 (Falkowski and Raven 2007) or, when exposed to light, to produce oxygen needed in
 foraminiferal aerobic respiration (Lopez 1979).

5 Foraminifera pigment and plastid ultrastructure studies have shown that the chloroplasts are 6 sequestered from their food source, i.e. mainly from diatoms (Lopez 1979; Knight and 7 Mantoura 1985; Grzymski et al, 2002; Goldstein 2004). This was confirmed by experimental 8 feeding studies (Correia and Lee 2002a; Austin et al. 2005) and by molecular analysis of 9 kleptoplastic foraminifera from different environments (Pillet et al. 2011, Tsuchiya et al. 10 2015). Foraminifera from intertidal mudflat environments (e.g. H. germanica, A. tepida) feed 11 mostly on pennate diatoms (Pillet et al. 2011) which are the dominant microalgae in intertidal 12 mudflat sediments (MacIntyre et al. 1996; Jesus et al. 2009). Furthermore, in this transitional 13 costal environments (e.g. estuaries, bays, lagoons) A. tepida and H. germanica are usually the 14 dominant meiofauna species in West Atlantic French coast mudflats (Debenay et al. 2000, 15 2006; Morvan et al. 2006; Bouchet et al. 2009; Pascal et al. 2009; Thibault de Chanvalon et 16 al. 2015). Their vertical distribution in the sediment is characterised by a clear maximum 17 density at the surface (Alve and Murray 2001; Bouchet et al. 2009; Thibault de Chanvalon et 18 al. 2015) with access to light, followed by a sharp decrease in the next two centimetres 19 (Thibault de Chanvalon et al., 2015).

Foraminiferal kleptoplast functional times can vary from days to months (Lopez 1979; Lee et al. 1988; Correia and Lee 2002b; Grzymski et al. 2002). The source of this variation is poorly known but longer kleptoplast functional times were found in dark treatments (Lopez 1979; Correia and Lee 2002b), thus suggesting an effect of light exposure, similar to what is observed in kleptoplastic sacoglossans (Trench et al. 1972; Clark et al. 1990; Evertsen et al. 2007; Vieira et al. 2009), possibly related to the absence of some components of the kleptoplast photosynthetic protein complexes in the host (Eberhard et al. 2008).

Most recent studies on kleptoplastic foraminifera focused on feeding, genetics and microscopic observation related to chloroplast acquisition (e.g., Austin et al. 2005, Pillet et al. 2011, Pillet and Pawlowski 2013). To our knowledge little is known about the effects of abiotic factors on photosynthetic efficiency of sequestered chloroplasts in benthic foraminifera, particularly on the effect of light intensity on kleptoplast functionality. Noninvasive techniques are ideal to follow photosynthesis and some have already been used to

1 study foraminifera respiration and photosynthesis, e.g. oxygen evolution by microelectrodes (Rink et al. 1998; Geslin et al. 2011) or ¹⁴C radiotracer (Lopez, 1979). Recently, pulse 2 amplitude modulated (PAM) fluorometry has been used extensively in the study of 3 4 kleptoplastic sacoglossans (Vieira et al. 2009; Costa et al. 2012; Jesus et al. 2010; Serodio et 5 al. 2010; Curtis et al. 2013; Ventura et al. 2013). This non-invasive technique has the 6 advantage of estimating relative electron transport rates (rETR) and photosystem II (PSII) 7 maximum quantum efficiencies (Fv/Fm) very quickly and without incubation periods. The 8 latter parameter has been shown to be a good parameter to estimate PSII functionality (e.g. 9 Vieira et al. 2009; Jesus et al. 2010; Serodio et al. 2010; Costa et al. 2012; Curtis et al. 2013; 10 Ventura et al. 2013).

The objective of the current work was to investigate the effect of irradiance levels on photosynthetic efficiency and chloroplast functional times of two benthic foraminifera feeding in the same brackish areas, *H. germanica*, which is known to sequester chloroplasts and *A. tepida*, not known to sequester chloroplasts. These two species were exposed to different irradiance levels during one week and chloroplast efficiency was measured using epifluorescence, oxygen microsensors and PAM fluorometry.

17

18 2 Materials and methods

19 2.1 Sampling

Haynesina germanica and A. tepida were sampled in January 2015 in Bourgneuf Bay 20 21 (47.013°N, -2.019°W), a coastal bay with a large mudflat situated south of the Loire estuary on the French west coast. In this area, all specimens of A. tepida belong to genotype T6 of 22 23 Hayward et al. (2004) (Schweizer pers. comm.). In the field, a large amount (±20 kg) of the 24 upper sediment layer (roughly first 5 mm) was sampled and sieved over 300 and 150 µm 25 meshes using in situ sea-water. The 150 µm fraction was collected in dark flasks and 26 maintained overnight in the dark at 18°C in the laboratory. No additional food was added. In 27 the following day, sediment with foraminifera was diluted with filtered (GFP, Whatman) 28 autoclaved sea-water (temperature: 18°C and salinity: 32) and H. germanica and A. tepida in 29 healthy conditions (i.e. with cytoplasm inside the test) were collected with a brush using a 30 stereomicroscope (Leica MZ 12.5). The selected specimens were rinsed several times using

1 Bourgneuf bay filtered-autoclaved seawater to minimize bacterial and microalgal

2 contamination.

3 2.2 Size and biovolume determination

For a Leica stereomicroscope (MZ 12.5). Mean for a micrometer mounted on a Leica stereomicroscope (MZ 12.5). Mean for a miniferal volume was approximated with the equation of a half sphere, which is the best resembling geometric shape for *H. germanica* and *A. tepida* (Geslin et al. 2011). The cytoplasmic volume (or biovolume) was then estimated by assuming that the internal test volume corresponds to 75% of the total for aminiferal test volume (Hannah et al. 1994).

10 2.3 Spectral reflectance

Pigment spectral reflectance was measured non-invasively to determine the relative pigment 11 composition on 50 H. germanica and 50 A. tepida and a benthic diatom as explained in Jesus 12 13 et al. (2008). A USB2000 (Ocean Optics, Dunedin, FL, USA) spectroradiometer with a VIS-14 NIR optical configuration controlled by OObase32 software (Ocean Optics B.V., Duiven, the 15 Netherlands) was used. The spectroradiometer sensor was positioned so that the surface was 16 always viewed from the nadir position. Foraminiferal reflectance spectra were calculated by dividing the upwelling spectral radiance from the foraminifera (Lu) by the reflectance of a 17 18 clean polystyrene plate (Ld) for both of which the machine dark noise (Dn) was subtracted 19 (eq. 1).

20
$$\rho = \frac{(Lu - Dn)}{(Ld - Dn)}$$
(eq.1)

21

22 2.4 Experimental design

Haynesina germanica, a species known to sequester chloroplasts, were placed in plastic Petri dishes and starved during 7 days under three different light conditions: dark (D and Dark-RLC, 3×10 foraminifera), low light (LL, 25 µmol photons m⁻² s⁻¹, 3×10 foraminifera) and high light (HL, 70 µmol photons m⁻² s⁻¹, 3×10 foraminifera) on a 10:14 h (Light:Dark) cycle; whereas for comparison, *A. tepida* (3×10 foraminifera), a foraminifer not known to sequester chloroplasts were placed in plastic Petri dishes and only starved under dark conditions.

1 2.5 Oxygen measurements

2 Oxygen was measured at the beginning and end of the experiment using advanced Clark type 3 oxygen microelectrodes of 50 µm in diameter (Revsbech, 1989) (OXI50 - Unisense, 4 Denmark). Electrodes were calibrated with a solution of sodium ascorbate at 0.1 M (0%) and 5 with seawater saturated with oxygen by bubbling air (100%). Foraminiferal photosynthesis 6 and oxygen respiration rates were measured following Høgslund et al. (2008) and Geslin et al. 7 (2011). Measurements were carried out in a micro-tube made from glass Pasteur pipette tips 8 with an inner diameter of 1 mm. The micro-tube was fixed to a small vial, filled with filtered 9 autoclaved seawater from Bourgneuf Bay. The vial was placed in an aquarium with water 10 kept at room temperature (18°C). A small brush was used to position 7 to 10 foraminifera in 11 the glass micro-tube after removing air bubbles. Oxygen micro-profiles started at a distance of 12 200 um above the foraminifers in the centre of the micro-tube and measurements were carried 13 out in 50 µm steps until 1000 µm away from the foraminifers (Geslin et al. 2011). For each 14 condition, three replicates were performed with different specimens. The oxygen flux (J) was 15 calculated using the first law of Fick:

16
$$J = -D \times \frac{dC}{dx} \qquad (eq. 2)$$

Where D is the oxygen diffusion coefficient (cm² s⁻¹) at experimental temperature (18°C) and salinity (32) (Li and Gregory, 1974), and dC/dx is the oxygen concentration gradient (pmol O_2 cm⁻¹). The O_2 concentration gradients were calculated using the oxygen profiles. Total O_2 consumption and production rates were calculated as the product of O_2 fluxes by the surface area of the micro-tube and subsequently divided by the foraminifera number to finally obtain the cell specific rate (pmol O_2 cell⁻¹ d⁻¹) (Geslin et al. 2011).

Haynesina germanica and A. tepida oxygen production and consumption were measured at the beginning of the experiment using 3 replicates of 7 foraminifera each. Six different light steps were used to measure O_2 production (0, 25, 50, 100, 200 and 300 µmol photons m⁻² s⁻¹) for *H. germanica* and two light steps (0 and 300 µmol photons m⁻² s⁻¹) for *A. tepida*. Photosynthetic activity (P) data of *H. germanica* were fitted with a Haldane model, as modified by Papacek et al. (2010) and Marchetti et al. (2013) but without photoinhibition (eq. 3).

30
$$P(I) = \frac{Pm \times I}{I + Ek} - Rd \qquad (eq. 3)$$

Biogeosciences Discussions

1 Where Pm is the maximum photosynthetic capacity (pmol O_2 cell⁻¹ d⁻¹), I the photon flux 2 density (µmol photons m⁻² s⁻¹), Ek the half-saturation constant (µmol photons m⁻² s⁻¹) and Rd 3 the dark respiration, expressed as an oxygen consumption (pmol O_2 cell⁻¹ d⁻¹). The initial 4 slope of the P–I (Photosynthesis –Irradiance) curve at limiting irradiance α (pmol O_2 cell⁻¹ 5 day⁻¹ (µmol photons m⁻² s⁻¹)⁻¹)) and the compensation irradiance Ic were calculated according 6 to equations 4 and 5.

7
$$Ic = \frac{Ek \times Rd}{Pm - Rd}$$
 (eq. 4)

8
$$\alpha = \frac{Rd}{Ic}$$
 (eq. 5)

9 Oxygen measurements were repeated at 300 μ mol photons m⁻² s⁻¹ at the end of the experiment 10 (7 days of incubation) for all different light treatments (D, LL, HL) to assess the production or 11 consumption of oxygen at this light level.

12 2.6 Image analysis

13 Haynesina germanica kleptoplast fluorescence was measured using epifluorescence 14 microscopy (×200, Olympus Ax70 with Olympus U-RFL-T) before and after the different 15 light treatments. Two Tif images $(1232 \times 964 \text{ px})$ of each foraminifer (n = 30 per condition) 16 were taken (one bright field photography and one epifluorescence photography) using LUCIA GTM software. The bright field photography was used to trace the contours of the foraminifer 17 18 and an ImageJ macro was used to extract the mean pixel values of the corresponding 19 epifluorescence photography. Higher mean pixel values corresponded to foraminifera 20 emitting more fluorescence and thus, as a proxy, contain more chlorophyll. This was also 21 measured on A. tepida, but results are not presented because no chlorophyll fluorescence was 22 observed at the end of the experiment.

23 2.7 Fluorescence

All pulse amplitude modulated fluorescence measurements were carried out with a Water PAM fluorometer (Walz, Germany) using a blue measuring light. Chloroplast functionality was estimated using P-I rapid light curves (RLC, e.g., Perkins et al. (2006)) parameters (α , initial slope of the RLC at limiting irradiance; rETRmax, maximum relative electron transport rate; Ek, light saturation coefficient; and Eopt, optimum light) (Platt et al. 1980) and by

1 monitoring PSII maximum quantum efficiency (Fv/Fm). Rapid light curves were constructed using eight incremental light steps (0, 4, 15, 20, 36, 48, 64, 90 and 128 μ mol photons m⁻² s⁻¹), 2 each lasting 30 seconds. The PAM probe was set up on a stand holder at a 2 mm distance 3 4 from the foraminifera, F_{V}/F_{m} was measured daily at early afternoon, after a one-hour dark 5 adaptation period. All conditions (D, LL, HL and Dark-RLC) were done in triplicate. Rapid 6 light curves were carried out in all light treatments at the beginning and end of the 7 experiment, after one-hour dark adaptation for the 2 tested species. Additionally, RLC were 8 also carried out daily in one extra triplicate kept in the dark (Dark-RLC) throughout the 9 duration of the experiment $(3 \times 10 \text{ for a minifera})$.

10 2.8 Statistical analysis

11 Data are expressed as mean \pm standard deviation (SD) when n = 3 or standard error (SE) 12 when n = 30. Statistical analyses consisted of a t-test to compare the foraminifera test mean maximal elongation, a non parametric test (Kruskal Wallis) to compare the mean chlorophyll 13 14 fluorescence of the foraminifera exposed to the different experimental conditions and a multifactor (experimental conditions (D, LL, HL), irradiance (0-300 µmol photons m⁻² s⁻¹)) 15 16 analysis of variance (ANOVA) with a Fisher's LSD test to compare the respiration rates at the 17 end of the experiment. Differences were considered significant at p < 0.05. Statistical analyses 18 were carried out using the Statgraphics Centurion XV.I (StatPoint Technologies, Inc.) 19 software.

20 3 Results

21 3.1 Size and biovolume

Ammonia tepida specimens were larger than *H. germanica* with a mean maximal elongation of 390 μ m (n = 34 and SD = 42 μ m) and 366 μ m (n = 122 and SD = 45 μ m), respectively (p < 0.01, F_{121,33} = 1.15). This resulted in cytoplasmic biovolumes equal to $1.20 \times 10^7 \mu$ m³ (SD = 3.9 × 10⁶ μ m³) and 1.01 × 10⁷ μ m³ (SD = 3.65 × 10⁶ μ m³).

26 3.2 Chloroplast functionality

Haynesina germanica and A. tepida showed very different spectral reflectance signatures
(Figure 1). Haynesina germanica showed a typical diatom spectral signature with high
reflectance in the infrared region (>740 nm) and deep absorption features around 435, 585,

- 630 and 675 nm; the absorption features around 435 and 675 nm correspond to the presence
 of chlorophyll *a*; the 585 nm feature is the result of fucoxanthin and the 630 nm absorption
 feature is the result of chlorophyll *c* (arrows, Figure 1). *Ammonia tepida* showed no obvious
 pigment absorption features apart from 430 nm (Figure 1).
- 5 Epifluorescence images showed a clear effect of the different light treatments (Dark, Low 6 Light, Hight Light) on foraminiferal chlorophyll fluorescence (Figure 2). Visual observations 7 showed a clear decrease in chlorophyll fluorescence for the LL and HL treatments from the 8 beginning of the experiment (Figure 2A) to the end of a 7 day period of light exposure (Figure 9 2C and 2D, respectively). Samples kept in the dark did not show an obvious decrease but 10 showed a more patchy distribution compared to the beginning of the experiment (Figure 2B). 11 This was confirmed by a non-parametric test (Kruskal Wallis) showing that the differences in 12 chlorophyll a fluorescence were significant (p < 0.01, Df = 3, Figure 3). It is also noteworthy 13 to mention that there was a large individual variability within each treatment leading to large 14 standard errors in spite of the number of replicates (n = 30).
- 15 Oxygen measurements carried out at the beginning of the experiment (T0) differed considerably between the two species. Ammonia tepida did not show any net oxygen 16 production although respiration rates measured at 300 µmol photons m⁻² s⁻¹ were lower (2485 17 \pm 245 pmol O₂ cell⁻¹ d⁻¹) than the ones measured in the dark (3531 \pm 128 pmol O₂ cell⁻¹ d⁻¹) 18 (F_{2.2} = 3.7, p = 0.02). *Haynesina germanica* showed lower dark respiration rates (1654 ± 785 19 pmol O₂ cell⁻¹ d⁻¹) and oxygen production quickly increased with irradiance, showing no 20 evidence of photoinhibition (Figure 4). Compensation irradiance (Ic) was reached very 21 guickly, as low as 24 μ mol photons m⁻² s⁻¹ (95% coefficient bound: 17-30 μ mol photons m⁻² s⁻¹ 22 ¹, values calculated from the fitted model eq.4) and the half-saturation constant (Ek) was also 23 reached at very low light levels, i.e. at 17 µmol photons m⁻² s⁻¹. No photoinhibition was 24 observed under the experimental light conditions (0 to 300 µmol photons m⁻² s⁻¹), which 25 resulted in an estimation of ~2800 pmol O₂ cell⁻¹ d⁻¹ for maximum photosynthetic capacity. 26 The P-I curve initial slope at limiting irradiance (α) was estimated at 70 pmol O₂ cell⁻¹ d⁻¹ 27 (μ mol photons m⁻² s⁻¹)⁻¹ (95% coefficient bound: 58-88). 28
- Oxygen measurements carried out at the end of the experiment (T7) showed significant different dark and light respiration rates, with light respiration being lower than dark respiration but not reaching net oxygen production rates (D, LL, HL) (Table 1). Moreover, respiration rates were different between conditions (p < 0.001), with significantly lower

respiration rates of specimens incubated under High Light conditions than those under Dark
 and Low Light conditions (p < 0.05, Fisher's LSD test.

- 3 PAM fluorescence rapid light curve (RLC) parameters (α , rETRmax, Ek and Eopt) showed significant differences between foraminiferal species and over the duration of the experiment 4 5 (Figures 5 and 6). Highest rETRmax, α and Eopt were always observed in *H. germanica*. 6 After only one starvation day A. tepida RLC parameters dropped to zero or close to zero. 7 Contrastively, H. germanica RLC parameters showed a slow decrease throughout the 8 experiment (Figures 5 and 6) with rETRmax and α decreasing from 6 to 4 and 0.22 to 0.15, 9 respectively (Figures 6A and B). The parameters Ek and Eopt stayed constant over the 7 days 10 of the experiment, with values oscillating around 30 and 90, respectively (Figures 6C and D). 11 PSII maximum quantum yields (Fv/Fm) were clearly affected by light and time (Figure 7). 12 Both species showed high initial Fv/Fm values, i.e. > 0.6 and 0.4 for H. germanica and A. 13 tepida, respectively (Figure 7). However, while A. tepida Fv/Fm values quickly decreased to 14 zero after only one starvation day, H. germanica exhibited a large variability between light conditions (D, LL, HL) throughout the duration of the experiment (Figure 7); decreasing from 15 16 0.65 to 0.55 in darkness (D), from 0.65 to 0.35 under low light (LL) conditions and from 0.65 17 to 0.20 under high light (HL). Using these Fv/Fm decreases, H. germanica kleptoplast 18 functional times were estimated between 11-21 days in the dark (D), 9-12 days in low light 19 (LL) and 7-8 days in high light (HL); depending if an exponential or linear model was
- applied. *Ammonia tepida* chloroplast functional times were estimated between 1-2 days
 (exponential and linear model, respectively) and light exposure reduced the functional time to
 less than one day (data not shown).
- 23

24 4 Discussion

25 4.1 Chloroplast functionality

Our results clearly show than only *H. germanica* was capable of carrying out net photosynthesis. *Haynesina germanica* had typical diatom reflectance spectra (Figure 1), showing the three major diatom pigment absorption features: chlorophyll *a*, chlorophyll *c*, and fucoxanthin (Meleder et al. 2003; Jesus et al. 2008; Kazemipour et al. 2012; Meleder et al. 2013). Conversely, in *A. tepida* these absorption features were not detected, suggesting that

diatom pigments ingested by this species were quickly digested and degraded to a degree where they were no longer detected by spectral reflectance measurements. These nondestructive reflectance measurements are thus in accordance with other studies on benthic foraminifera pigments by HPLC showing that *H. germanica* feed on benthic diatoms (Knight and Mantoura, 1985). Similarly, Knight and Mantoura (1985) also detected higher concentrations and less degraded diatom pigments in *H. germanica* than in *A. tepida*.

7 Furthermore, H. germanica has the ability to capture photons and produce oxygen from low 8 to relatively high irradiance, as shown by the low compensation point (Ic) of 25 µmol photons $m^{-2} s^{-1}$ and the high onset of light saturation (>300 µmol photons $m^{-2} s^{-1}$) (Figure 4). Thus, H. 9 germanica seems to be well adapted to cope with the high light variability observed in 10 11 intertidal sediments that can range from very high irradiance levels during low tide to very 12 low levels within the sediment matrix or during high tide in turbid mudflat waters. Ammonia tepida was found to carry out aerobic respiration, but respiration rates measured at 300 µmol 13 photons m⁻² s⁻¹ were lower than those measured in the dark. We thus suppose that in A. tepida 14 oxygen production by ingested diatom or chloroplasts might be possible, provided that this 15 16 species is constantly supplied with fresh diatoms. However, another possibility to explain this 17 reduction in oxygen consumption could be a decrease of its metabolism or activity under light 18 exposure. The light and dark oxygen production or consumption values measured for both 19 species are in accordance with previous studies (Geslin et al. 2011).

20 According to Lopez (1979), measured oxygen data can be used to estimate H. germanica carbon fixation rates. Thus, using 1000 pmol O_2 cell⁻¹ d⁻¹ at 300 µmol photons m⁻² s⁻¹, ~200 to 21 22 4000 cells per 50 cm³ in the top 0.5 cm (Morvan et al. 2006; Bouchet et al. 2007) and assuming that photosynthesis produced one mol O₂ per mol of C fixed, H. germanica primary 23 production would be between 1.8×10⁻⁵ and 4.0×10⁻⁴ mol C m⁻² d⁻¹. This is a very low value 24 25 compared to microphytobenthos primary production in Atlantic mudflat ecosystems, which usually range from 1.5 to 5.9 mol C m⁻² d⁻¹ (e.g. Brotas and Catarino 1995, reviewed in 26 27 MacIntyre et al. 1996). The estimated values represent thus less than 0.1% of 28 microphytobenthos fixated carbon and are in the same range of values than what has been described by Lopez (1979) using ¹⁴C radioactive tracers. These results should be interpreted 29 30 with caution because a wide variety of factors probably affect H. germanica in situ primary 31 production, e.g. diatom availability, kleptoplast densities, nutrient supply, light exposure, sea 32 water turbidity and migration capability are all factors that can potentially affect H.

germanica kleptoplast functionality. Nevertheless, although carbon fixation seems not to be
 relevant at a global scale, the oxygen production could be important at a microscale and
 relevant in local mineralization processes in/on mudflat sediments (e.g. iron, ammonium,
 manganese).

5 At sampling time (T0) H. germanica rETR and Fv/Fm values were similar to 6 microphytobenthic species (i.e. Fv/Fm > 0.65) (Perkins et al. 2001), suggesting that the 7 kleptoplast PSII and electron transport chain were little affected after incorporation in the 8 foraminifers' cytoplasm. In contrast, A. tepida Fv/Fm and RLC parameters were already 9 much lower on the sampling day and quickly decreased to almost zero within 24 hours, 10 suggesting that plastids were not stable inside the A. tepida cytoplasm. Complete diatoms 11 inside A. tepida were already observed in feeding studies (Le Kieffre, pers. com), this low 12 Fv/Fm value might thus come from recently ingested diatoms by A. tepida. Fv/Fm has 13 previously been used to determine kleptoplast functional times and to follow decrease in 14 kleptoplast efficiency in other kleptoplastic organisms, e.g. the sea slug Elysia viridis (Vieira 15 et al. 2009). Fv/Fm measurements carried out on H. germanica at different light conditions 16 showed that light had a significant effect on the estimation of kleptoplast functional time, with 17 the longest functional time estimated at 21 days for dark condition. This time frame would 18 qualify H. germanica as a long term kleptoplast retention species (Clark et al. 1990); 19 however, our seven days estimation for the high light treatment would place H. germanica in 20 the medium-term retention group. This clearly shows that light exposure has an important 21 effect on this species kleptoplast functionality. Concerning A. tepida, the short dark diatom or 22 chloroplast functional time (<2 days) places this species directly in the short or medium-term 23 retention group.

24 Additionally, H. germanica kept in darkness showed a slow decrease of the RLC parameters, 25 α and rETRmax, throughout the seven experimental days; this decrease is likely related to 26 overall degradation of the light-harvesting complexes and of other components of the 27 photosynthetic apparatus, which gradually induced a reduction of light harvesting efficiency 28 and of carbon metabolism. This decrease was much amplified in low and high irradiance and 29 it should be pointed out that the actual light level of the HL treatment (i.e. 70 µmol photons m⁻² s⁻¹) is very low as compared to irradiances in their natural environment, which are easily 30 going above 1000 μ mol photons m⁻² s⁻¹, showing that the foraminifera kleptoplasts lack the 31 32 high photoregulation capacity exhibited by the benthic diatoms that they feed upon

1 (Cartaxana et al. 2013). This is consistent with the observation at the end of the experiment 2 that no net oxygen production was occurring under the different light conditions. 3 Nevertheless, a small difference was still found between dark and light respiration (Table 1), 4 suggesting that some oxygen production was still occurring but it was not sufficient to 5 compensate for the respiration oxygen consumption. We also noticed that the respiration was 6 higher in the foraminifera maintained in low light and dark conditions in comparison to the 7 high light foraminifera. In the line of the lower Fv/Fm values observed, this suggests that 8 kleptoplasts and possibly other metabolic pathways might have been damaged by the excess 9 of light. Clearly, in H. germanica light exposure had a strong effect on PSII maximum 10 quantum efficiency and on the retention of functional kleptoplasts (Figure 7), which can 11 explain the absence of net oxygen production after the 7 days of the experiments. Comparable 12 results for H. germanica were also obtained by counting the number of chloroplasts over time 13 with cells exposed or not to light (Lopez 1979). One of the most probable explanations for the 14 observed Fv/Fm decrease is the gradual inactivation of the protein D1 in PSII reaction 15 centres. This protein is an essential component in the electron transport chain and its turnover 16 rate is frequently the limiting factor in PSII repair rates (reviewed in Campbell and Tyystjärvi 17 2012). Normally, protein D1 is encoded in the chloroplast and is rapidly degraded and 18 resynthesized under light exposure with a turnover correlated to irradiance (Tyystjärvi and 19 Aro 1996). However, although D1 is encoded by the chloroplast genome, its synthesis and 20 concomitant PSII recovery require further proteins that are encoded by the algal nuclear 21 genome (Yamaguchi et al. 2005). Thus, when D1 turnover is impaired it will induce an Fv/Fm 22 decrease correlated to irradiance (Tyystjärvi and Aro 1996) consistent to what was observed 23 in the present study. In another deep sea benthic species (Nonionella stella) the D1 and other 24 plastid proteins (RuBisCO and FCP complex) were still present in the foraminifer one year 25 after sampling (Grzymski et al. 2002). This shows that some foraminifera can retain both 26 nuclear (FCP) and chloroplast (D1 and RuBisCO) encoded proteins. However, contrary to H. 27 germanica, N. stella lives in deeper environments never exposed to light and thus is unlikely 28 to carry out oxygenic photosynthesis (Grzymski et al. 2002). This fundamental difference 29 could explain why kleptoplast functional times are much longer in N. stella, reaching up to 30 one year in specimens kept in darkness (Grzymski et al. 2002). On the other hand, it has been 31 shown that isolated chloroplasts are able to function for several months in Sacoglossan sea 32 slugs provided with air and light in aquaria (Green et al. 2001; Rumpho et al. 2001), which

- 1 demonstrates the existence of interactions between the kleptoplast and the host genomes, and
- 2 of mechanisms facilitating and supporting such long-lasting associations.

3 4.2 Possible advantages of kleptoplasty for intertidal benthic foraminifera

4 Much is still unknown about the relationship between kleptoplastic benthic foraminifera and 5 their sequestered chloroplasts. The relevance of the photosynthetic metabolism compared to 6 predation or organic matter assimilation is unknown; however, it would be of great interest to 7 understand the kleptoplast role in the foraminiferal total energy budget. Oxygenic 8 photosynthesis comprises multiple reactions leading to the transformation of inorganic carbon 9 to carbohydrates. However, to produce these carbohydrates all the light driven reactions have 10 to be carried out, as well as the Calvin cycle reactions. With fresh kleptoplasts this hypothesis 11 seems possible (e.g. Lopez 1979), especially if the plastid proteins are still present and 12 functional. However, we showed that the maximum quantum efficiency of the PSII decreased 13 quickly under light exposure, suggesting that substantial direct carbohydrate production is 14 unlikely without constant chloroplast replacement. Conversely, the production of intermediate 15 photosynthetate products such as adenosine triphosphate (ATP) and nicotinamide adenine 16 dinucleotide phosphate (NADPH) could be possible and would be of metabolic value for the 17 foraminifera. It is also possible that in situ the foraminifera have better photoregulation 18 capacities. Not only they will have easy access to fresh diatom chloroplasts, as H. germanica 19 is mainly living in the first few mm of the superficial sediment (Alve and Murray 2001, 20 Thibault de Chanvalon et al. 2015), but they will also have the possibility of migrating within 21 the sediment (Gross 2000) using this behavioural feature to enhance their photoregulation 22 capacity, similarly to what is observed in benthic diatoms from microphytobenthic biofilms 23 (e.g. Jesus et al. 2006; Mouget et al. 2008; Perkins et al. 2010). However, below the photic 24 limit (max 2 to 3 mm in estuarine sediments (reviewed in MacIntyre et al. 1996, Cartaxana et 25 al. 2011)) it is unlikely that oxygenic photosynthesis will occur, and live H. germanica are 26 also found below this limit (Thibault de Chanvalon et al. 2015).

Using kleptoplasts, *H. germanica*, like other kleptoplastic organisms (e.g. *Elysia viridis* (Teugels et al. 2008)), is also theoretically capable of assimilating inorganic nitrogen via the glutamine synthetase and glutamate 2-oxo-glutarate aminotransferase (GS-GOGAT) pathways to produce glutamate and glutamine after the successive reduction of nitrate to nitrite and nitrite to ammonia or directly through ammonium uptake (Zehr and Falkowski 1988). However, the first reduction occurs in the diatom cytoplasm via the enzyme nitrate

1 reductase (NR) and not inside the chloroplast. It is not known if H. germanica has this 2 enzyme but it is present in N. stella (Grzymski et al. 2002). Interestingly, nitrogen (i.e. nitrite 3 and ammonium) assimilation by sacoglossans (e.g. Elysia viridis) was observed under light and dark conditions with significantly higher nitrogen assimilation observed under light 4 5 condition (Teugels et al. 2008). The uptake of ammonium and nitrite are light dependent as 6 their relevant enzymes require kleptoplast electron donors (NiR and GOGAT); i.e. reduced 7 ferredoxin formed in the photosynthetic electron transport chain are used as electron donors in 8 the reaction involving the nitrite reductase [NiR]. Furthermore, the GS metabolic reaction is 9 ATP-dependent, and gene expression of some key enzymes (NiR, GS and GOGAT) is light 10 regulated (Grossman and Takahashi 2001). This suggests that kleptoplasts might also have an 11 added value in providing extra nitrogen source to metabolic pathways in foraminifera under 12 light exposure and also possibly over short periods under dark conditions. It is also 13 noteworthy that ammonium incorporation might take place through the glutamine 14 dehydrogenase (GDH) pathway in the mitochondria that converts glutamate to α -15 ketoglutarate, which can subsequently be assimilated in the kleptoplast via the GOGAT 16 pathway (Teugels et al. 2008).

17 Diatoms are also known to assimilate organic nitrogen (Antia et al. 1991), to use their 18 ornithine-urea cycle for anaplerotic carbon fixation into nitrogenous compounds (Allen et al. 19 2012) and some of the benthic species present on mudflats are also able to assimilate organic 20 carbon (Admiraal and Peletier 1979). Apparently some benthic diatoms can alternate between 21 an auto- or heterotrophic metabolism in function of the environment. Analysing the 22 kleptoplast DNA would provide interesting data to determine if foraminifera are capable of 23 selecting facultative heterotrophic diatoms to improve their ability to assimilate dissolved 24 organic compounds. Finally, another possible added value of incorporating kleptoplasts is the 25 possibility of using them as an energy stock to be digested during food-impoverished periods 26 particularly when foraminifera are transported below the photic zone of the sediment by 27 macrofaunal bioturbation.

28 5 Conclusion

29 Comparing *H. germanica* with *A. tepida* showed that the former species potentially has the 30 capacity of retaining functional kleptoplasts up to 21 days, much longer than *A. tepida* that 31 showed almost no PSII activity after 24 hours. Nevertheless, the capacity of *H. germanica* to 32 keep functional kleptoplasts was significantly decreased by exposing it even to low irradiance

1 levels, which resulted in low Fv/Fm values and decreased oxygen production. This shows 2 clearly that in our experimental conditions, H. germanica had reduced photoregulation 3 capacities. These results emphasize that studies on kleptoplast photophysiology of benthic 4 foraminifera must be interpreted with care, as results are strongly influenced by the 5 foraminiferal light history before incubation. Additionally, this study shows that the cellular 6 machinery necessary for chloroplast maintenance is unlikely to be completely functional, 7 suggesting that H. germanica has to continuously renew its chloroplasts to keep them 8 functional. We hypothesize that kleptoplasts might have an added value by providing extra 9 carbon and fueling nitrogen metabolic pathways to foraminifera, mainly under light exposure, 10 but also as energy stock to be digested during food impoverished periods, in dark or light 11 conditions.

12 Acknowledgements

13 This study is part of the EC2CO project "FORChlo" supported by the CNRS. This study is 14 strongly supported by the Region Pays de la Loire (Post-doc position of the first author and 15 "COSELMAR" and "Fresco" projects).

16 References

- Admiraal, W. and Peletier, H.: Influence of organic compounds and light limitation on the
 growth rate of estuarine benthic diatoms. Br. Phycological J. 14: 197-206, 1979.
- 19 Allen, A. E., Dupont, C. L., Obornik, M., Horak, A., Nunes-Nesi, A., McCrow, J. P., Zheng,
- H., Johnson, D. A., Hu, H. H., Fernie, A. R., and Bowler, C.: Evolution and metabolic
 significance of the urea cycle in photosynthetic diatoms, Nature, 473, 203-207, 2011.
- Alve, E. and Murray, J.W.: Temporal variability in vertical distributions of live (stained)
 intertidal foraminifera, southern England. J. Foraminifer. Res. 31: 12-24, 2001.
- Antia, N.J., Harrison, P.J. and Oliveira, L.: The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia. 30: 1-89, 1991.
- 26 Austin, H.A., Austin, W.E. and Paterson, D.M.: Extracellular cracking and content removal of
- 27 the benthic diatom *Pleurosigma angulatum* (Quekett) by the benthic foraminifera *Haynesina*
- 28 germanica (Ehrenberg). Mar. Micropaleontol. 57: 68-73, 2005.
- 29 Bernhard, J.M. and Bowser, S.S.: Benthic foraminifera of dysoxic sediments: chloroplast
- 30 sequestration and functional morphology. Earth Sci. Rev. 46: 149-165, 1999.

- 1 Bouchet, V.M.P., Debenay, J.-P., Sauriau, P.-G., Radford-Knoery, J. and Soletchnik, P.:
- 2 Effects of short-term environmental disturbances on living benthic foraminifera during the
- 3 Pacific oyster summer mortality in the Marennes-Oleron Bay (France). Mar. Environ. Res.
- 4 64: 358-383, 2007.
- 5 Bouchet, V.M.P., Sauriau, P.-G., Debenay, J.-P., Mermillod-Blondin, F., Schmidt, S.,
- Amiard, J.-C. and Dupas, B.: Influence of the mode of macrofauna-mediated bioturbation on
 the vertical distribution of living benthic foraminifera: First insight from axial
 tomodensitometry. J. Exp. Mar. Biol. Ecol. 371, 20-33, 2009.
- Brotas, V. and Catarino, F.: Microphytobenthos primary production of Tagus estuary
 intertidal flats (Portugal). Neth. J. Aquat. Ecol. 29: 333-339, 1995.
- 11 Cartaxana, P., Domingues, N., Cruz, S., Jesus, B., Laviale, M., Serôdio, J. and Marques da
- 12 Silva, J.: Photoinhibition in benthic diatom assemblages under light stress. Aqua. Microb.
- 13 Ecol. 70: 87-92, 2013.
- Cartaxana, P., Ruivo, M., Hubas, C., Davidson, I., Serôdio, J. and Jesus, B.: Physiological
 versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom
- 16 communities. J. Exp. Mar. Biol. Ecol. 405: 120-127, 2011.
- Campbell, D. A., and Tyystjarvi, E.: Parameterization of photosystem II photoinactivationand repair, Biochim. Biophys. Acta-Bioenerg., 1817, 258-265, 2012.
- 19 Clark, K.B., Jensen, K.R. and Stirts, H.M.: Survey for functional kleptoplasty among West
- 20 Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 33: 339-345, 1990.
- Correia, M.J. and Lee, J.J.: Chloroplast retention by *Elphidium excavatum* (Terquem). Is it a
 selective process? Symbiosis. 29: 343-355, 2000.
- Correia, M.J. and Lee, J.J.: Fine structure of the plastids retained by the foraminifer
 Elphidium excavatum (Terquem). Symbiosis. 32: 15-26, 2002a.
- Correia, M.J. and Lee, J.J.: How long do the plastids retained by *Elphidium excavatum*(Terquem) last in their host? Symbiosis. 32: 27-37, 2002b.
- 27 Costa, J., Gimenez-Casalduero, F., Melo, R., Jesus, B.: Colour morphotypes of *Elysia timida*
- 28 (Sacoglossa, Gastropoda) are determined by light acclimation in food algae. Aqua. Biol. 17:
- 29 81-89, 2012.

- 1 Curtis, N.E., Middlebrooks, M.L., Schwartz, J.A. and Pierce, S.K.: PAM analysis of 3
- 2 sacoglossan species reveals differences in photosynthetic function and chloroplast longevity.
- 3 Integr. Comp. Biol. 53: 272-272, 2013.
- 4 Debenay, J.P., Bicchi, E., Goubert, E. and du Chatelet, E.A.: Spatio-temporal distribution of
- 5 benthic foraminifera in relation to estuarine dynamics (Vie estuary, Vendee, W France).
- 6 Estuar. Coast. Shelf Sci. 67: 181-197, 2006.
- 7 Debenay, J.-P., Guillou, J.-J., Redois, F. and Geslin, E.: Distribution trends of foraminiferal
- 8 assemblages in paralic environments. In: Martin, R.E. (Ed.), Environmental
 9 Micropaleontology. Springer US, pp. 39-67, 2000.
- 10 Eberhard, S., Finazzi, G. and Wollman, F.-A.: The dynamics of photosynthesis, Annu. Rev.
- 11 Genet., pp. 463-515, 2008.
- Evertsen, J., Burghardt, I., Johnsen, G. and Wagele, H.: Retention of functional chloroplasts
 in some sacoglossans from the Indo-Pacific and Mediterranean. Mar. Biol. 151: 2159-2166,
 2007.
- Falkowski, P.G. and Raven, J.A.: Aquatic photosynthesis, second ed. Princeton UniversityPress, 2007.
- 17 Geslin, E., Risgaard-Petersen, N., Lombard, F., Metzger, E., Langlet, D. and Jorissen, F.:
- Oxygen respiration rates of benthic foraminifera as measured with oxygen microsensors. J.
 Exp. Mar. Biol. Ecol. 396: 108-114, 2011.
- Goldstein, S.T., Bernhard, J.M. and Richardson, E.A. Chloroplast sequestration in the
 foraminifer *Haynesina germanica*: Application of high pressure freezing and freeze
 substitution. Microsc. Microanal. 10: 1458-1459, 2004.
- Goldstein, S.T., Habura, A., Richardson, E.A. and Bowser, S.S.: *Xiphophaga minuta*, and *X. allominuta*, nov. gen., nov. spp., new monothalamid Foraminifera from coastal Georgia
 (USA): cryptic species, gametogenesis, and an unusual form of chloroplast sequestration. J.
 Foraminifer. Res. 40: 3-15, 2010.
- 27 Gooday, A.J.: Meiofaunal foraminiferans from the bathyal Porcupine Seabight (northeast
- 28 Atlantic): size structure, standing stock, taxonomy composition, species diversity and vertical
- distribution in the sediment. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 33: 1345-1373, 1986.

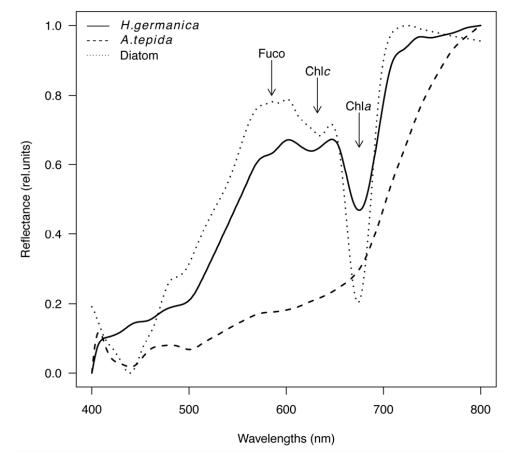
- Green B.J., Li W.-Y., Manhart J.R., Fox T.C., Summer E.J., Kennedy R.A., Pierce S.K. and
 Rumpho M.E.: Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein
 maintenance, and chloroplast gene expression continue for many months in the absence of the
 algal nucleus, Plant Physiol. 124: 331-342, 2001.
- 5 Gross, O.: Influence of temperature, oxygen and food availability on the migrational activity
- of bathyal benthic foraminifera: evidence by microcosm experiments. Hydrobiol. 426: 123137, 2000.
- Grossman, A. and Takahashi, H.: Macronutrient utilization by photosynthetic eukaryotes and
 the fabric of interactions. Annu. Rev. Plant Physiol. Plant Molec. Biol. 52: 163-210, 2001.
- 10 Grzymski, J., Schofield, O.M., Falkowski, P.G. and Bernhard, J.M.: The function of plastids
- in the deep-sea benthic foraminifer, *Nonionella stella*. Limnol. Oceanogr. 47: 1569-1580,
 2002.
- Hannah, F., Rogerson, A. and Laybournparry, J.: Respiration rates and biovolumes of
 common benthic foraminifera (Protozoa). J. Mar. Biol. Assoc. U.K. 74: 301-312, 1994.
- Hayward, B.W., Holzmann, M., Grenfell, H.R., Pawlowski, J. and Triggs, C.M.:
 Morphological distinction of molecular types in Ammonia towards a taxonomic revision of
 the world's most commonly misidentified foraminifera. Mar. Micropal. 50: 237-271, 2004.
- Hogslund, S., Revsbech, N.P., Cedhagen, T., Nielsen, L.P., and Gallardo, V.A.:
 Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the
 oxygen minimum zone off Chile. J. Exp. Mar. Biol. Ecol. 359: 85-91, 2008.
- 21 Jesus, B., Brotas, V., Ribeiro, L., Mendes, C.R., Cartaxana, P. and Paterson, D.M.:
- Adaptations of microphytobenthos assemblages to sediment type and tidal position. Cont.Shelf Res. 29: 1624-1634, 2009.
- Jesus, B., Mouget, J.-L. and Perkins, R.G.: Detection of diatom xanthophyll cycle using
 spectral reflectance. J. Phycol. 44: 1349-1359, 2008.
- 26 Jesus, B., Perkins, R.G., Consalvey, M., Brotas, V. and Paterson, D.M.: Effects of vertical
- 27 migrations by benthic microalgae on fluorescence measurements of photophysiology. Mar.
- 28 Ecol. Prog. Ser. 315: 55-66, 2006.

- 1 Jesus, B., Ventura, P. and Calado, G.: Behaviour and a functional xanthophyll cycle enhance
- 2 photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J.
- 3 Exp. Mar. Biol. Ecol. 395: 98-105, 2010.
- 4 Kazemipour, F., Launeau, P. and Méléder, V.: Microphytobenthos biomass mapping using the
- 5 optical model of diatom biofilms: Application to hyperspectral images of Bourgneuf Bay.
- 6 Remote Sens. Environ. 127: 1-13, 2012.
- 7 Knight, R. and Mantoura, R.F.C.: Chlorophyll and carotenoid pigments in foraminifera and
- 8 their symbiotic algae: analysis by high performance liquid chromatography Mar. Ecol. Prog.
- 9 Ser. 23: 241-249, 1985.
- Lee, J.J., Lanners, E. and Ter Kuile, B.: The retention of chloroplasts by the foraminifera
 Elphidium crispum. Symbiosis. 5: 45-60, 1988.
- Li, Y.H. and Gregory, S.: Diffusion of ions in sea-water and deep-sea sediments. Geochim.Cosmochim. Acta. 38: 703-714, 1974.
- 14 Lopez, E.: Algal chloroplasts in the protoplasm of three species of benthic foraminifera:
- 15 taxonomic affinity, viability and persistence. Mar. Biol. 53: 201-211, 1979.
- 16 MacIntyre, H.L., Geider, R.J. and Miller, D.C.: Microphytobenthos: The ecological role of the
- 17 "secret garden" of unvegetated, shallow-water marine habitats .1. Distribution, abundance and
- 18 primary production. Estuaries. 19: 186-201, 1996.
- 19 Marchetti, J., Bougaran, G., Jauffrais, T., Lefebvre, S., Rouxel, C., Saint-Jean, B., Lukomska,
- 20 E., Robert, R. and Cadoret, J.P.: Effects of blue light on the biochemical composition and
- 21 photosynthetic activity of *Isochrysis* sp. (T-iso). J. Appl. Phycol. 25: 109-119, 2013.
- Meleder, V., Barille, L., Launeau, P., Carrere, V. and Rince, Y.: Spectrometric constraint in
 analysis of benthic diatom biomass using monospecific cultures. Remote Sens. Environ. 88:
 386-400, 2003.
- 25 Meleder, V., Laviale, M., Jesus, B., Mouget, J.L., Lavaud, J., Kazemipour, F., Launeau, P.,
- 26 and Barille, L.: In vivo estimation of pigment composition and optical absorption cross-
- 27 section by spectroradiometry in four aquatic photosynthetic micro-organisms. J. Photochem.
- 28 Photobiol. B-Biol. 129: 115-124, 2013.

- 1 Moodley, L., Middelburg, J.J., Boschker, H.T.S., Duineveld, G.C.A., Pel, R., Herman, P.M.J.
- 2 and Heip, C.H.R.: Bacteria and Foraminifera: key players in a short-term deep-sea benthic
- 3 response to phytodetritus. Mar. Ecol. Prog. Ser. 236: 23-29, 2002.
- 4 Morvan, J., Debenay, J.-P., Jorissen, F., Redois, F., Beneteau, E., Delplancke, M. and Amato,
- 5 A.-S. Patchiness and life cycle of intertidal foraminifera: Implication for environmental and
- 6 paleoenvironmental interpretation. Mar. Micropaleontol. 61: 131-154, 2006.
- 7 Mouget J.-L., Perkins R.G., Consalvey M. and Lefebvre S.: Migration or photoacclimation to
- 8 prevent photoinhibition and UV-B damage in marine microphytobenthic communities. Aquat.
- 9 Microb. Ecol. 52: 223-232, 2008.
- 10 Papacek, S., Celikovsky, S., Rehak, B. and Stys, D.: Experimental design for parameter
- 11 estimation of two time-scale model of photosynthesis and photoinhibition in microalgae.
- 12 Math. Comput. Simul. 80: 1302-1309, 2010.
- Pascal, P.-Y., Dupuy, C., Richard, P., Mallet, C., du Chatelet, E.A. and Niquil, N.: Seasonal
 variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal
 mudflat. Limnol. Oceanogr. 54: 1048-1059, 2009.
- 16 Perkins, R.G., Lavaud, J., Serodio, J., Mouget, J.L., Cartaxana, P., Rosa, P., Barille, L.,
- Brotas, V. and Jesus, B.M.: Vertical cell movement is a primary response of intertidal benthic
 biofilms to increasing light dose. Mar. Ecol. Prog. Ser. 416: 93-103, 2010.
- Perkins, R.G., Mouget, J.-L., Lefebvre, S. and Lavaud, J.: Light response curve methodology
 and possible implications in the application of chlorophyll fluorescence to benthic diatoms.
 Mar. Biol. 149: 703-712, 2006.
- Perkins, R.G., Underwood, G.J.C., Brotas, V., Snow, G.C., Jesus, B. and Ribeiro, L.:
 Responses of microphytobenthos to light: primary production and carbohydrate allocation
 over an emersion period. Mar. Ecol. Prog. Ser. 223: 101-112, 2001.
- Pillet, L., de Vargas, C. and Pawlowski, J.: Molecular identification of sequestered diatom
 chloroplasts and kleptoplastidy in foraminifera. Protist. 162: 394-404, 2011.
- Pillet, L. and Pawlowski, J.: Transcriptome analysis of foraminiferan *Elphidium margaritaceum* questions the role of gene transfer in kleptoplastidy. Mol. Biol. Evol. 30: 66 69, 2013.

- 1 Pina-Ochoa, E., Hogslund, S., Geslin, E. and others: Widespread occurrence of nitrate storage
- 2 and denitrification among foraminifera and gromiida. Proc. Natl. Acad. Sci. U.S.A. 107:
- 3 1148-1153, 2010.
- Platt, T., Gallegos, C.L. and Harrison, W.G.: Photoinhibition of photosynthesis in natural
 assemblages of marine phytoplankton. J. Mar. Res. 38: 687-701, 1980.
- Revsbech, N.P.: An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34: 474478, 1989.
- 8 Rink, S., Kuhl, M., Bijma, J. and Spero, H.J.: Microsensor studies of photosynthesis and 9 respiration in the symbiotic foraminifer *Orbulina universa*. Mar. Biol. 131: 583-595, 1998.
- Risgaard-Petersen, N., Langezaal, A.M., Ingvardsen, S. and others: Evidence for complete
 denitrification in a benthic foraminifer. Nature. 443: 93-96, 2006.
- Rumpho, M.E., Summer, E.J., Green, B.J., Fox, T.C. and Manhart, J.R.: Mollusc/algal
 chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the
 cytosol of a sea slug in the absence of an algal nucleus? Zoology. 104: 303-312, 2001.
- Serodio, J., Pereira, S., Furtado, J., Silva, R., Coelho, H. and Calado, R.: In vivo
 quantification of kleptoplastic chlorophyll a content in the "solar-powered" sea slug *Elysia viridis* using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem.
 Photobiol. Sci. 9: 68-77, 2010.
- Teugels, B., Bouillon, S., Veuger, B., Middelburg, J.J. and Koedam, N.: Kleptoplasts mediate
 nitrogen acquisition in the sea slug Elysia viridis. Aquat. Biol. 4: 15-21, 2008.
- 21 Thibault de Chanvalon, A., Metzger, E., Mouret, A., Cesbron, F., Knoery, J., Rozuel, E.,
- 22 Launeau, P., Nardelli, M. P., Jorissen, F. J., and Geslin, E.: Two-dimensional distribution of
- 23 living benthic foraminifera in anoxic sediment layers of an estuarine mudflat (Loire estuary,
- 24 France), Biogeosciences, 12:6219-6234, 2015..
- Trench, R.K., Trench, M.E. and Muscatin. L.: Symbiotic chloroplasts; their photosynthetic
 products and contribution to mucus synthesis in two marine slugs. Biol. Bull. 142: 335-349,
 1972.
- Tsuchiya, M., Toyofuku, T., Uematsu, K., Brüchert, V., Collen, J., Yamamoto, H., Kitazato,
 H.: Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of *Virgulinella fragilis* (Foraminifera). J. Euk. Microbiol. 62, 454-469, 2015.

- 1 Tyystjärvi, E. and Aro, E.M.: The rate constant of photoinhibition, measured in lincomycin-
- 2 treated leaves, is directly proportional to light intensity. Proc. Natl. Acad. Sci. U.S.A. 93:
- 3 2213-2218, 1996.
- 4 Ventura, P., Calado, G. and Jesus, B.: Photosynthetic efficiency and kleptoplast pigment
- 5 diversity in the sea slug Thuridilla hopei (Verany, 1853). J. Exp. Mar. Biol. Ecol. 441: 105-
- 6 109, 2013.
- 7 Vieira, S., Calado, R., Coelho, H. and Serodio, J.: Effects of light exposure on the retention of
- 8 kleptoplastic photosynthetic activity in the sacoglossan mollusc *Elysia viridis*. Mar. Biol. 156:
 9 1007-1020, 2009.
- 10 Yamaguchi, K., Mayfield, S., and Sugita, M.: Transcriptional and Translational Regulation of
- 11 Photosystem II Gene Expression. In: Wydrzynski, T., Satoh, K., Freeman, J. (Eds.),
- 12 Photosystem II. Springer Netherlands, pp. 649-668, 2005.
- Zehr, J.P., and Falkowski, P.G.: Pathway of ammonium assimilation in a marine diatom
 determined with radiotracer N-13. J. Phycol. 24: 588-591, 1988.


- 1 Table 1. Light and dark respiration rates (pmol O_2 cell⁻¹ d⁻¹) ± SD of *Haynesina germanica* in
- 2 the three experimental conditions (Dark, Low Light and High Light) at the end of the
- 3 experiment (Df, degree of freedom, PFD Photon Flux Density).
- 4

Condition	PFD	Respiration Rate (pmol $O_2 \text{ cell}^{-1} \text{ d}^{-1}$)		
D	300	2452 ± 537		
	0		3542 ± 765	
LL	300	3468 ± 305		
	0		4015 ± 110	
HL	300		1179 ± 261	
	0		1905 ± 235	
Anova		Df	F-test	р
Condition	p (α=0.05)	2	13.1	<0.001
PFD	p (α=0.05)	1	5.4	0.026
Interaction	p (α=0.05)	2	0.3	0.78

1

2 Figure 1. Spectral reflectance signatures of Haynesina germanica, Ammonia tepida and of a

3 benthic diatom in relative units (X-axis legend: Wavelength (nm)).

1

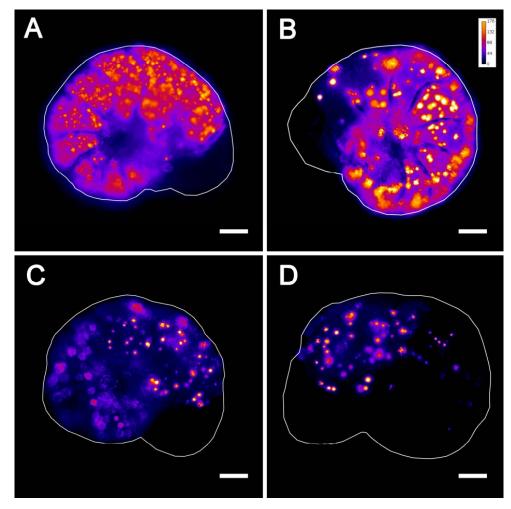


Figure 2. Illustration of *Haynesina germanica* chloroplast content at the beginning (A) and at the end of the experiment for the three experimental conditions, Dark (B), Low Light (C) and High Light (D). Higher colour scale values correspond to foraminifera emitting more fluorescence and likely containing more chlorophyll *a*; fluorescence in pixel values between 0 and 255, (scale bar = $50 \mu m$).

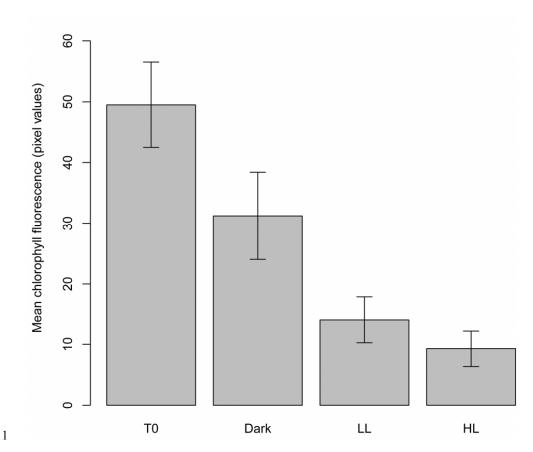
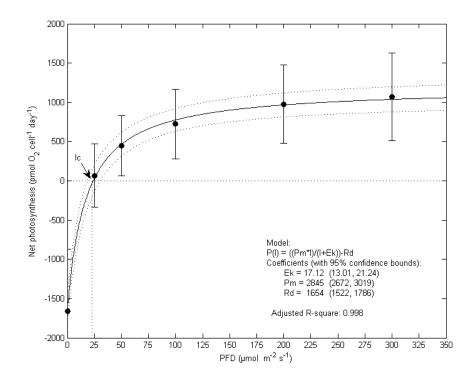



Figure 3. Mean chlorophyll *a* fluorescence (± SE, n = 30) at the end for the three experimental
conditions (Dark, Low Light and High Light) and the beginning (T0) of the experiment using *Haynesina germanica*. Higher mean values likely corresponded to foraminifera containing
more chlorophyll.

1

Figure 4. Net photosynthesis of *Haynesina germanica* (pmol O₂ cell⁻¹ d⁻¹) as a function of the photon flux density (PFD, µmol photons m⁻² s⁻¹). The half-saturation constant, Ek, was found at 17 (13-21), the dark respiration, Rd, at 1654 (1522-1786) pmol O₂ cell⁻¹ d⁻¹ and the maximum photosynthetic capacity, Pm, at 2845 (2672-3019) pmol O₂ cell⁻¹ d⁻¹. The Ic, calculated compensation irradiance (24 (17-30) µmol photons m⁻² s⁻¹). The adjusted R² of the model was equal to 0.998, n = 3.

1

Figure 5. Rapid light curves (RLC, n = 3) expressed as the relative electron transport rate (rETR) as a function of the photosynthetic active radiation (PAR in µmol photons m⁻² s⁻¹) of *Haynesina germanica* (black lines) and *Ammonia tepida* (black dashed lines) during the seven days of the experiment.

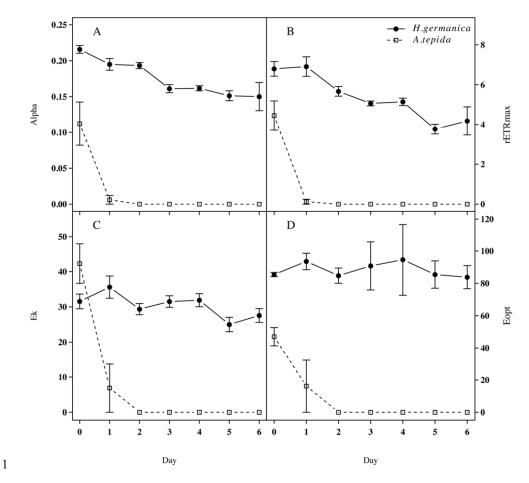


Figure 6. Rapid light curve (RLC, n = 3) parameters for *Haynesina germanica* (Dark-RLC)
and *Ammonia tepida* maintained in the dark during the experiment, Alpha is the initial slope
of the RLC at limiting irradiance, rETRmax is the maximum relative electron transport rate,
Ek is the light saturation coefficient and Eopt is the optimum light, all of them were estimated
by adjusting the experimental data to fit the model of Platt et al. (1980).

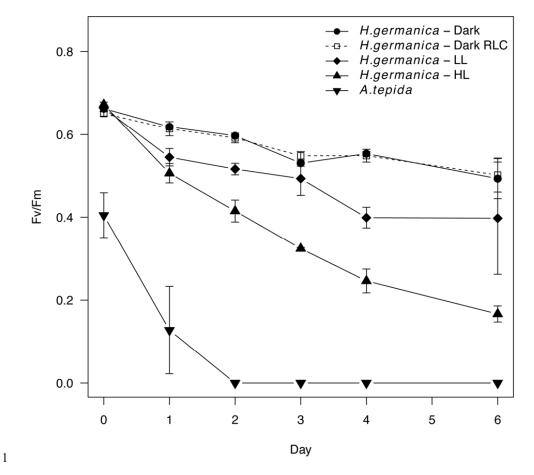


Figure 7. Maximum quantum efficiency of the photosystem II (Fv/Fm, n = 3) during the experiment for the different applied conditions (Dark, Low Light and High Light) and species (*Haynesina germanica* and *Ammonia tepida*).