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INTRODUCTION

The giant tubeworm Riftia pachyptila Jones, 1981
(Vestimentifera) is one of the most conspicuous mem-
bers of the hydrothermal vent fauna at the East Pacific
Rise (see Desbruyères & Segonzac 1997). Its enormous
tube length (up to 1.5 m; Jones 1981) and high growth
rate (Lutz et al. 1994) depend on a successful nutri-
tional symbiosis with endosymbiotic, chemolithoauto-
trophic, sulfide-oxidizing bacteria (Fisher & Childress
1986, Felbeck & Jarchow 1998, Bright et al. 2000). The
symbionts are harbored in the trophosome, a special-
ized organ in the trunk of R. pachyptila that is differ-
entiated into lobules. Each lobule consists of 4 distinct
areas: the axial blood vessel, the symbiont-containing
host-cell area (termed bacteriocyte area), the sheath

cells, and the peripheral blood vessels (see Bright &
Sorgo in press). Most of the symbionts occur indi-
vidually in specialized vacuoles termed symbiosomes;
they are embedded in the peribacterial space and sur-
rounded by the symbiosome membrane of the host
(Cavanaugh et al. 1981). They are γ-Proteobacteria of a
single phylotype (Nelson et al. 1984, Stahl et al. 1984,
Distel et al. 1988), but display a great variation in size
and shape, depending on their location within the bac-
teriocyte area.

The pleomorphy of the symbionts is morphologically
expressed in 4 concomitant but distinguishable bacter-
ial types (rods, and small, large, and degrading cocci)
occurring in distinct zones (central, median, peripheral,
degrading; Bright & Sorgo in press), and has led to the
‘gradient’ and the ‘cell cycle’ hypotheses: (1) Biochemi-
cal gradients within each lobule result from the worm’s
circulatory system (with the blood flow directed from
the periphery toward the center of each lobule; van der
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Land & Nørrevang 1975, Felbeck &  Turner 1995) that
supplies the symbiotic bacteria with nutrients to differ-
ing degrees (Hand 1987). (2) A coordinated cell cycle of
host bacteriocytes and symbionts would lead to a per-
manent process of renewal through division in the cen-
ter and degradation through lysis on the periphery
(Bosch & Grassé 1984a,b, Bright & Sorgo in press). 

In Riftia pachytila, glycogen reaches concentrations
of up to 100 µmol glycosyl units g–1 fresh wt (Arndt et
al. 1998). TEM studies have shown that the tropho-
some tissue of R. pachyptila contains numerous glyco-
gen particles at different densities (Bosch & Grassé
1984a). These are electron-dense isodiametrical α par-
ticles (30 nm) usually clustered into rosettes of up to
120 nm, and are easily distinguishable from other
inclusions or organelles such as ribosomes (20 nm,
roundish) or polysomes (chains or rings of ribosomes)
(Bozzola & Russel 1992).  Glycogen serves as an impor-
tant substrate for glycolysis in pro- and eukaryotes
and, therefore, as an important energy source during
periods of nutrient limitation. Additionally, glycogen is
the only long-term energy fuel available for anaerobic
metabolism (Bryant 1991). 

This study determined the distribution of glycogen in
different areas of the trophosome of Riftia pachyptila
kept under various conditions in high-pressure flow-
through aquaria (see Arndt et al. 1998). We analyzed
the glycogen density in host and bacteria separately,
using quantitative morphological  methods to deter-
mine the contributions of host and symbionts to the
glycogen pool. The R. pachyptila symbiosis exhibits
great tolerance toward hypoxia (Childress et al. 1984,
Arndt et al. 1998). Short-term experiments under simi-
lar hypoxic conditions (already known not to affect the
glycogen pool as a whole; Arndt et al. 1998), were car-
ried out to determine whether the glycogen pools of
the symbiotic partners, considered separately, were
affected. An increase of glycogen in the symbionts and
a decrease in the host, for example, would maintain the
level of the glycogen pool for the symbiosis as a whole. 

In addition, we examined differences in the glyco-
gen storage between symbiont morphotypes and host
bacteriocyte zones to determine whether the gradient
hypothesis or the cell cycle hypothesis is consistent
with the recorded glycogen distribution. We also
recorded data on the metabolism of the host cells and
bacterial morphotypes, and on metabolic interactions
between the symbiotic partners.

MATERIALS AND METHODS

Collection and incubations. Twenty-five adult Riftia
pachyptila were collected during the ‘Hot Times 1997’
expedition to the hydrothermal vent site at 9° N at the

East Pacific Rise. After recovery from depths of ap-
proximately 2500 m by the submersible ‘Alvin’ on
Dives 3183, 3184, 3190 and 3191 in an insulated collec-
tion container at ambient pressure, the tubeworms
were transferred to 210 atm in a flow-through aquar-
ium system simulating natural conditions. To maintain
them in a healthy condition, the flow-through aquaria
were supplied with cold sea water (15°C) containing
2 mM ∑CO2 (total concentration of all ionic species of
inorganic carbon), 300 µM ∑H2S (total concentration
of all ionic species of sulfide), 120 µM O2 and 400 µM
N2. Before starting an experiment, all worms were kept
at these ‘maintenance conditions’ for 24 h. A total of
19 specimens were incubated for different periods of
time in hypoxic, sulfidic conditions, according to Arndt
et al. (1998) (2 mM ∑CO2, 300 µM ∑H2S, 10 to 16 µM
O2 and 400 µM N2): (1) ‘short-term’ hypoxia (11, 15,
24 h; n = 9), (2) ‘long-term’ hypoxia (40 h; n = 5), and
(3) 40 h hypoxia with subsequent recovery under
maintenance conditions for 17 h (n = 5). Six specimens
were held in maintenance conditions for 24 h as con-
trols. At the end of each experiment, the worms were
sacrificed and samples were taken from their anterior
trophosome tissue.

Specimen preparation. Pieces of anterior tropho-
some were fixed on board ship in 1.5% acrolein, 3%
glutaraldehyde and 1.5% paraformaldehyde in 0.1 M
cacodylate buffer (pH 7.4) with 10% w/v sucrose
added, rinsed in the same buffer, postfixed in 2%
osmium tetroxyde in the same buffer, dehydrated in a
series of ethanol, and embedded in Spurr’s epoxy resin
for transmission electron microscopy. Ultrathin sec-
tions were cut on a Reichert ultracut, placed on Form-
var-coated slot-grids and stained in a Reichert stainer
with uranyl acetate and lead citrate. 

Stereological analysis. Trophosome lobules were
examined for local distribution of glycogen, which was
found in the axial peri-sinus epithelium, in the host, in
the bacteria, and in the peribacterial spaces of the bac-
teriocyte zones and the sheath cells. Further investiga-
tions did not include (1) the axial peri-sinus epithelium
(which contributes only 1.6% glycogen to the tropho-
some [Bright & Sorgo in press] and in which only a few
glycogen particles were visible), (2) the degrading bac-
teriocyte zone (in which the glycogen is already de-
graded and therefore not unambiguously attributable
to host or bacteria) and (3) the peribacterial spaces
(in which only a few glycogen particles were visible
and only in those worms incubated under hypoxic
conditions). 

Glycogen density (GD): In this study, the term ‘den-
sity’ expresses the percentage of the cytoplasm area
(i.e. volume fraction) taken up by glycogen in a ultra-
thin section. However, in comparing host and symbiont
contributions in each area, similarities or differences
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in the GD reflect trends in whole cells. Five pho-
tographs each of bacterial and host tissue in each of the
bacteriocyte zones and 5 images of the sheath cells of
25 worms were taken with a cooled slow-scan camera
under the electron microscope LEO 912 and printed at
a final magnification of 36 000×. As the glycogen
rosettes are not uniform in color (light to dark gray)
and size, they could not be identified and counted by a
computer analysis program, so the stereological
Chaye’s dot-counting technique (Weibel & Elias 1967)
was used to calculate the GD in bacteria and host
in the glycogen-containing zones: a grid of 30 dots
spaced at 0.65 cm intervals and covering an area of
8.45 cm2 was twice laid randomly on the images. 

Relative glycogen content (RGC): To calculate the
glycogen content of each symbiotic partner, the GD
was determined as a proportion of the percentage lob-
ule area taken up by host and symbiont in the various
ultrathin sections; i.e. the RGC for the host and sym-
bionts in each area (3 bacteriocyte zones and the
sheath cells) was determined, based on the GD for that
area, as a percentage of the lobule area taken up by
the host (A/h) or symbionts (A/s) (A/h and A/s calcu-
lated by Bright & Sorgo in press): The RGC (Table 1)
was calculated with following formula: RGC (%) =
GD (%) × A (h/s)(%) × 10–3.

Statistical analysis. The Tamhane post hoc multiple
comparison test for unequal variances (SPSS®8.00) was
used (CI = 95%) to compare the GD of both of the multi-
ple data sets: (1) symbiont GD (central, median, periph-
eral bacteriocyte zones, separately) after maintenance,
short-term and long-term hypoxia, and recovery; (2) host
GD (central, median, peripheral bacteriocyte zones, and
sheath cells separately) after maintenance, short-term
and long-term hypoxia, and recovery. Since no signifi-
cant differences were found, all 25 worms were com-

bined and the GD data sets for the central, median and
peripheral zones (+ sheath cells for host tissue) were
each compared between symbiont and host. The Kendall
rank-correlation test checked for correlation of the host
and bacterial GD within the 3 bacteriocyte zones. All
values are means ± SD. 

Size of bacteriocytes and bacteria in trophosome
ultrathin sections. Photographs of the central, median
and peripheral bacteriocyte zones were made under
the transmission electron microscope LEO 902, and the
negatives were scanned. The mean sizes of the bacteria
in a cross-section of the central (n = 500), median (n =
250) and peripheral (n = 250) zones were determined
using analySIS PRO®3.00. Since the cell membranes
of the bacteriocytes were not continuously visible, the
mean size of the bacteriocytes in each zone was based
on the proportional area of bacterial and host cytoplasm
in a zone (calculated by Bright & Sorgo in press) and on
the average number of bacteria in a cell.

RESULTS

Experiments. No significant differences in the GD
between the 4 experiments (aerobic sulfidic mainte-
nance, short- and long-term sulfidic hypoxia, and
recovery) were detected in the host and bacterial tis-
sues of the trophosome lobules. Therefore, all further
GD and RGC calculations were made using the mean
percentage of all 25 worms.

Glycogen density (GD). The different GDs in both
partners of the trophosome are shown for the central
and peripheral bacteriocyte zones in the transmission
electron micrographs in Fig. 1. GD was not correlated
between host and symbionts, and showed an inversely
related trend between the symbiotic partners (Fig. 2).
Bacterial GD increased from the center to the periph-
ery, with a significant increase between the rods and
the large cocci and the small and large cocci (p < 0.05).
Host tissue GD decreased from the center toward the
periphery, with a significant decrease between host
tissue in the central and peripheral bacteriocyte zones,
and in the the median and peripheral zones (p < 0.05).
The GD in the sheath cells was significantly lower
(p < 0.01) then in any bacteriocyte host tissue.

Relative glycogen content (RGC). The sums of the
RGCs in host and symbionts show a 1:1 ratio (1.57 and
1.46%, respectively). Since only 2% of the symbionts
are rods and the remaining 98% are cocci (Bright &
Sorgo in press), the vast majority of bacterial glycogen
is of coccoid origin. 

Host tissue area, bacteria and peribacterial spaces
and glycogen content of a single bacteriocyte in ultra-
thin sections. A central rod takes up an area of 0.81 ±
0.54 µm2, a small coccus in the median zone 4.13 ±
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Table 1. Riftia pachyptila. Trophosome lobule areas and mean
percentage ± SD of the relative glycogen content (RGC) in
host and symbionts in the glycogen-containing zones (n = 25, 

subsamples = 5)

Trophosome lobule RGC

Central bacteriocyte zone
Host 0.08 ± 0.04
Symbionts 0.01 ± 0.02

Median bacteriocyte zone
Host 0.66 ± 0.36
Symbionts 0.47 ± 0.46

Peripheral bacteriocyte zone
Host 0.54 ± 0.35
Symbionts 0.98 ± 0.81

Sheath cells (host) 0.29 ± 0.25

Sum host 1.57
Sum symbionts 1.46
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1.9 µm2, and a large coccus at the periphery 17.0 ±
5.6 µm2. Thus, from the center to the periphery of a
lobule, a single bacterium increases in size by 21-fold.
In a single bacteriocyte, the average number of bacte-
ria is 36.6 in the center, 30.5 in the median zone, and
19.8 at the periphery (Bright & Sorgo in press); the area
occupied by all bacteria taken up in a single bacterio-
cyte is 30 µm2 in the center, 126 µm2 in the median
zone and 341 µm2 at the periphery. Thus, the bacterial
area in any 1 bacteriocyte increases in size 11 times
from the center to the periphery. 

The average areas of host tissue in a single bacterio-
cyte (central, 38 µm; median, 76 µm; peripheral,
178 µm) and the peribacterial spaces (central, 21 µm;
median, 45 µm; peripheral, 62 µm) also increase
toward the periphery, but only by 5 and 3 times respec-
tively. The bacteria take up increasingly more space
within the bacteriocyte from the center toward the

periphery, exceeding the host tissue
area by a factor of 2 at the periphery
(Fig. 3). Although the GD calculated
for any defined area decreased in the
host tissue, the glycogen content of the
host tissue increased within each cell
from the center to the periphery. 

DISCUSSION

In Riftia pachyptila , the glycogen
content of 100 µmol glycosyl units
g–1 fresh wt determined in the tropho-
some (Arndt et al. 1998) is divided
equally between host and symbionts.
Although the symbionts take up only
25% of the trophosome, glycogen con-
tent is distributed equally between
both partners, and this ratio remains
similar for up to 40 h of hypoxia. Thus,
host and symbiont each contain about
50 µmol glycosyl units g–1 fresh wt of
trophosome. This amount is com-
parable to that in other host tissues of
R. pachyptila, e.g. in the body wall
(35 µmol glycosyl units g–1 fresh wt)
or the vestimentum (20 µmol glycosyl
units g–1 fresh wt) (Arndt et al. 1998),
to that of other chemoautotrophic
symbiotic animals (Hentschel et al.
2000, Arndt pers. obs.) and to that of
nonsymbiotic animals known to be
adapted to long-term anoxic periods
(Dales 1958, de Zwaan & Zandee 1972,
Gäde 1983, Schöttler et al. 1984, Vopel
et al. 1998).

The presence of glycogen in all symbionts of Riftia
pachyptila indicates a surplus of carbon arising from
autotrophy. The distinction of different symbiotic
morphotypes of the same phylotype is based not only
on size and shape modulations and on different loca-
tions within the trophosome lobules, but also on differ-
ent physiological abilities. This has been proven for
inorganic carbon fixation and incorporation rates
(Bright et al. 2000), but is also evidenced by the
increase in the amount of glycogen storage from the
central rods to the large peripheral cocci.

Although the glycogen gradient is in accordance
with the direction of blood flow and thus with the
direction of nutrient supply, it does not support the
gradient hypothesis (Hand 1987). Glycogen distribu-
tion is not correlated with incorporation rates of
organic carbon, which were similarly high in the cen-
tral rods and the large peripheral cocci after the 1 to
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Fig. 1. Riftia pachyptila. Transmission electron micrographs of the trophosome,
showing glycogen density in host and bacteria in (a) central and (b) peripheral
bacteriocyte zones. h: host cell; b: bacterium; s: peribacterial space in symbio-

some surrounding the bacterium; arrow heads: glycogen particles
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3 h pulse, 14C-bicarbonate experiments. This organic
carbon incorporation shows that there is no gradient in
the compounds used in chemosynthesis (Bright et al.
2000). Even if there were some limitation to the forma-
tion of a nitrogen or phosphorus gradient (chemicals
that, in free-living bacteria, are known to result in
glycogen synthesis when organic carbon is available in
excess; Preiss 1984, Preiss & Romeo 1989, Lou et al.
1997), any such limitation would result in high glyco-
gen concentrations in the center where the pool would
be depleted most and low concentrations at the

periphery. However, the highest values were actually
found at the periphery and the lowest in the center. 

Therefore, the most reasonable explanation for the
rates of incorporation of organic carbon and glycogen
in the lobules of the trophosome is the cell-cycle hypo-
thesis (Bosch & Grassé 1984a,b, Bright & Sorgo in
press): (1) The incorporation rates of organic carbon
reflect the high growth rates of rods and large cocci: as
an increase in biomass, growth is highest in the periph-
eral large cocci; as an increase in cell number, it is
highest in the central rods. (2) The glycogen storage
may indirectly be correlated with the division rate of
the morphotypes: rods (responsible for the production
of the whole bacterial population) have a high energy
expenditure in division, and consequently can store
little glycogen, whereas large cocci, which do not
undergo division, can direct surplus organic carbon to
glycogen storage.

The glycogen gradient within the host bacteriocytes
is the result of positive and negative carbon flows
within the trophosome; i.e. the organic carbon the bac-
teriocytes receive from the bacteria (positive carbon
flow) and the carbon used and released by the bacteri-
ocytes (negative carbon flow).

Positive carbon flow. (1) Carbon is released from the
bacteria into the symbiosome and diffuses further
through the symbiosome membrane. This mechanism
as well as the amount of translocated carbon is proba-
bly controlled by the host itself, as has been shown for
many algae-invertebrate symbioses (Muscatine 1967,
Taylor 1971, 1973a,b, Muscatine et al. 1972, McDer-
mott & Blanquet 1991). However, it is not known
whether the proportion of carbon released corresponds
to the amount fixed. (2) After lysis of the bacteria in the
degrading zone, the host cell itself degrades and all
reduced compounds are released into its blood. Due to
the blood flow within the lobules, the degraded com-
pounds are once more available to the bacteriocytes. 

Negative carbon flow. In this process, carbon is used
and released by the bacteriocytes, and only surplus
carbon can be stored in the form of glycogen. (1) Car-
bon is used for metabolic activities, e.g. growth and
division. (2) The carbon flow to other host tissues via
the circulatory system must be very high, as demon-
strated by the high growth rate of the tubeworm (Lutz
et al. 1994) and the glycogen stores in the other host
tissues (Arndt et al. 1998). 

Similar to the symbionts, the host bacteriocytes
themselves are produced in the center of each lobule
but cease to divide toward the periphery where they
terminally differentiate (Bright & Sorgo in press). This
indicates different physiological behaviors during the
different life stages of these highly specialized host
cells, which is also reflected in the differences in glyco-
gen storage. 
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Fig. 3. Single bacteriocyte, showing areas occupied by entire
host tissue (dark gray), peribacterial space (white) and sym-
bionts (light gray) in a section, during their migration from cen-
tral to peripheral bacteriocyte zones. Glycogen content (black)
in both symbionts and host increases from center to periphery 
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Fig. 2. Riftia pachyptila. Glycogen density (% of cytoplasm
area taken up by glycogen) in host tissue and symbionts in
central (c), median (m) and peripheral (p) bacteriocyte zones
and in sheath cells of the trophosome; comparisons between
the glycogen density of central, median, and peripheral host
and symbiont tissues were each tested with the post hoc
Tamhane multiple-comparison test (n = 25, confidence level
95%).  =: not significantly different; >, <: significantly greater 

or less, respectively
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