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Abstract This study aims at characterizing the subseafloor architecture of the Lucky Strike hydrothermal
field (LSHF) based on an extensive chemical database of the various vents. Our analysis is motivated by
the discovery in 2013 of a new active high-temperature site, named Capelinhos, approximately 1.5 km east of
the LSHF. Capelinhos fluids display particular chemical features with chloride and metal (Fe and Mn)
concentrations 2 times lower and 4 times higher, respectively, compared to other vent sites. Trace element
partitioning over the entire chlorinity range indicates a single deep fluid source feeding all the venting
sites. Applying the Si-Cl geothermobarometer at Capelinhos, we find phase separation conditions at
435–440 °C and 370–390 bars (2,500–2,800 m below seafloor) consistent with former estimates for the LSHF,
while temperatures of fluid-rock last equilibrium are estimated at ~400 °C for Capelinhos and 350–375 °C for
the other sites based on the Fe-Mn geothermometer. We interpret these discrepancies in thermodynamic
conditions beneath the sites in terms of crustal residence time, which are likely related to permeability
variations across the hydrothermal upflow zone. We propose that conductive cooling of the upflowing
fluids from the phase separation zone to the seafloor, beneath the main field vent sites, lowers the T
conditions of last fluid-rock equilibrium, enabling ~65% of Fe mobilized in the reaction zone to be stored. In
comparison, Capelinhos fluids are transported more rapidly from the reaction zone to the seafloor along a
high-angle fracture system. The fluids venting at Capelinhos are more representative of the deeper part
of the hydrothermal reaction zone.

1. Introduction

Hydrothermal fluid circulation at mid-ocean ridges is one of the major processes controlling the cooling of
the oceanic lithosphere (Chen &Morgan, 1990; Stein & Stein, 1994), the geochemical composition of the crust
(Alt, 1995; Alt & Teagle, 2003; Barker et al., 2008; Brant et al., 2012; Kelley & Delaney, 1987; Kelley & Robinson,
1990), the chemical composition of the ocean (Elderfield & Schultz, 1996; Resing et al., 2015), and the devel-
opment of peculiar chemo-synthetic ecosystems (Martin et al., 2008, and references therein). Increasing
attention has been drawn to the study of black smokers since their discovery along the East Pacific Rise off
the Galapagos Islands in 1977. They have shown an unexpected diversity in geological setting, hydrothermal
ecosystems, and fluid chemistry (Campbell et al., 1988; Douville et al., 2002; Ludwig et al., 2006; Schmidt et al.,
2007, 2011; Von Damm, 1988, 2000). From the recharge zone to the discharge area, seawater is transformed
into a high-temperature hydrothermal fluid, acquiring its chemical composition in a reaction zone, which is
univocally pictured on top of axial magmatic chambers (AMC) at least along magmatically robust sections of
fast (e.g., East Pacific Rise, 9°500N), intermediate (e.g., Endeavour segment, Juan de Fuca Ridge), and slow
spreading (e.g., Lucky Strike, 37°170N) ridges. The chemical composition of high-temperature fluids can be
further modified by either interaction with the rocks along the upflow pathway to the seafloor or precipita-
tion of secondary minerals, depending on the fluid velocity (Coogan, 2008; Lowell, 2003; Saccocia & Seyfried,
1994; Steele-MacInnis et al., 2012). Thus, highlights that the P-T estimates for reaction zone conditions are
sensitive to the geochemical tracer used and clear depth boundaries of the reaction zone cannot be easily
drawn. The water-rock interactions that form hydrothermal fluid formation from seawater occur over a wide
range of pressure and temperature conditions, that is, from the deepest part of the hydrothermal cell to the
discharge at the seafloor, ΔP and ΔT can be a few hundred bars and degree Celsius, respectively. Chemical
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variations can be identified depending on the nature of the substratum, that is, extrusive basaltic and/or
mantellic substrate. The chemical compositions of focused hydrothermal fluids are used to constrain the
range of pressure and temperature conditions at which water-rock interactions take place in the crust
(Mottl et al., 2011; Reeves et al., 2011; Seyfried, 2003; Seyfried et al., 1998; Von Damm et al., 2003). The purpose
of the present study is to gain insight on the subseafloor flow geometry using chemical analysis on fluids
from different sites at the Lucky Strike hydrothermal field (LSHF).

LSHF was discovered at 37°N along the slow-spreading mid-Altantic ridge (MAR) in 1992 during the FAZAR
cruise (Langmuir et al., 1997). The discovery motivated several subsequent research cruises with the objective
of better characterizing the geological, geochemical, geophysical, and biological context of the vents
(Barreyre et al., 2012; Charlou et al., 2000; Escartin et al., 2015; Fouquet et al., 1995; Langmuir et al., 1997;
Ondréas et al., 2009; Pester et al., 2012; Von Damm et al., 1998). The first comprehensive study on the LSHF
vent chemistry (Von Damm et al., 1998) indicated that the discharge of focused fluids (sampled in 1993
and 1996) originated from deep rooted fluids that underwent near-surface processes, for example, mixing
with seawater, in the upflow zone (Von Damm et al., 1998). Charlou et al. (2000) analyzed fluids from 10 active
sites of the LSHF. All samples were depleted in chloride relative to seawater (~420 to ~520 mM) with Cl
increasing along a SE-NW transect across the LHSF. These authors proposed that a relatively shallow reaction
zone provided vapor-like fluids (i.e., Cl below 545 mM of seawater) to the upflow zone at subcritical condi-
tions (temperature and pressure lower than 407 °C and 298 bars respectively, equivalent to ~1,300 m below
seafloor [mbsf]; Bischoff, 1991). Chemical data presented by Charlou et al. (2000) also suggested that vapor-
dominated fluids underwent substantial subsurface mixing with altered seawater prior to venting as indi-
cated by variable Sr isotope signatures with Cl concentrations still below that of seawater.

Eleven years later, Pester et al. (2012) used trace element and chloride covariation in fluids at five active
vents to infer P-T equilibrium conditions during upflow. The samples display both chloride depletion
and enrichment relative to seawater (from 414 to 588 mM). These authors proposed that (1) a unique
and deep source feeds the hydrothermal field and (2) fluids underwent phase separation at 430–475 °C
and 410–480 bars (~2,400–3,100 mbsf), that is, much higher P-T conditions than those proposed by
Charlou et al. (2000). They attributed the variability observed in fluid chlorinity to subtle changes in pres-
sure and/or temperature. These authors also argue that after phase separation and prior to discharge, the
hot fluids cooled conductively and equilibrated with the greenschist facies of basaltic host rocks at lower
temperatures (i.e., 350–380 °C).

These different models of the plumbing circulation system below the LSHF highlight the difficulties that arise
when interpreting the chemical composition of vent fluids. This is compounded by the lack of contempora-
neous observations between the studied sites. The EMSO-Azores program started in 2010 (FP6-ESONET;
Person et al., 2009; Colaço et al., 2011) and led to the setup of a deep-sea observatory at LSHF. High-
temperature hydrothermal fluids were collected yearly during maintenance cruises, which permitted the dis-
covery of a new, high-temperature venting site, named Capelinhos (T = 324 °C, Table 1) in 2013 (Escartin et al.,
2015; Figure 1). Capelinhos lies approximately 1.5 km east of the LSHF and a few hundred meters from the
seafloor emergence, one of the normal faults (referred as F2 in Combier et al., 2015) that rifts the Lucky
Strike axial volcano. All other active/inactive venting sites are located to the west around a fossil lava lake
on top of the volcano (Barreyre et al., 2012; Humphris et al., 2002; Ondréas et al., 2009, Figure 1).

In this study, we report on the first chemical data acquired for the Capelinhos vent site and we compare its
chemical characteristics with those from 12 other active LSHF vents sampled during the same cruise in 2013.
We use this data set to show that Capelinhos is a key site to assess the role of subsurface mixing, phase
separation, and conductive cooling processes on the chemistry of the LSHF fluids and to propose an updated
model of hydrothermal circulation below the field.

2. Geological Setting

The ~65-km-long Lucky Strike segment is located south of the Azores islands along the MAR between
37°030N and 37°370N (Detrick et al., 1995). The spreading rate is ~22 mm/yr (Cannat et al., 1999; Miranda et al.,
2005). The LSHF is located on top of a volcano at the center of the segment. Seismic data have constrained
the presence of an AMC at a depth of about 3,500 m below the summit of the volcano (Singh et al., 2006).
Microseismic events recorded between 2007 and 2009 are located above the AMC at depths between
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1,800 and 2,500 mbsf and interpreted as the product of active fracturing induced by penetration of colder
down-flowing fluids into the hot rocks (Crawford et al., 2013). These microseismic events document the
existence of two predominantly along-axis hydrothermal cells, with a central upflow zone centered
beneath the LSHF. Seismic data suggest that the layer 2A depth is variable throughout the hydrothermal
field (Arnulf et al., 2011).

The long known LSHF (Charlou et al., 2000, Chavagnac et al., 2018; Pester et al., 2012; Von Damm et al., 1998,
Figure 1) comprises 20–30 sites with high-temperature black smokers (T = 200–340 °C) and low-temperature
diffuse venting (total area about 1,800 m2, Barreyre et al., 2012). These sites are all clustered around a fossil
lava lake (300 m in diameter; Fouquet et al., 1995) framed by two ancient volcanic cones, and one of which
has been truncated by N010–N030° faults and fissures (Ondréas et al., 2009, Figure 1). The newly discovered

Figure 1. Bathymetric map of the Lucky Strike central volcano. Active hydrothermal vents are reported. Violet star: SW
group composed of Sapins (Sa), Crystal (Cr) and South Crystal (SCr); yellow star: SE group composed of Tour Eiffel (TE),
Aisics (Ai), and Montsegur (MS); green star: NE group composed of Sintra (Si) and Y3; black star: Central group composed of
Cyprès (Cy), White Castle (WC), and Isabel (Is); the red star locates Capelinhos (Cap). See text for details. Microbathymetry
from Ondréas et al. (2009). SW = south-west.

Table 1
Summary of Fluid Sampling

Site Depth (mbsl) Longitude (W) Latitude (N) Hydrothermal group pHa Mg (mM)b n sample %SWc T in situ (°C)

Capelinhos 1665 32°15.8300 37°17.3500 Capelinhos 2.56 1.63 4 3.02 324
Aisics 1689.3 32°16.5300 37°17.3380 south-east 3.1 1.11 7 2.06 295
Tour Eiffel 1684 32°16.5320 37°17.3430 south-east 3.26 0.89 3 1.65 325
Montségur 1701 32°16.5340 37°17.2840 south-east 3.33 1.63 2 3.02 316
Cyprès 1738.7 32°16.8630 37°17.4500 central 2.84 1.53 3 2.84 304
Isabel 1683.7 32°16.6380 37°17.3770 central 2.93 1.55 3 2.87 224
White Castle 1708.9 32°16.8690 37°17.3830 central 2.9 1.18 3 2.18 317
Crystal 1723.3 32°16.9210 37°17.4530 south-west 3.17 1.61 2 2.98 335
Sapins 1718.6 32°16.8880 37°17.4390 south-west 3.56 3.6 3 6.67 280
South Crystal 1720.5 32°16.9350 37°17.4450 south-west 2.93 0.75 3 1.39 340
Sintra 1614.7 32°16.4980 32°17.5290 north-east 3.89 12.99 1 24.06 196
Y3 1727.3 32°16.6710 37°17.5120 north-east 2.92 1.06 3 1.97 325

Note. The table presents location, depth, and details on fluid sampling for each site (minimum pH, minimum Mg measured and corresponding seawater entrain-
ment, and maximum temperature measured in the vent prior to sampling).
aOn board pH measurement at ambient temperature. bMinimum Mg measured on samples for each site. cCalculated from Mg concentration.
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Capelinhos site is isolated and located 1.5 km to the east of the main field (Escartin et al., 2015). There, chim-
neys form candelabra-like structure on top of 10-m high sulfide mound and expel black smoker-type fluids at
temperatures up to 324 °C (Figure 2 and Table 1). Diffuse venting is limited to the close vicinity of the black
smokers, at the base of the edifice.

3. Sampling and Analytical Methods
3.1. Fluid Collection

The fluid samples studied in this paper were collected during the MoMARsat’13 EMSO-Azores maintenance
cruise on the French Research vessel Pourquoi Pas? in September 2013. The 13 sampling sites (12 on LSHF
and Capelinhos) were chosen to document the fluid diversity identified at LSHF by previous studies
(Charlou et al., 2000; Chavagnac et al., 2015; Pester et al., 2012; Von Damm et al., 1998). Each vent site was
sampled 4 times in succession (total duration of sampling <1 hr) to allow a better characterization of the

Figure 2. Overview of vent morphology. Snapshots of ROV videos (Ifremer-CNRS, MoMARsat 13), (a, b) Capelinhos;
(c) Aisics; (d) Montsegur; (e) Cyprès; (f) White Castle; (g) Crystal; (h) Sintra. Figures 2a and 2b show candelabra-like struc-
tures that discharge focused high T fluid at Capelinhos vent site. Figures 12c and 12d show hydrothermal mounds in
the southeastern hydrothermal area. The Aisics mound (Figure 2c) is not as developed as theMontsegur mound (Figure 2d)
but both lack of tall indurated chimneys. Figures 2e–2g are situated in the southwestern hydrothermal area. There, high T
vents are commonly set on elongated wall-like structures related to underlying fissures. Figure 2h is situated in the
waning northeastern hydrothermal area and shows tall indurated chimneys, which are probably inherited from past
intense activity. ROV = remotely operated vehicle; CNRS = Centre national de la recherche scientifique.
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end-member hydrothermal fluid. In situ temperatures were measured in each vent prior to fluid sampling
using the remotely operated vehicle (ROV) Victor 6000 high-temperature probe. High-temperature fluids
were collected with 200 mL-titanium gas-tight samplers handled and triggered by the hydraulic arm of the
ROV. The time between fluid samples at a given vent did not exceed 20 min. The samples were processed
on board immediately after the ROV recovery. First, gases were extracted from the samplers and
transferred into vacuumed stainless steel canisters or to ultraclean water sealed glass bottles, depending
on the expected gas volume, for further analysis. The fluid samples were then extracted, filtered through
0.45-μm Millipore filters, and split into different aliquots for onshore analysis and stored at 4 °C. The pH,
Eh, salinity, and conductivity were measured on board immediately after gas/fluid processing.

3.2. Analytical Methods

All the chemical analyses were conducted at the Geosciences Environment Toulouse laboratory. Ca, Na, K,
Mg, Si, Fe, Mn, and Li concentrations were determined with an inductively coupled plasma atomic emission
spectrometer Horiba Ultima2 instrument. Errors on analyses are indicated in Table 2. The instrument is cali-
brated using monoelemental solutions, multielemental solutions, and International Association for the
Physical Sciences of the Oceans (IAPSO) standard solution (Besson et al., 2014). The latter is a seawater stan-
dard solution provided by OSIL and certified for its salinity. Salinity controls major element concentrations in
seawater (Millero et al., 2008). Li concentration measurements of IAPSO give an average concentration of
24.6 ± 0.3 μM (rsd = 1%; n = 4; 26.5 μM for seawater, Von Damm et al., 1998). The analytical drift is quantified
by the standard bracketing after every eight samples. Analytical precision is better than 2%.

Sr, Rb, and Cs concentrations were measured using an inductively coupled plasma mass spectrometer
Agilent500. The standard used was a NASS 6 solution (international seawater standard certified for some
trace metals) and gives values of 79.1, 1.17, and 1.19 nM compared to 87, 1.4, and 2 nM of seawater values
for Sr, Rb, and Cs, respectively (n = 3). Drift corrections are made using an in-house multielementary standard
doped with In and Re before analysis. Anions (Cl, SO4, and Br) were determined by anionic chromatography
calibrated with an IAPSO standard seawater solution.

Sr isotopic composition was measured at the Geosciences Environment Toulouse laboratory using a MAT
FINIGAN 261 thermal ionization mass spectrometer. Analyses were performed on the samples that contain
the lowest Mg concentrations. Sr was isolated from the matrix using Sr-Spec resin (Eichrom, USA). The
87Sr/86Sr ratio was defined as the average of 100 measurements of ion intensities following the static multi-
collection mode. The 87Sr/86Sr ratios were normalized to 86Sr/88Sr = 0.1194. Measured values for NBS 987
standard (recommended values of 0.710250) was 87Sr/86Sr = 0.710250 ± 0.000011 (2σD, n = 14).

Table 2
End-Member Composition of Fluids From the LSHF

Site Group Ca (mM) K (mM) Na (mM) Fe (μM) Mn (μM) Si (mM) Cl (mM) SO4 (mM)

Capelinhos Cap 17.97 ± 0.16 12.1 ± 0.3 205.0 ± 1.7 2789.4 ± 84.8 639.5 ± 27.6 14.1 ± 1.1 262.3 ± 0.1 �0.4 ± 0.04
Aisics SE 35.46 ± 1.44 19.6 ± 0.6 309.7 ± 19.7 417.6 ± 8.0 195.3 ± 4.0 14.86 ± 0.12 419.9 ± 1.8 0.11 ± 0.23
Aisics SE 37.25 ± 0.12 19.0 ± 0.1 316.8 ± 1.1 452.03 ± 10.24 226.3 ± 4.86 15.7 ± 0.12 418.4 ± 1.1 0.02 ± 0.07
Montségur SE 36.13 ± .46 19.6 ± 0.1 325.3 ± 0.8 283.7 ± 20.7 179.2 ± 8.4 15.25 ± 0.04 421.7 ± 1.3 �0.06 ± 0.03
Tour Eiffel SE 39 ± 0.64 19.7 ± 0.4 334.4 ± 6.5 574 ± 68.19 229 ± 15.51 15.1 ± 0.82 415.7 ± 4.7 0.9 ± 1.29
Cyprès Central 43.24 ± 0.03 23.4 ± 0.1 399.3 ± 2.2 411.33 ± 16.64 309.01 ± 11.58 18.62 ± 0.27 519.7 ± 2.7 �0.48 ± 0.08
Isabel Central 39.6 ± 0.37 22.3 ± 0.2 373.8 ± 5.7 250.42 ± 21.29 147.05 ± 1.92 14.1 ± 0.3 470.3 ± 11.2 �0.2 ± 0.31
White Castle Central 38.35 ± 0.11 23.2 ± 0.1 381.8 ± 1.4 312.7 ± 11.37 254.44 ± 16.34 16.26 ± 0.11 481.4 ± 2.5 �0.2 ± 0.01
Crystal SW 53.55 ± 3.9 28.4 ± 0.1 445.9 ± 0.4 507 ± 68.55 260 ± 19.4 17,3 ± 0.77 569.5 ± 0.3 2.56 ± 2.69
South Crystal SW 49.3 ± 0.8 28.3 ± 0.1 445 ± 1.5 593.4 ± 31.7 231.8 ± 10.04 17 ± 0.12 569.9 ± 1.3 0.1 ± 0.02
Sapins SW 48.3 ± 0.72 26.6 ± 0.3 441.8 ± 4.7 201.7 ± 21.6 245.4 ± 14.45 17.5 ± 0.45 568.4 ± 8.8 �0.28 ± 0.97
Sintra NE 53.7 27.1 433.2 185.5 164.1 12.8 537 0.35
Y3 NE 52.9 ± 0.5 25.5 ± 0.4 432.0 ± 4.5 686.7 ± 11.3 323.0 ± 18.0 17.1 ± 0.2 573.7 ± 8.5 0.03 ± 0.12
Seawater 10.31 9.8 464 0 0 0.17 545 28.3

Note. The concentration of end-member fluids for each site is calculated based on linear least squares regression of element versus Mg, at Mg = 0 (Albarède et al.,
1981; Ravizza et al., 2001; Figure S1.) n.d. = not determined; LSHF = Lucky Strike hydrothermal field.
aTemperature calculated by the Fe/Mn geothermometer and pressure estimated from Fe/Mn and Si concentrations (see text for details).
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We consider end-member hydrothermal fluids calculated by linear extrapolation to zero Mg of the least
squares regression method (Table 2; Von Damm, 1988). The compositions of all analyzed samples for Sr iso-
tope signature are given in the supporting information (Figure S1 and Table S1). For isotopic composition, the
same method of linear extrapolation to a Mg/Sr equal to zero is used.

4. Results
4.1. Chloride, Sulfate, and Bromide

Hydrothermal fluids of the LSHF exhibit chloride concentrations between 415mM for the south-east (SE) sites
(Montsegur, Aisics, and Tour Eiffel; Figure 1) and 574 mM for the north-east (NE) sites (Y3 and Sintra) and the
south-west (SW) sites (South Crystal, Crystal, and Sapins). White Castle, Isabel, and Cyprès sites have Cl con-
centration closer to seawater one at values ranging between 470 and 520 mM, also in line with previous data.
Interestingly, Capelinhos has the lowest chloride concentration ever measured at LSHF at 262 mM (Table 2).

All fluids have SO4 values close to zero. However, some of them (Crystal and Tour Eiffel) have calculated end-
member value slightly higher than 0 probably due to anhydrite entrainment and dissolution (Von Damm
et al., 1998; Table 2). Br concentrations have variations similar to Cl concentrations, whereby maximum Br
concentrations are found in Y3 fluids at 0.88 mM close to the seawater value of 0.84 mM while minimum
values are found for Capelinhos fluids at 0.38 mM.

4.2. Iron and Manganese

Capelinhos end-member fluid shows very high Fe and Mn concentrations of 2,789 and 639 μM, respectively.
In comparison, Fe and Mn concentrations of LSHF end-member fluids vary between 155 (Sintra) and 593 μM
(South Crystal) for Fe (Figure 3a) and between 164 (Sintra) and 232 μM (South Crystal) for Mn (Figure 3b).

4.3. Silica

Silica concentrations of hydrothermal end-members vary from 12.8 at Sintra (NE group) to 18.6 mM at Cyprès
(SW group). The Si concentration at Capelinhos is 14.1 mM, a value similar to the one for the SE sites, despite
distinct chlorinities (Figure 3c).

4.4. Sodium, Calcium, and Potassium

Na, Ca, and K constitute the major cations in the end-member fluids and are closely linked to Cl concentration
due to charge balance. Maximum Na concentrations (445 mM) are found in Crystal and South Crystal fluids,
while the minimum Na concentration (205 mM) is obtained for Capelinhos.

Maximum Ca concentration are found in Sintra, Y3, Crystal, and South Crystal fluids with values around
53 mM, while at Capelinhos the Ca concentration is the lowest one at 18 mM.

Table 2 (continued)

Site Br (mM) Rb (μM) Sr (μM) Li (μM) Cs (μM) 87Sr/86Sr Ta Pa

Capelinhos 0.40 ± 0.02 18.7 ± 0.3 35.89 ± 0.65 197.3 ± 0.3 0.129 ± 0.003 0.70384 403 350
Aisics 0.65 ± 0.01 28.5 ± 0.1 80.06 ± 0.38 272.9 ± 0.3 0.184 ± 0.07 0.70422 368 225
Aisics 0.66 ± 0.04 28.5 ± 0.2 80.5 ± 0.7 266.3 ± 0.4 0.18 ± 0.001 0.70428 365 n.d.
Montségur 0.65 ± 0.02 28.3 ± 0.03 80.3 ± 1.1 265 ± 0.4 0.179 ± 0.002 0.70423 354 225
Tour Eiffel 0.64 ± 0.02 27.7 ± 1.3 81.16 ± 0.53 262.6 ± 0.4 0.179 ± 0.008 0.70448 376 300
Cyprès 0,84 ± 0.01 36.37 ± 0.47 112.47 ± 0.77 319 ± 0.3 0.222 ± 0.074 0.70403 345 n.d.
Isabel 0.73 ± 0.01 32.56 ± 1.39 105.0 ± 4.3 276.8 ± 04 0.199 ± 0.004 0.7043 357 n.d.
White Castle 0.75 ± 0.01 35.95 ± 0.1 111.19 ± 0.28 301.6 ± 0.1 0.221 ± 0.003 0.70502 341 n.d.
Crystal 0,88 ± 0.01 50 ± 5.65 180 ± 45.85 367.9 ± 0.3 0.231 ± 0.004 0.70414 364 300
South Crystal 0.89 ± 0.05 42.5 ± 0.11 125 ± 0.42 346.1 ± 0.4 0.260 ± 0.004 0.704 377 300
Sapins 0.87 ± 0.01 39.6 ± 0.87 118.1 ± 2.36 332.9 ± .5 0.243 ± 0.005 0.70429 322 n.d.
Sintra 0.85 39.3 115.5 343.5 0.244 0.70423 337 n.d.
Y3 0.90 ± 0.01 42.3 ± 0.05 144.7 ± 0.6 323.3 ± 0.3 0.253 ± 0.001 0.70401 368 300
Seawater 0.84 2.0 87.0 25.6 0.70916
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Maximum K concentrations (28.3 mM) are found in South Crystal
and Crystal, and the minimum concentration (12.1 mM) is measured
at Capelinhos.

4.5. Rubidium, Strontium, Cesium, and Lithium

Rb, Cs, and Li are 10 to 20 times more enriched in the LSHF fluids com-
pared to seawater, while Sr concentrations fluctuate around the seawater
value at ±20%. Concentrations in Rb, Li, Cs, and Sr are correlated to the
fluid chlorinity (Table 2). Minimum and maximum Rb concentrations are
18.7 and 50 μM for Capelinhos and Crystal, respectively. Minimum and
maximum Li concentrations are 197.1 and 367.9 μM, also for Capelinhos
and Crystal, respectively. Sr follows the same pattern with amaximum con-
centration of 180 μM for Crystal and a minimum concentration of 35.9 μM
at Capelinhos.

4.6. Sr Isotopes

The least radiogenic end-member fluid compositions (87Sr/86Sr = 0.70384;
Table 2) are obtained for Capelinhos. Y3, Crystal, and South Crystal on the
northern and western side of the fossil lava lake have unradiogenic
87Sr/86Sr ratios ranging between 0.7039 and 0.7040. 87Sr/86Sr signatures
of the Aisics, Tour Eiffel, and Montsegur sites are the most radiogenic ones
at 0.7042–0.7043 (Table 2). The central sites display variable Sr isotope sig-
natures, that is, Cyprès at 0.70403 and White Castle at 0.70502.

5. Discussion
5.1. Source(s) of Hydrothermal Fluids

Cl is themajor anion present in hydrothermal fluids and controls the cation
abundances due to the charge balance of the solution. We propose to
define groups of sites based on Cl concentrations and spatial distribution
on the seafloor. With the lowest salinity, Capelinhos (Cl = 262 mM) defines
its own group; the SE group of sites is composed of Tour Eiffel, Montsegur,
and Aisics with a Claverage of ~420 mM; the central group characterized by
Claverage ~495 mM, comprises Isabel, White Castle, and Cyprès. We define
SW and NE groups for which salinity values are all close to or above sea-
water, that is, SW group (Crystal, South Crystal, and Sapin sites; Claverage:

~580 mM) and NE group (Y3 and Sintra sites; Claverage: 574 and 537 mM). Due to the conservative behavior
of Cl in hydrothermal system, this chemical tracer has been widely used to infer the P-T conditions of the
phase separation zone. Charlou et al. (2000) proposed that Cl variability observed at the LSHF could be
due to subcritical vapors mixing with altered seawater in subsurface conditions prior to fluid venting. To
address this hypothesis, we use the Sr isotope compositions of the lowest Mg-rich hydrothermal fluids as a
tracer of sources and mixing.

A hydrothermal fluid acquires its Sr isotopic signature from the rocks with which it interacts (Albarède et al.,
1981), that is, basalt at LSHF. The contrasting Sr isotope compositions of basalt at 0.70298 and seawater at
0.70916 are favorable to the detection of any input of modified seawater in hydrothermal fluids. Any Sr
isotopic signature of hydrothermal fluid end-member that departs from that of the basalt will suggest the
contribution from an additional source (Berndt et al., 1988; Palmer, 1992; Ravizza et al., 2001). The most
vapor-dominated fluid at Capelinhos exhibits the least radiogenic Sr isotopic composition at 0.70384. In com-
parison, the SE, NE, and SW groups that exhibit Cl concentrations at 420, 574, and 570 mM, respectively, dis-
play similar Sr isotopic signatures at 0.7042–0.7044 for SE sites and 0.7040 and 0.7042 for NE and SW sites
(Table 2). In contrast, the central group (~495 mM of Cl) displays a wide range of 87Sr/86Sr ratios, ranging from
0.70403 to 0.70502. The observed range of 87Sr/86Sr ratios of fluid end-members does not correspond to the
geographical distribution of sites around the fossil lava lake. Moreover, the 87Sr/86Sr ratios and the Cl contents
of hydrothermal end-members do not correlate positively and linearly. In addition, it is unlikely that the

Figure 3. Fe, Mn, and Si versus Cl in end-member fluids (a) Fe versus Cl;
(b) Mn versus Cl and (c) Si versus Cl. These diagrams show the lack of
correlation of these elements relative to Cl.
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variability of 87Sr/86Sr ratios is related to local differences in the substra-
tum, as basalts from a wide selection of samples (including T- and mid
ocean ridge basalt [MORB]) across the Lucky Strike segment have a well-
constrained Sr isotopic signature of 0.70298 ± 0.00007 (n = 13; Hamelin
et al., 2013). The tight but significant differences in Sr isotopic signature
between the highest and lowest chlorinity fluids mean that Capelinhos
fluid, compared to the other sites, has less interaction with radiogenic Sr-
rich material such as extensively altered rocks. The fact that 87Sr/86Sr is
not correlated with Cl rules out a modified seawater component that
would mix with hydrothermal fluid in subsurface. However, this does not
rule out the contribution of a second deep-rooted hydrothermal cell to
produce the Capelinhos fluid.

We investigate the distribution of trace element concentrations (Br, Li, Sr,
Rb, and Cs) over the LSHF chlorinity range, following the methodology
of Pester et al. (2012) to detect the potential occurrence of a second hydro-
thermal source. The elements considered are controlled by vapor/brine
partition coefficients during phase separation (Berndt & Seyfried, 1990;
Foustoukos & Seyfried, 2007a, 2007b; Foustoukos et al., 2004; Pester
et al., 2015, among others). Li and Cs distributions exhibit a negative linear
trend, while Rb and Sr show a positive trend, indicating a preferential
partitioning to the vapor and brine phases, respectively (Figure 4). This is
in line with previous studies (Berndt & Seyfried, 1990; Foustoukos &
Seyfried, 2007a; Pester et al., 2015; Pokrovski et al., 2005). This is also coher-
ent with the LSHF study of Pester et al. (2012), apart for Rb that shows less
brine affinity with the extended Cl range of the present data set. Note,
however, that without Capelinhos fluid, Rb presents a steeper linear slope
at +0.38, identical to the one at +0.35 reported in Pester et al. (2012).
Element vapor/brine partitioning can be summarized as follows:
Sr < Rb << Br <<Cs < Li with increasing affinities for the vapor phase.
Therefore, the linear correlation of each of these elements over the Cl
range (from 262 to 574 mM; Figure 4) supports a phase separation process
controlling overall trace element abundances, that is, a unique deep-
rooted fluid source as proposed by Pester et al. (2012). This implies that
being 1.5 km away from the other sites, Capelinhos is nevertheless fed
by the same upflow zone and is part of the same hydrothermal cell.

5.2. Chlorinity Variability and Geographical Repartition

While the distribution of trace element suggests a unique source feeding the hydrothermal upflow at LSHF,
the end-member fluids nevertheless display a wide range of chlorinity, from the most vapor-like, low-Cl fluids
at Capelinhos to the brine-like, high-Cl fluids at Y3. Venting of low-Cl fluids can unambiguously be ascribed to
phase separation processes at depth and flushing of buoyant vapor phase on the seafloor. However, the phy-
sics controlling the venting of brine-like fluids is more complex as their thermodynamical (viscosity and den-
sity) and surface properties (surface tension) counteract their buoyancy, impacting therefore their rise toward
seafloor. In the literature, numerical models of two-phase flow including transport of salt (considered as NaCl)
have proposed scenarios for brine venting (Coumou et al., 2009; Fontaine et al., 2007).

Phase separation leads to vapor and brine formation, but due to different physical behavior, that is, the
wetting effect of the liquid/brine phase, brines will segregate and be stored in backwater porosity or will
coat the walls of larger channels (Fontaine & Wilcock, 2006). As long as brine saturation is lower than a
threshold value, the brines do not form a continuous medium and remain immobile. However, when this
threshold is reached, and provided that the vertical pressure gradients in the upflow are high enough
compared to brine density (if not, the brine is too dense and will sink down; Fontaine & Wilcock, 2006;
Fontaine et al., 2007), then the brine phase is able to move upward. Fontaine and Wilcock (2006) showed
that brine (<20–25 wt % NaCl) produced under supercritical conditions and stored within the rock

Figure 4. Log (Elt/Cl) versus log (Cl) diagram. Diagram of elt/Cl versus Cl
showing the linear relationship between trace element and chlorinity, a
proxy for the effect of phase separation.
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backwater porosity in the reaction zone could still flow toward the surface. Meanwhile, vapor phases flow
preferentially through wider cracks (Fontaine & Wilcock, 2006; Goldfarb & Delaney, 1988) and are flushed
to the seafloor. Fontaine et al. (2007) also developed the hypothesis that vertical permeability gradients
could act as a barrier for brine upflow and tend to concentrate brine at the base of layer 2A. When the
backwater porosity is saturated with brine, or during cooling of the system, brine can be entrained, and
mixed with vapor or seawater salinity hydrothermal fluid, which leads to fluid discharge with higher sali-
nity than seawater.

Alternatively, Coumou et al. (2009) conducted numerical modeling without a permeability gradient to inves-
tigate salinity variations at discharge zones for different bottom heat fluxes and system pressures. For a pres-
sure of 150 bars at the seafloor and ~250 bars at the bottom of the system, that is, phase separation zone
~1,000 mbsf, the simulations show temporal variations in vent fluid salinity with several spikes at salinity
higher than seawater over periods of several years. These salinity spikes are also associated with temperature
spikes of a few degrees (<10 °C). Coumou et al. (2009) explained these salinity pulses as due to brine mobi-
lization occurring when the porosity of the upflow zone becomes saturated. Further mixing of this brine with
vapor-dominated fluids during the upflow produces a transient spike in salinity. Salinity then returns to the
initial vapor-like one, while the brine layer builds up again and reduces saturation of the backwater porosity.
In summary, modeling studies infer that sustained phase separation processes can drive brines to oversatu-
rate the porous network causing their remobilization and flushing to the seafloor without major changes in
the thermodynamic state of the hydrothermal cell.

Brine remobilization and flushing have been already observed and invoked in the natural hydrothermal
environment, to explain Cl variability related to periodic (tides) brine flushing at the Main Endeavour Field
(Larson et al., 2009). At LSHF, Y3 site exhibits Cl concentrations that increase from vapor-like values at
436 mM in 1993 (Von Damm et al., 1998) to brine-like ones at 574 mM in 2013 (this study, Table 2). We infer
that this shift in fluid chlorinity of Y3 site could be ascribed to brine oversaturation and mobilization in the
porous/fractured crust along the upflow zone, as venting temperature and reaction zone P-T conditions
according to the geothermobarometers did not fluctuate significantly over that time period (Pester et al.,
2011). Based on a study of tidal forcing on LSHF vent fluid temperatures, Barreyre and Sohn (2016) proposed
that the permeability structure beneath the LSHF vents is variable, possibly reflecting variations of layer 2A
thickness from 300 to 600 mbsf between the west and east of the fossil lava lake area. Such local variations
would also be expected to impact brine storage and remobilization beneath the field. Finally, the yearly mon-
itoring of the Y3 vent in comparison to other LSHF sites should provide key information of the temporal evo-
lution of brine venting. Such information is particularly important to better design numerical models of
hydrothermal flow dynamics and to gain more insight into the interrelationships among phase separation,
brine storage, remobilization, and fate beneath the field.

5.3. Pressure and Temperature Conditions in the LSHF Hydrothermal System
5.3.1. Conditions at the Base of Upflow Zone
Si and Cl end-member fluid concentrations have been used as a geothermobarometer to determine the
depth of the top of the two-phase zone in several hydrothermal systems worldwide (Fontaine et al.,
2009). This depth is considered a good estimate of the base of the upflow zone as phase separation induces
large variations in the fluid flexibility (a measure of the ability of buoyancy-driven water to transport
energy), providing the necessary buoyancy for the hydrothermal vapors to flow upward (Coumou et al.,
2009; Jupp & Schultz, 2000). Cl concentration only changes in the two-phase zone, as soon as the vapor-
dominated fluid starts to rise it returns to a single phase, and its Cl content is fixed for the remainder of
the ascent to the seafloor, provided no mixing with seawater occurs. The Cl content of flushed vapors
are thus representative of the conditions at the top of the two-phase zone. Using Cl-P-T solubility relation-
ships (e.g., Driesner, 2007), one can estimate a range of possible conditions (an iso-Cl line) in P-T space for a
given Cl. Now, considering that Si is in equilibrium with quartz during upflow/cooling and using Si-Cl-T-P
solubility relationships (e.g., Foustoukos & Seyfried, 2007b), one can use the Cl and Si contents of the
vented vapors to estimate another range (an iso-Si line) of possible T-P for a given Si. Intersection between
these iso-Cl and iso-Si lines gives a unique P-T condition for the roof of the two-phase area. When applying
the Si-Cl geothermobarometer to the Capelinhos fluids, we obtain a temperature of 438 °C and a pressure
of 375 bars for the phase separation zone/base of the reaction zone, which corresponds to a depth of
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2,600 mbsf (using a cold hydrostatic pressure gradient of ρ = 800 kg/m3, Fontaine et al., 2009). Using the
Tour Eiffel chemical data for fluids collected in 1993 (Charlou et al., 2000), Fontaine et al. (2009)
determined similar P and T conditions at 390 bars and 440 °C for the LSHF phase separation zone. Thus,
the deepest part of the upflow zone is quite well constrained with similar estimates for fluids collected
20 years apart and at different site within the LSHF.

One should, however, be careful using this geothermobarometer as quartz may precipitate during upflow.
Quartz veins in the ocean crust are often associated to greenschist facies minerals such as pyrite, chlorite,
amphibole, and epidosite at different depth levels (Alt et al., 2010; Delaney et al., 1987; Heft et al., 2008;
Honnorez, 2003). The vented Si concentration should, therefore, be taken as a minimum value (the actual
Si content of the rising vapor being higher and not constrained) giving a minimum depth to the base of
the upflow/roof of the two-phase area. The Si-Cl geothermobarometer developed by Fontaine et al. (2009)
predicts that the estimated depth of the top of the two-phase zone would deepen by 70–100 m/mmol of
Si at constant Cl. We note that the equilibrium pressure ranges of 375–390 bars derived with Si-Cl, that is,
2,600–2,800 msbf is in good agreement with the 2,300–2,900 mbsf maximum depth range for microseismic
activity beneath the hydrothermal field (Crawford et al., 2013).
5.3.2. Conditions of Last Equilibrium in the Reaction Zone
Vent fluid Fe and Mn contents can be used to estimate the temperature of the fluid last equilibrium with
greenschist facies rocks (Pester et al., 2011). For Capelinhos end-member fluids, which exhibit the highest
Fe and Mn concentrations of all the LSHF fluids—equivalent to Fe concentration found at the Broken Spur
(29°N) and Snake Pit (23°N) fields on the MAR (Campbell et al., 1988; James et al., 1995; Figure 5)—we find
a minimum temperature of greenschist facies equilibrium at 403 °C. The Fe-Mn geothermometer does not
provide means to calculate a corresponding equilibrium pressure. If we assume that both quartz and fluid-
greenschist (Fe and Mn bearing) minerals facies reached equilibrium concomitantly, that is, that the
Capelinhos fluids interacted minimally with the surrounding rocks during their ascent from the phase separa-
tion zone, then the equilibrium temperature is obtained from the Fe-Mn geothermometer and the vent fluid
Si concentration permits to calculate a corresponding equilibrium pressure using Cl-T-P-dependent solubility
relationships (Foustoukos & Seyfried, 2007b; Von Damm et al., 1991). At Capelinhos (Si = 14.1 mM,
Cl = 260 mM), the estimated equilibrium pressure is 350 bars, that is, a depth of ~2,300 mbsf (Figure 5a).
Applying the same approach to the most brine-dominated hydrothermal fluids from the other LSHF sites,
that is, the SW group and Y3 of the NE group, indicates a lower pressure (300 bars, i.e., ~1,600 mbsf) and
cooler temperatures 350–375 °C for the last fluid-rock equilibrium. These differences in P-T conditions of

Figure 5. Geochemical information for P and T. (a) Quartz geothermobarometer based on Foustoukos and Seyfried
(2007b). Points represent Si measured in fluids with calculated temperature based on the Fe-Mn geothermometer. Gray
dashed lines represent the classical approach to evaluate P and T (see text for details). (b) Fe and Mn concentrations on a
logarithm scale (modified from Pester et al., 2011). Gray line represents basalt alteration line, and black dashed lines are
isotherms calculated from the Fe/Mn geothermometer.
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last fluid-rock equilibrium between the Capelinhos and the other LSHF sites probably indicate that the fluids
venting at Capelinhos ascend more rapidly from the phase separation zone than the fluids venting at the
other sites so that they react less with the lost rocks upon ascent. This interpretation is also consistent with
the least radiogenic Sr isotope signature of Capelinhos end-member fluids that we interpret as the most
representative of the basaltic substratum (section 5.1). We thus propose that the observed variability in
fluid composition between the LSHF vent sites primarily results from variable fluid residence times within
the different areas that compose the upflow zone. We discuss a possible geological factor controlling
these processes at Lucky Strike in the next section.

5.4. Fluid Circulation Pathway at LSHF

Based on the Si-Cl geothermobarometer that is in agreement with the depth of microseismic activity
(Crawford et al., 2013), we propose that fluids at Lucky Strike start to upflow from a depth/pressure of
2,600–2,800 mbsf/370–390 bars at 430–440 °C below the lava lake. Capelinhos is located 300 m to the east
of a west dipping fault that has been imaged in seismic reflection data and shown to extend at least down
to a few hundred meters below seafloor under the volcano (F2 in Combier et al., 2015, Figure 6). We infer that
small offset faults and fractures parallel to this fault and belonging to the same network may intersect the
seafloor near Capelinhos (Escartin et al., 2015). We propose that this fault and fracture network intercepts
the hydrothermal upflow zone at depth, in the intrusive section (layer 2B), creating a fast-extraction pathway
for hydrothermal fluids venting at Capelinhos because of enhanced hydraulic properties (e.g., permeability
and porosity) due to tectonically produced faults and fissures (Caine et al., 2010, Figure 6). This transverse
and longer (compared to a vertical flow) flow path leads to significant cooling from 403 °C in the phase
separation zone to 324 °C at the vent field, but the fast fluid migration and short residence time prevent
extensive fluid-rock reactions, and the exiting fluids preserve their metal content. On the other hand, the
fluids exiting at the main LSHF sites distributed around the lava lake would rise almost vertically but more
slowly due to the lower overall permeability of younger intrusives beneath the fossil lava lake (Arnulf et al.,
2011). This longer residence time allows fluids to interact more extensively with the crust to temperature
down to 350 °C, and to precipitate a large part of their metal content, as secondary greenschist minerals
including Fe-bearing phases like chlorite.

The low Fe-Mn ratios of the main LSHF sites (~0.8 to 2.5), compared to Capelinhos fluids at ~4.4 (Figure 4),
reflects a significant Fe loss within the upflow zone. By using Capelinhos fluids as a reference, we calculate

Figure 6. Fluid circulation. (a) Calculated P and T of some vents at equilibria with quartz are presented. P and T were calculated using the Fe/Mn geothermometer
of Pester et al. (2011), quartz geothermobarometer (Foustoukos & Seyfried, 2007b), and NaCl-H2O solution properties (Driesner & Heinrich, 2007, see details in
text). Dotted lines represent the depth of the base of layer 2A for western and eastern sites (Arnulf et al., 2011). The red shaded domain represents the range of
depth to the top of the axial magma chamber as identified by Singh et al. (2006) and Combier et al. (2015). Gray lines represent fault labeled F1 and F1b in
Combier et al. (2015); dotted gray line correspond to F2. The blue line represents the inferred P-T path in the recharge zone where cold seawater percolates
through oceanic crusts and gradually interacts with rocks. Red lines represent the inferred P-T path in the upflow zone, based on the conditions estimated from
fluid chemistry. The gray rectangle represents the phase separation zone estimated from the Si and Cl concentrations in the low salinity fluids (Capelinhos, TE)
using the geothermobarometer proposed by Fontaine et al. (2009). (b) Modified from Escartin et al. (2015). Cartoon representing the hydrothermal cell under
the LSHF. Blue arrows represent downward flow of seawater; red arrows are focused hot fluid moving upward through cracks and faults. Seismic clusters are from
Crawford et al. (2013). F1, F1b, and F2 are from Combier et al. (2015). LSHF = Lucky Strike hydrothermal field.
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that ~65% (±14%) of dissolved hydrothermal Fe from sites located around the fossil lava lake is stored most
likely as secondary minerals between the phase separation zone and the seafloor. In other words, only ~35%
of Fe mobilized in the reaction zone is discharged as dissolved phase into the deep seawater mass at
the LSHF.

6. Conclusion

In 2013, a new active site, named Capelinhos, was discovered at LSHF approximately 1.5 km east of the main
Lucky Strike axial graben and fossil lava lake, where the well-known LSHF vents are located. Capelinhos vents
high-temperature black smoker fluids at 324 °C. Its fluid chemistry has two distinct characteristics compared
to the other LSHF vent sites: (1) the lowest Cl concentration at ~260 mM ever measured at LSHF and (2) the
highest Fe and Mn concentration (2,800 and 640 μM respectively). The discovery of this site provides the
opportunity to reassess the thermodynamic condition within the reaction zone. Applying the Si-Cl geother-
mobarometer of Fontaine et al. (2009), we show that Capelinhos fluids were formed at supercritical condi-
tions, as well as the other vapor-dominated fluids from LSHF. The temperature of the phase separation
zone is 438 °C at 2,600 mbsf. These results are in agreement with the maximum depth of microseismic events
reported in Crawford et al. (2013), which are interpreted as due to rapid heat exchange between hot rocks
and downgoing hydrothermal fluids.

Applying other geochemical indicator, such as Fe-Mn geothermometer of Pester et al. (2011), a range
between ~370 °C for LSHF fluids and ~400 °C for Capelinhos is obtained. By combining quartz solubility with
these calculated temperatures, the minimum equilibration temperature and pressure in the reaction zone
appears to be deeper for Capelinhos fluids (350 bars) than for LSHF (300 bars). Because the fluids vent at tem-
peratures that are still well within the greenschist facies realm, these conditions are not considered as com-
pletely representative of the top of the reaction zone. More accurately, they are indicative of significant
differences in the residence time of the fluid in the upflow zone between Capelinhos and the other
LSHF vents.

We propose a revised model of the hydrothermal path based on the discovery of Capelinhos. When crossing
the two-phase boundary, at ~2,600 mbsf, the fluid starts flowing upward, with brine entrainment to different
extent from site to site. At the fossil lava lake, fluids (vapor and brines) undergomore conductive cooling than
Capelinhos vent along their upflow to the surface due to longer residence time in the substratum. Brine mix-
ing and cooling processes likely result in the formation of secondary Fe-bearingminerals like chlorite beneath
the fossil lava lake, resulting in the storing of up to 65% of Fe mobilized in the reaction zone. Fluids dischar-
ging at Capelinhos (the most vapor-dominated fluid of the LSHF) reach the sea surface by a high angle nor-
mal fault zone and undergo significant cooling but still preserve high dissolved Fe and Mn concentrations.
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