Supplementary Material

The Role of Sustained Photoprotective Non-photochemical Quenching in Low Temperature and High Light Acclimation in the Bloom-forming Arctic Diatom *Thalassiosira gravida*

Lacour Thomas^{1*}, Larivière Jade¹, Ferland Joannie¹, Bruyant Flavienne¹, Lavaud Johann¹, Babin Marcel¹

1- Takuvik Joint International Laboratory UMI3376, CNRS (France) & ULaval (Canada),

Département de Biologie, Université Laval, Pavillon Alexandre-Vachon, 1045, avenue de la Médecine, Québec, QC G1V 0A6, Canada

* Correspondence:

Thomas Lacour, <u>Thomas.Lacour@ifremer.fr</u>

Present address: Ifremer, PBA, Rue de l'Ile d'Yeu, BP21105, 44311 Nantes Cedex 03, France

1 Supplementary Data

Fig. S1: NPQ_d^{app} (A,B) and NPQ_d^{eff} (C,D) as a function of incubation irradiance in cell previously acclimated to 50 μ mol photons m⁻² s⁻¹ (A,C) and 400 μ mol photons m⁻² s⁻¹ (B,D) and after 20, 180, 360 and 1440 min dark acclimation.

Fig. S2: Chlorophyll *a* per cell as a function of growth irradiance in *T. gravida* cells acclimated to 0° C (closed circles) and 5° C (open circles).

Fig. S3: (A) P^{Cell}_{m} , (B) α^{C} , (C) α^{Cell} as a function of growth irradiance in *T. gravida* cells acclimated to 0°C (closed circles) and 5°C (open circles).

Fig. S4: Carbon fixation rate (measured by ¹⁴C incorporation) and growth rate as a function of incubation irradiance and growth irradiance respectively, in *T. gravida* cells acclimated to 10, 50, 80, and 400 μ mol photons m⁻² s⁻¹ at 0°C (A) and 5°C (B).

Fig. S5: 1-qP as a function of incubation irradiance in *T. gravida* cells acclimated to 50 and 400 μ mol photons m⁻² s⁻¹ at 0°C and 5°C with and without DTT.

Fig S6: Fv/Fm as a function of NPQs in *T. gravida* cells acclimated to 50 and 400 μ mol photons m⁻² s⁻¹ at 0°C (A and B) during dark relaxation. In B we added data from literature (Verhoeven et al., 1996) : Fv/Fm as a function of NPQs in *Pseudotsuga menziesii*, *Pinus ponderosa* and *Euonymus kiautschovicus* obtained over the 4,5 days following transfer of the leaves from the field (on 10 March, 1994) to room temperature and low PPFD.

2 Supplementary Figures

It is important to note that when NPQs is high the calculation of NPQd without taking into account a relaxed Fm (F_m^{24h}) can lead to a large underestimation of NPQd. To look at this, we defined an apparent NPQd (NPQd^{app}) and an effective NPQd (NPQeff, which corresponds to the NPQd used in the manuscript); both were calculated as follow:

 $NPQd^{app} = Fm/Fm'-1$

 $NPQd^{eff} = NPQd$ as used in the manuscript = Fm^{24h}/Fm' - 1- NPQs

When not using the true FmMax, the apparent NPQd (NPQ $_d^{app}$) underestimates the effective NPQd (NPQ $_d^{eff}$) as follows:

 $NPQ_d^{eff} = NPQd^{app}$. (NPQs + 1)

Therefore, when NPQs is high, the respective error on NPQd^{app} is high. The Figure S1 below confirms that NPQd^{app} underestimates NPQd^{eff} (panels C and D are the current figures proposed in the manuscript; panels A and B present NPQd^{app} data calculated with Fm.

Figure S1: NPQ_d^{app} (A,B) and NPQ_d^{eff} (C,D) as a function of incubation irradiance in cell previously acclimated to 50 μ mol photons m⁻² s⁻¹ (A,C) and 400 μ mol photons m⁻² s⁻¹ (B,D) and after 20, 180, 360 and 1440 min dark acclimation. Each data point is the mean of 3 independent cultures, error bars represent standard deviations.

Figure S2: Chlorophyll *a* per cell as a function of growth irradiance in *T. gravida* cells acclimated to 0° C (closed circles) and 5° C (open circles).

Figure S3: (A) P^{Cell}_{m} , (B) P^{*}_{m} , (C) α^{Cell} , (D) α^{C} as a function of growth irradiance in *T. gravida* cells acclimated to 0°C (closed circles) and 5°C (open circles). See Table 1 for parameters definition. Each data point is the mean of 3 independent cultures, error bars represent standard deviations.

Figure S4: Carbon fixation rate (measured by ¹⁴C incorporation) and growth rate as a function of incubation irradiance and growth rate respectively in *T. gravida* cells acclimated to 10, 50, 80, and 400 μ mol photons m⁻² s⁻¹ at 0°C (A) and 5°C (B).

Figure S5: 1-qP as a function of incubation irradiance in *T. gravida* cells acclimated to 50 and 400 μ mol photons m⁻² s⁻¹ at 0°C and 5°C with and without DTT.

Figure S6: Fv/Fm as a function of NPQs in *T. gravida* cells acclimated to 50 (black dots) and 400 μ mol photons m⁻² s⁻¹ (white dots) at 0°C (A and B) during dark relaxation. In B we added data from literature (Verhoeven et al., 1996). Fv/Fm as a function of NPQs in *Pseudotsuga menziesii, Pinus ponderosa* and *Euonymus kiautschovicus* obtained over the 4,5 days following transfer of the leaves from the field (on 10 March, 1994) to room temperature and low PPFD.

Verhoeven, A.S., Adams, W.W., and Demmig-Adams, B. (1996). Close relationship between the state of the xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress. Physiologia Plantarum 96, 567-576.