

Journal of Geophysical Research Ocean

Supporting Information for

Open-ocean convection process: a driver of the winter nutrient supply and the spring phytoplankton distribution in the Northwestern Mediterranean Sea

T. Severin^{1,5*}, F. Kessouri^{2,6*}, M. Rembauville¹, E.D. Sánchez-Pérez¹, L. Oriol¹, J. Caparros¹, M. Pujo-Pay¹, J.-F. Ghiglione¹, F. D'Ortenzio³, V. Taillandier³, N. Mayot³, X. Durrieu De Madron⁴, C. Ulses², C. Estournel², P. Conan¹

¹Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, CNRS, UPMC Univ Paris 06, CNRS, 66650 Banyuls/Mer, France, ²Laboratoire d'Aérologie, CNRS, Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, France, ³Sorbonne Universités, UPMC Univ Paris 06, INSU-CNRS, Laboratoire d'Océanographie de Villefranche (LOV), 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France, ⁴CEFREM, CNRS-Université de Perpignan, 52 avenue Paul Alduy, 66860 Perpignan, France, ⁵Current address: Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373-5015, United States, ⁶Current address: Department of Atmospheric and Oceanic Sciences, University of California Los Angeles. 520 Portola Plaza, 7127 Math Sciences, Los Angeles, CA 90095, United States, * Authorship equally shared

Contents of this file

Figures S1 to S2 Tables S1

Introduction

This supporting information provides the results of the statistical clustering realized with the winter (February 2013; Fig. S1) and spring (April 2013; Fig. S2) datasets, and the pairwise correlation matrix of the spring data (Table S1).

Figure S1. Hierarchical clustering of the winter stations (leg 1 DeWEX, February 2013)based on their nutrients characteristics along the water column. Squares represent the three resulting winter classes obtained by using the euclidian distance threshold of 15 : *Stratified* (green), *Mixed* (blue) and *Deep Convection* (red). The black line represents the euclidian distance threshold of 7 that delimits the sub-classes (from left to right) *Stratified 1, Stratified 2, Mixed Shelf, Mixed Open Sea, WMDW Deep Convection* and *Bottom Deep Convection*.

Figure S2. Hierarchical clustering of the spring stations (leg 2 DeWEX, April 2013) based on their fluorescence characteristics along the water column. Squares represent the three resulting spring classes obtained by using the euclidian distance threshold of 105 : *Surface Bloom* (red), *Intermediate* (green) and *DCM* (blue). The black line represents the euclidian distance threshold of 90 that delimits the 2 sub-classes *50-DCM* and *30-DCM* from the *DCM* class.

	zfluo. max	Fluo. at 10m	Integrated fluo.	Nitracline	Silicline	MLD001	MLD003
Fluo. at 10m	0.672***		0.807***	0.191	0.056	-0.158	-0.059
Integrated fluo.	0.623***	0.807***		0.180	0.106	-0.204	-0.11
Nitracline	-0.18	0.191	0.18		0.725***	0.466***	0.438***
Silicline	-0.232	0.056	0.106	0.725***		0.315*	0.219
MLD001	-0.322*	-0.158	-0.204	0.466***	0.315*		0.828***
MLD003	-0.236	-0.059	-0.11	0.438***	0.219	0.828***	
Ze	-0.078	0.080	0.059	0.405**	0.445***	0.184	0.172

Table S1. Spearman's rank pairwise correlation between variables of the Leg 2 (April 2013). Integrated fluo. for 0-100 m integrated fluorescence (in mgChla.m⁻²), Fluo. max. for maximum of fluorescence (in mgChl.m⁻³), $z_{fluo-max}$ for the depth of the fluorescence maximum (in m), nitracline (in m), silicline (in m), MLD for Mixed Layer Depth (in m), and z_e for euphotic depth (in m). Numbers are the correlation values r, and stars indicated significant p-values: * for p-value<0.05, ** for p-value<0.01, *** for p-value<0.001.