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SUMMARY
In this paper, we examine an efficient, practical method to calculate approximate,
finite-frequency waveforms for the early signals from a point source in 3-D acoustic
media with smoothly varying velocity and constant density. In analogy to the use of
Feynman path integrals in quantum physics, we obtain an approximate waveform
solution for the scalar wave equation by a Monte Carlo summation of elementary
signals over a representative sample of all possible paths between a source and
observation point. The elementary signal is formed from the convolution of the source
time function with a time derivative of the Green’s function for the homogeneous
problem. For each path, this elementary signal is summed into a time series at a
traveltime obtained from an integral of slowness along the path. The constructive and
destructive interference of these signals produces the approximate waveform response
for the range of traveltimes covered by the sampled paths.

We justify the path-summation technique for a smooth medium using a heuristic
construction involving the Helmholtz–Kirchhoff integral theorem. The technique can
be applied to smooth, but strongly varying and complicated velocity structures. The
approximate waveform includes geometrical spreading, focusing, defocusing and phase
changes, but does not fully account for multiple scattering. We compare path-summation
waveforms with the exact solution for a 3-D geometry involving a low-velocity spherical
inclusion, and with finite-difference waveforms for a 2-D structure with realistic,
complicated velocity variations.

In contrast to geometrical-ray methods, the path-summation approach reproduces
finite-frequency wave phenomena such as diffraction and does not exhibit singular
behaviour. Relative to the finite-difference numerical method, the path-summation
approach requires insignificant computer memory and, depending on the number of
waveforms required, up to one to two orders of magnitude less computing time. The
sampled paths and associated traveltimes produced by the path summation give a
relation between the medium and the signal on the waveform that is not available with
finite-difference and finite-element methods. Furthermore, the speed and accuracy of
the path-summation method may be sufficient to allow 3-D waveform inversion using
stochastic, non-linear, global search methods.

Key words: inversion, lateral heterogeneity, synthetic waveforms, wave equation, wave
propagation.

the information contained in high-quality waveform data sets
INTRODUCTION

than do existing techniques such as first arrival time inversion.
It is important to have computationally efficient methods for Existing methods for modelling scalar, acoustic or elastic wave

modelling finite-frequency or broad-band wave propagation in propagation are variations on three, basic, complementary

structures with strong velocity variations in three dimensions. approaches—ray, frequency–wavenumber summation, and

Such methods may allow non-linear inversion of waveform numerical calculations such as finite differences and finite

data for problems in fields such as seismology and ocean elements. Ray-based techniques are efficient and can be used

acoustics, where complicated velocity structures or wavefields with complicated media, but are valid only if the wavelengths

involved are much smaller than any characteristic length inare expected. This inversion would make use of much more of
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Path-summation waveforms 703

the medium, or, equivalently, these techniques are valid only

at very high frequencies. These methods cannot produce finite-

frequency phenomena such as diffraction and head waves, and

they fail at singular regions of the finite-frequency wavefield,

for example near caustics. However, there are many formal

and ad-hoc extensions to ray theory that recover some of these

phenomena in the high-frequency limit. In contrast to ray-

based methods, frequency–wavenumber of modal-summation

techniques are valid for a broad range of frequencies and can

produce exact waveforms, but these methods are only applicable

for relatively simple and highly symmetric structures. Finally,

numerically intensive techniques such as finite elements and

finite differences can accurately model full wave phenomena

in complicated structures, but these methods typically require

large to very large computing resources and computing time.

Other hybrid techniques, such as Kirchhoff–Helmholtz–Fresnel

and related boundary-integral methods, may combine features

and advantages from the three basic approaches, but they also

retain some of the disadvantages and limitations.

In this paper, we introduce an efficient ‘path-summation’

technique to obtain approximate waveforms due to finite-

frequency, scalar wave propagation from a point source with

arbitrary source time function in media with smooth, 3-D

velocity variations. These waveforms are approximate solutions

to the scalar wave equation; this equation represents the acoustic

case with constant density. The path-summation method

combines many of the advantages of the three basic, existing

approaches, and it may be fast and accurate enough to allow

imaging of complicated 3-D structures through non-linear

inversion of waveforms.

The path-summation method constructs an approximate

solution to the scalar wave equation by Monte Carlo summation

over the contributions of elementary signals ‘propagated’ along
Figure 1. (a) Schematic illustration of the path-summation waveforma representative sample of all possible paths between the source
method; this method samples many paths that fill a volume of theand observation points (Fig. 1a). The elementary signal is
medium. (b) Schematic illustration of a ray-based method; ray methodsgiven by the convolution of the source time function with a
sample the medium only along one or a few paths.

time derivative of the Green’s function for the homogeneous

problem. This elementary signal is summed into a waveform

at an offset time given by a traveltime (integral of slowness)
with velocity variations the size of and larger than the domi-

along each path. The amplitude of the resulting waveform is nant wavelength of the source signal, to obtain the first-
scaled by a factor that depends on the distance of the obser- arriving waveforms at distances of about 10 times the dominant
vation point from the source, the number of paths used, and wavelength.
other quantities. The constructive and destructive interference We begin by reviewing the path-integral concept in physics,
of the elementary signals contributed by each path produces a and then we present a heuristic development using the
waveform that converges towards the approximate response Helmholtz–Kirchhoff integral theorem to arrive at an approxi-
for the portion of the medium and range of traveltimes covered mate, path-summation solution for the scalar wave equation
by the sampled paths. For example, the constructive interference in three dimensions. Next, we examine the performance of
of elementary signals from a large number of paths with nearly this path-summation waveform method relative to an exact
identical traveltimes will produce prominent features on the solution for a 3-D problem involving a low-velocity sphere
waveform. In contrast, the interference of signals from many embedded in a homogeneous whole-space. We then compare
paths with well-distributed traveltimes will converge to a flat the waveforms from a 2-D form of the path-summation formula
trace. This procedure for obtaining a solution to the scalar wave with waveforms from finite differences for a realistic 2-D medium.
equation forms an analogue to the Feynman path-integral Finally, we use the 2-D path-summation results to examine
technique (Feynman 1948; Feynman & Hibbs 1965; Feynman the relationships between the sampled paths and features of
1985; Weigel 1986), a basic tool in elementary particle physics the waveforms and the model.
for the study and understanding of quantum phenomena.

In practice, the approximate nature of the ‘path-summation’
FEYNMAN PATH INTEGRALS

technique and computational limitations will impose upper

bounds on the model complexity, maximum frequency and In 1948, Richard Feynman introduced the path-integral method
source–receiver distances that can be studied. In a 2-D example, as a new formulation of non-relativistic quantum mechanics

and showed that this formulation satisfies the Schrödingerwe will see that this method can be applied to smooth media
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704 A. L omax

equation (Feynman 1948). Since this time, ‘Feynman’ path variable density. This solution includes a sum over all time

integrals have been fruitfully applied in physics and other derivatives of the source time function; Schlottmann (1999)
physical sciences to a diverse range of problems (e.g. Schulman proposes that this sum is necessary to account for all multiple
1988; Wiegel 1986; Khandekar et al. 1993). scattering in heterogeneous media. It will be important to see

The path-integral method as presented by Feynman (1948) if this solution can be efficiently evaluated in practice for
states that the probability that an event occurs is given by the heterogeneous media, as it may then form a more accurate
square of the sum of complex amplitude contributions from and complete alternative to the approximate path-summation
all possible ways that the event could occur. For problems in method we examine in this paper.
quantum physics, these ‘ways’ are space–time paths between Finally, in astrophysics, Williamson (1975) uses a ‘stochastic
two states of a particle. For a quantum particle, the contri- ray’ method that is related to path integrals to study small-
bution from each path is equal in magnitude but varies in angle, multiple-path scattering of electromagnetic radiation
phase according to the ‘action’ of classical physics, that is the passing through planar scattering regions of the interstellar
time integral of the Lagrangian of the system as the particle medium. This method constructs the approximate response at
follows the spacetime path (Feynman 1948). There are thus an observation point using a Monte-Carlo summation over
contributions to the amplitude sum not just from ‘classical’ paths scattered ‘elemental pulses’ that have been delayed in time
of minimum ‘action’, but also from an infinite number of ‘non- relative to the direct radiation because of the increased length
classical’ paths. The resulting expression for the probability of their paths. This methodology is qualitatively similar to the
includes both familiar, ‘classical’ phenomena and unusual, path-summation waveform technique that we present here.
qualitatively different, quantum mechanical behaviour. In summary, it appears that a path-integral-type solution

The quantum behaviour arises from the constructive and for finite-frequency, scalar wave propagation in heterogeneous
destructive interference of the complex amplitude values in the media does not yet exist in a form that can be implemented in
path-integral sum. The use of complex amplitudes is related practice. As an alternative, following the path-integral concept,
to the ‘wave-like’ behaviour of quantum ‘particles’. As a we develop below an approximate, path-summation solution
consequence, we find parallels between the classical–quantum for the scalar wave equation. We will see that this solution can
duality in particle physics and the ray–wave duality in optics be applied in practice and that it gives promising results in
or elasticity. This is underlined by an example that Feynman heterogeneous media.
uses to illustrate the path-integral concept. He shows (Feynman

1985) that a consideration of the traveltime (or phase delay)
along all possible paths that light could take between two points

HEURISTIC DEVELOPMENT OF ANpredicts the well-known geometrical-optics result that light
APPROXIMATE, PATH-SUMMATION‘follows’ the path of least time—the Fermat path. However,
SOLUTION FOR THE SCALAR WAVEadditionally, he shows that this multiple-path approach also
EQUATIONproduces diffraction, a non-geometrical result. We see in this

simple optics example that the path-integral approach does The scalar wave equation for field y(r, t) can be expressed as
not rely on the representation of light as travelling along one
or a few, infinitesimally narrow rays. Instead it represents the

light as sampling a large volume between the two points V2y(r, t)−
1

c2(r)

∂2y(r, t)

∂t2
=0 , (1)

(cf. the paths in Figs 1a and b). Consequently, many paths
other than Fermat paths are considered, and non-geometrical,

where t is time and the quantity c (r) is a function of positionfinite-frequency phenomena are obtained.
r (e.g. Morse & Feshbach 1953; Tolstoy 1973). c (r) has theIn the physical sciences, the Feynman path integral is invoked
units of velocity and may be referred to as a ‘structural’ orfor problems where the wave equation can be transformed to
‘medium’ velocity, but it does not specify a wave velocitya parabolic equation with the form of the Schrödinger equation
except for infinite-frequency waves, or for plane waves if c (r)(e.g. Dashen 1979; Klauder 1986; Patton 1986; Ziolkowski
is constant (Wieland 1993). For the study of sound, the scalar1986). These formulations are valid only for high-frequency
wave equation follows from the acoustic equation of motionwaves and for media in which properties vary predominantly
for the case of constant density and spatially varying com-along one spatial dimension, but they allow the stable analysis of
pressibility. The scalar wave equation also specifies the approxi-phenomena for which geometrical optics fails, such as diffraction
mate behaviour of the potentials for longitudinal or transverseand propagation near caustics. These high-frequency solutions
waves in smoothly varying elastic media when conversionsare related to the WKBJ approximation (Schulman 1981).
between the two wave types can be neglected.Path-integral solutions for the scalar wave equation can also be

In the following we invoke a heuristic development involvingobtained by introducing a ‘pseudo-time’ variable that is used
the Helmholtz–Kirchhoff integral theorem and several simpli-to transform the frequency-domain equation to a parabolic
fications valid for smooth media, to obtain an approximate,form (e.g. Fishman & McCoy 1983; Samelsohn & Mazar 1996).
path-summation solution of the scalar wave. However, theHowever, these solutions require integration over the ‘pseudo-
resulting formula is an infinite sum, which cannot be evaluatedtime’ variable and over frequency, in addition to the integral
in practice. We obtain normalization terms and a rule for pathover paths, and consequently it is not apparent that they can
selection for a practical, finite-sum solution by demanding thatbe efficiently evaluated in practice for heterogeneous media.
this solution give the correct response for a homogeneousFollowing this ‘pseudo-time’ approach, Schlottmann (1999)
medium. Finally, we propose that this finite, path-summationhas succeeded in evaluating the integrals analytically over the
formula also forms an approximate solution of the scalar wave‘pseudo-time’ variable and frequency to obtain a time-domain,

path-integral solution for the full acoustic equation, including equation for a medium with heterogeneous velocity c (r).
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Path-summation waveforms 705

The Helmholtz–Kirchhoff integral

The Helmholtz–Kirchhoff integral is a formal mathematical
expression of the Huygens–Fresnel principle, which states that

the field on a wavefront is given by the sum over secondary
wavelets emitted at every point of the wavefront at an earlier
time.

We first obtain Helmholtz–Kirchhoff integral for an inhomo-
geneous medium. We consider a wave field y(r, t) which
satisfies the scalar wave equation (1), and the Green’s function

g(r, t; r0 , t0 ) for the scalar wave equation with an impulsive
source term,

V2g(r, t; r
0
, t
0
)−

1

c2 (r)
∂2g(r, t; r

0
, t
0
)

∂t2
=−4pd(r−r

0
)d(t−t

0
) .

(2)

Green’s theorem states that

Figure 2. The recursive construction used to obtain the signal at

observation point r due to an impulsive source at r0 in a heterogeneousPPP
V

(w
1
V2w

2
−w

2
V2w

1
) dV =PP

S
Aw

1
∂w

2
∂n

−w
2
∂w

1
∂n B dS , (3)

medium. The Helmholtz–Kirchhoff integral is evaluated sequentially

on a large number of small spherical surfaces; this evaluation can
where V is a volume bounded by the closed surface S; w1 and be re-arranged as a sum over paths. Only the spherical surfaces
w2 are functions with continuous first and second derivatives corresponding to one path are shown. See the text for details.

within V and on S; and ∂/∂
n

denotes differentiation along the
normal vector on S. We substitute y(r, t) and g(r, t; r

S
, t
S
) for

w1 and w2 , with r inside S, and initial values y(r, t
S
=0)=0

Continuing this process for each surface element on eachand (∂/∂t)y(r, t
S
=0)=0, where the subscript S denotes

new sphere, we obtain a tree-structure calculation involvingquantities evaluated on the surface S. It can then be shown
a very large number of spherical surfaces on which wethat Green’s theorem (3) reduces to an compact expression for
evaluate the Helmholtz–Kirchhoff integral. The evaluation ofy(r, t):
these integrals begins at surface elements dS

1nm…p,q
that are

infinitesimally close to the source at r0 , and continues backy(r, t)=
1

4p P2

0
dt
S PP

S
Gy(r

S
, t
S
)
∂
∂n

g(r, t; r
S
, t
S
)

towards the root spheres S1 at the observation point r (Fig. 2).
Expressed mathematically, this calculation has the form of a

set of nested, infinite sums,−g(r, t; r
S
, t
S
)
∂
∂n

y(r
S
, t
S
)H dS . (4)

gPS (r, t; r
0
, t
0
)# lim

N,M,…,Q�2
∑
N

n=1
dS

1,n(e.g. Scott & Helmberger 1983; Frazer & Sinton 1984; Carter

& Frazer 1984; or, for the homogeneous case, Morse & Feshbach
1953; Born & Wolf 1980). This form of the Helmholtz– ×L G ∑

M

m=1
dS

1n,m
L G… ∑

Q

q=1
dS

1nm…p,q
L {dy

0
}HH ,

Kirchhoff theorem expresses the field y(r, t) in terms of an

integral of y and g and their derivatives over the surface S at (5)
the ‘retarded’ time t

S
.

where dy0 is an ‘elementary’ contribution of the source at each
surface element dS

1nm…p,q
that comes infinitesimally close to

An approximate path-summation solution the source, and L {y} is the operator forming the integrand of

the Helmholtz–Kirchhoff integral (4),We now obtain an approximate, path-summation expression
for the Green’s function response due to an impulsive source

L {y}=
1

4p P2

0
dt
SAy

∂
∂n

g−g
∂
∂n

yB . (6)4pd(t−t0)d(r−r0) in a medium with velocity c=c(r). We follow
a heuristic development beginning with a construction based

on repeated, local application of the Helmholtz–Kirchhoff We now make the important assumptions that the nested
infinite sum (5) is mathematically meaningful and that it isintegral (4).

We consider a small sphere S1 of radius r, centred on the convergent; we leave further discussion and proof of these

assumptions for future work.observation point r (Fig. 2). We obtain the Green’s function
gPS (r, t; r0 , t0 ) by applying the integral (4) on the surface of S1 . Now, because L {y} is linear in y, the nested sum (5) can

be rearranged into an infinite sum over ‘paths’ from r0 to rWe perform this integration by summing over the contributions

of the field on N surface elements dS
1,n

, in the limit N�2; (Fig. 2), where each path passes through one surface element
on a suite of spheres S1 , S1n , … S

1nm…p
:dS

1,n
� 0. Similarly, we can obtain the field on each surface

element dS
1,n

on S1 by again applying the integral (4) using

additional small spheres S
1n

centred on each dS
1,n

. For each gPS (r, t; r0 , t0 )# lim
N,M,…,Q�2

∑
N

n=1
∑
M

m=1
… ∑

Q

q=1
dS

1,n
new sphere S

1n
, we sum over the contributions of the field on

M surface elements dS
1n,m

, in the limit M�2; dS
1n,m

� 0. ×L {dS
1n,m

L {… dS
1nm…p,q

L {dy
0
}}} . (7)
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706 A. L omax

This rearrangement will allow us ultimately to obtain an where s=|r−rs |. This expression reduces to the expected 1/s

geometrical spreading function in the homogeneous case, whileestimate for the response gPS (r, t; r0 , t0 ) by summing over a
representative sample of all possible paths from r0 to r. The for a heterogeneous medium it is scaled by the square-root

term that accounts for the conservation of energy within anyexpression (7), however, cannot be evaluated in practice.

Consequently, assuming a smooth medium, we next develop solid angle dV on the spreading wavefront; that is,
approximations for dy0 and L {y} such that the infinite sum rc(r)s2dV|G(r) |2=constant , (15)
over ‘paths’ (7) collapses to a simple, usable form. For concise-

where r is the constant density of the medium.
ness, but without loss of generality, we use t0=0 in the

Substituting (13) and (14) into (4), neglecting derivatives of
remainder of this section.

the velocity, evaluating the integral over time, and dropping
the subscripts S, we obtain

Smooth, heterogeneous medium
y(r, t)#

1

4pWe first obtain an expression for the ‘elementary’ source
contribution dy0 in (7) by examining the Green’s function
response infinitesimally close to the source. Assuming a smooth ×PP

S
Sc(rs )

c(r) G[y]
∂
∂n A1

sB− 1

c(r)
1

s

∂s
∂n C∂y

∂t Dmedium, we can take a small region around the source at
r=r0 as homogeneous, with constant velocity c0=c (r0 ). We

−
1

s C∂y

∂nDH dS , (16)thus associate the contribution dy0 with the Green’s function

response for the homogeneous case gH(r, t; r0 , 0) in the limit
where s is distance along the geometrical optics ray path fromr� r0 : rs to r. This is an approximate form of the Helmholtz–

Kirchhoff integral (4) for surfaces S enclosing small volumeslim
r�r

0

gH (r, t; r0 , 0)= lim
r�0

d(t−r/c
0
)

r
. (8)

in a smooth, heterogeneous medium. The normal to S is taken
positive inwards and square brackets denote values of the

Substituting j=r/c0 , the right side of (8) becomes
functions taken at the ‘retarded’ time tS=t−s/c.

Now with the form of the integrand L {y} given in (16) we
lim
j�0

d(t−j)

c
0
j

, (9) can examine the ‘propagation’ of the elementary contribution

of the source dy0 , expression (12), along a path in the sum
which, by symmetry of the terms t and j inside the delta (7). We note that along any path all of the square-root
function, is equivalent to amplitude terms collapse to the single factor √c (r

0
)/c (r); for

conciseness we do not include this term in the following. We
lim
j�0

−
d(t−j)

c
0
t

=−
d(t)

c
0
t

. (10) will show by induction that the elementary contribution at
point P

j
on the path can be approximated by

Now, we use the identity d∞(t)=−d(t)/t to arrive at
dy

j
#

1

Njc
0

d∞(t−t
j
) , (17)

lim
r�r

0

gH (r, t)=
d∞(t)
c
0

. (11)
where t

j
=t

j−1+r
j
/c
j
is the traveltime or integral over slow-

ness along the path from the source point P0 to point P
j
, r
j
is

Returning to our smooth, heterogeneous medium, and the distance along the path between points P
j
and P

j−1 , c
j
is

replacing c0 with the velocity at the source, c(r0 ), expression the velocity at point P
j
, and c

0
=c(r0 ) (Fig. 2). For simplicity

(11) indicates that we can take of notation, but without loss of generality, we have taken the

same radius and number N of surface elements of area dS for
dy

0
=

d∞(t)
c(r

0
)
, (12) each sphere.

Clearly, if we consider the source point, where j=0 and

t0=0, expression (17) evaluates to that for the elementaryas the ‘elementary’ contribution of the source to each path.
contribution at the source (12). Next, considering an arbitraryNext, to obtain a concise approximation for the operator
point P

j
along the path, we assume that the elementary con-L {y} in the sum (7), we again assume a smooth velocity

tribution dy
j
at P

j
is given by (17), and then seek to confirmvariation and, following Carter & Frazer (1984), we put

that this expression is valid for the contribution dy
j+1 at point

g(r, t; rS , tS )$G(r)d(t−tS−t) , (13) P
j+1 . Substituting r

j+1 for s and c
j+1 for c(r) in (16), the

elementary contribution dy
j+1 at point P

j+1 , evaluated at thewhere G(r) is an amplitude term and t is the geometrical optics
retarded time t−r

j+1/cj+1 , istraveltime from r0 to r. In addition, because we use small

spheres S in constructing our infinite sum over paths (7), we
dy

j+1=dS
1

4p
L {dy

j
}=

4pr2
j+1

N

1

4p
L {dy

j
}need only ‘propagate’ our Green’s function (13) over vanishingly

small distances relative to any length-scale of velocity variation.

This suggests approximating the Green’s function with an =
1

Nj+1c
0
Gd∞(t−t

j+1 )+
r
j+1

c
j+1

d◊(t−t
j+1 )expanding, spherical wave. To this end, we take a simple form

for the amplitude term G(r) that partly accounts for smooth

velocity variation in the medium: −r
j+1 cos hA 1

c
j
−

r
j

c2
j

∂c
∂r K

P
j

B d◊(t−t
j+1 )H , (18)

where h is the angle of change of direction of the path at P
j
.

G(r)=
1

s Sc(rs )
c(r)

, (14)
Now we take the distance between points to be arbitrarily
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Path-summation waveforms 707

small; that is, r
i
=e

i
%1. This is consistent with our previous where T

k
=r

k
/c and r

k
is the length of the kth path. If we now

require that the path lengths r
k

are uniformly distributedrequirement that the spheres in our recursive application of
the Helmholtz–Kirchhoff integral should be very small. This, between the minimum length r and the maximum length rmax ,

and we sort the paths according this length, then we can writeand the fact that in a smooth medium ∂c/∂r|
P
j

is bounded,

suggests that we may neglect terms in r
j
and r

j+1 . If we neglect (rmax−r)/cK¬DT which is the constant step between the
traveltimes T

k
of the sorted paths. Multiplying and dividingthese terms, then (18) simplifies to

the right side of (23) by this step we have

dy
j+1#

1

Nj+1c
0

d∞(t−t
j+1 ) . (19)

g̃3-DPS,H= lim
K�2

A

c

cK

rmax−r
∑
K

k=1
d∞(t−T

k
)DT . (24)

This expression is the same as (17), with index j+1 replacing
j. Thus we have shown that (17) is valid at the source point

We can convert the sum in (24) to an integral over time by
and between two consecutive points along a path, and so, by

taking the limits K�2, T
k
� T , and DT� dT , which gives

induction, it is valid at all points along a path starting at
the source.

g̃3-DPS,H=A
K

rmax−r P rmax/c
r/c

d∞(t−T )dT . (25)Comparing expressions (17) and (19), we note that dy
j+1

differs from dy
j

only by a change in traveltime from t
j

to
t
j+1=t

j
+r

j+1/cj+1 , and by a factor 1/N. Thus, in lieu of We can immediately evaluate the integral in (25) to obtain
evaluating all of the nested operators in the sum (7), we need

only calculate the traveltime along each path, and apply g̃3-DPS,H=A
K

rmax−r
[d(t−r/c)−d(t−rmax/c)] . (26)

an appropriate normalization. The simplicity of this result
will allow in part for the practical evaluation of our final

If now we choose
path-summation formula.

Finally, writing the nested sum (7) as a single sum over
A=

rmax−r

Kr
, (27)K�2 paths for r0 to r, where K=NM …Q, and substituting

the results (12) and (17), we obtain an estimate for the impulse
then (26) reduces toresponse gPS (r, t; r0 , t0 ):

gPS (r, t; r
0
, t
0
=0)# lim

K�2
N�2

1

√c(r
0
)c(r)

∑
K

k=1
1

Np
k

d∞(t−T
k
) , (20) g̃3-DPS,H=

d(t−r/c)

r
−

d(t−rmax/c)
r

. (28)

The first term on the right side of (28) is the desired Green’swhere p
k
=p

k
(N, k) is the number of small spheres or segments

function (22), while the second term is an ‘artefact’ Green’salong path k, and
function due to fictituous sources at a distance rmax from

the observation point. We can easily identify and ignore theT
k
=P r

r
0

ds
k

c(r)
(21)

contribution to the waveform from this ‘artefact’ Green’s
function is we choose rmax/c&r/c. Thus the substitution of theis the integrated slowness, or traveltime, along path k. We note
term A as defined in (27) for the term 1/Np

k
in the sum (20)that the path geometry and the normalization term 1/Np

k
in

gives a practical path-summation formula which produces thethe sum (20) are independent of the velocity variation c(r).
expected Green’s function for a constant-velocity medium.In practice, the infinite sum (20) must be evaluated using a

We noted earlier that the path geometry and the normalizationfinite sample of paths. Thus we need rules for choosing an
term 1/Np

k
in the sum (20) are independent of the velocityappropriate finite sample of paths and we need the correspond-

variation. Thus, it is reasonable to apply the rule for pathing normalization terms for these paths, in lieu of the term
selection and the normalization (27) obtained above for the1/Np

k
in (20). In the next section we use the known solution

constant-velocity medium to the case of a smooth, heterogeneousfor a point source in a homogeneous medium to obtain
media. Then, substituting (27) for the term 1/Np

k
in the sumnormalization terms and a rule for path selection that allow

(20), we obtain our final path-summation approximation tofor a practical evaluation of the sum (20).
the 3-D Green’s function response:

A practical path-summation formulation
g̃3-DPS (r, t; r

0
, t
0
=0)# lim

K�2

rmax−r

√c(r
0
)c(r)K

∑
K

k=1
d∞(t−T

k
)

r
, (29)

We develop a practical path-summation formula for a finite
sample of paths by assuming that we can replace the term

where T
k

is given by (21). We recall that our choice of1/Np
k

in the sum (20) with a factor A independent of the
normalization requires that the path lengths be distributedpath k. We then find A and a rule for path selection such that
uniformly between the source to observation-point distance rthe resulting expression g̃3-DPS,H reproduces the correct Green’s
and the maximum path length rmax used in the sum.function response for the homogeneous case with velocity c,

To arrive at (29) we followed a heuristic development where
we assumed but did not demonstrate the convergence of the

g3-DH (r, t; r
0
, 0)=

d(t−r/c)

r
. (22)

infinite sum (5), and we made several strong approximations
following from the smoothness of the medium. In particular,

Substituting a factor A outside the sum for the term 1/Np
k the choice of Green’s function (13) and (14) and the simpli-

in (20), we have
fication from (18) to (19) explicitly neglects local, multiple
scattering; thus the path-summation solutions (20) and (29)

g̃3-DPS,H= lim
K�2

A

c
∑
K

k=1
d∞(t−T

k
) , (23)

locally include only forward propagation.
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708 A. L omax

The path-summation ‘Green’s’ function g̃PS is given by (29) in
Two-dimensional path-summation formulation

three dimensions, and by (32) or approximately by (33) in two
dimensions. The traveltime T

k
is given by the integral overAlthough the path-summation approach is intended primarily

for 3-D problems, we will require later a 2-D formula for a slowness along each path,

numerical example comparing path-summation and finite-
difference waveforms. We will thus construct an approximate, T

k
=P r

r
0

ds
k

c(r)
, (35)

2-D analogue to expression (29) which reproduces the correct

Green’s function response for the homogeneous case. We first
where we define a parametric path s

k
and an increment ds

kwrite (29) as
along this path by

g̃3-DPS # lim
K�2

rmax−r

√c(r
0
)c(r)K

∑
K

k=1
−

∂
∂T

d(t−T )

r K
T=T

k

. (30) s
k
¬x( p); 0≤p≤1; x(0)=r

0
, x(1)=r ,

ds
k
=S∑

D

i=1
dx2

i
,

(36)

This expression shows that the path-summation formula (29)
is an algorithm that sums time derivatives of the Green’s

where p is a parameter and D is the spatial dimension offunction, shifted in time according to the traveltime T
k
=r

k
/c

the problem.along each path. We will construct the equivalent algorithm
Practical application of the path-summation formulas to ausing the 2-D Green’s function for an impulsive source (Morse

scalar wave equation problem requires a summation over a& Feshbach 1953; Tolstoy 1973)
finite number of paths (i.e. K finite) between the source and
the observation point r; this gives a waveform solution y(r, t)g2-DH (r, t; r

0
, 0)=

2h(t−T )

√t2−T 2
, (31)

for the problem that is an approximation to the finite-frequency

response with appropriate amplitude scaling. Note, however,
where r=dr−r0d, T =r/c, and h(x) is the Heaviside unit step- that since we evaluate the path summation using a finite,
function. Forming a sum analogous to (29) by taking the Monte Carlo summation, the ‘Green’s’ function waveform we
derivative with respect to traveltime T of (31) and then obtain will be in general very ‘spiky’ and so may not be useful
evaluating the result at the traveltime T

k
along each path, we in practice before convolution with a smooth source time

form a 2-D path-summation formula, function.

g̃2-DPS (r, t; r
0
, t
0
=0)

Discussion of the path-summation formulation
# lim

K�2

rmax−r

√c(r
0
)c(r)K

∑
K

k=1
−

∂
∂T

2h(t−T )

√t2−T 2 KT=T
k

. (32)
Some discussion of the path-summation formula and its justifi-
cation is useful to illuminate the character, range of validity

It can be easily shown that this formula reproduces the correct and limitations of the method. First, note that we have obtained
Green’s function for the homogeneous case by following the a path-summation solution for the scalar wave equation using
steps used above to convert the path sum to an integral for a traveltime—the integral of slowness along a spatial path.
the 3-D case. This approach differs from the use in the Feynman path-

For computational efficiency, we will use a modified form integral method of the classical action, the integral of the
of the 2-D path-summation formula (32) for the 2-D example Lagrangian along a space–time path. While the action integral
below. We simplify (32) by replacing the evaluation within the in the Feynman path-integral method is related to the principle
path sum of the Green’s function for traveltime T

k
along each of least (stationary) action, the integral over slowness in our

path with a single convolution after the path sum with the formulation is related to Fermat’s principle of least (stationary)
homogeneous-medium Green’s function 2h(t−r/c:)/√t2−(r/c:)2, time. Our path-summation solution produces a waveform—a
where c: is the mean velocity along the fastest path in the sum. time-varying amplitude, instead of a single amplitude value
Thus we arrive at the 2-D path-summation formula related to the probability for the state of a quantum particle

obtained with the Feynman path integral.
g̃2-DPS (r, t; r

0
, t
0
=0)

Second, because the integral over slowness in (35) is
independent of integration direction along the path, the

# lim
K�2

rmax−r

√c(r
0
)c(r)K

2h(t−r/c:)
√t2− (r/c:)2

E ∑
K

k=1
d∞(t−T

k
) , (33)

path-summation formulation is symmetric for an exchange of
the source and observation points. Consequently, the path-

where E is the convolution operator. summation formula follows the principle of reciprocity (e.g.
Morse & Feshbach 1953).

Third, recall that we made no assumptions about the
Path-summation formulation for arbitrary source time frequency content of the source. In practical applications of
functions the method, however, the necessity of using a finite number of

paths gives a corresponding coarse sampling of the medium.The discrete, path-summation formulation for the response
Consequently, the resulting waveform will only form a usefuly(r, t) at observation location r for a point source q0 (r0 , t) in
approximation of the complete solution up to some highesta heterogeneous medium with velocity distribution c (r) is
frequency or corresponding shortest wavelength. This wave-given by the convolution of the source time function with the
length depends on the number of paths sampled, the roughnesspath-summation ‘Green’s’ function g̃PS ; that is,
of the medium and the distance between the source and
observation points.y(r, t|r

0
, t
0
)=q

0
(t)E g̃PS (r, t|r0 , t0 ) . (34)
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Path-summation waveforms 709

Finally, note that the conditions we imposed on the path

geometry to obtain normalization terms for the practical path-
summation formula do not depend on the velocity distri-
bution c (r). Thus we always construct a geometrically ‘uniform’

representative sample of paths, regardless of the velocity
distribution. The signal on the waveform for a heterogeneous
medium differs from that for a homogeneous medium because

of the non-uniform distribution of traveltimes produced in a
heterogeneous medium by the geometrically ‘uniform’ set of
paths. This asymmetry between the path geometry and the

traveltimes gives imperfect cancellation of the elementary
signals and so produces features on the waveform.

APPLICATION OF THE PATH-SUMMATION
METHOD

The practical implementation of the path-summation method
has two main components: (1) the specification and selection Figure 3. Examples of cubic B-spline paths. The locations of the

control vertices n1 and n2 for a two-vertex path or V1 for a single-of a representative set of paths; and (2) the construction of a
vertex path are selected at random within a pre-defined region a×bwaveform using the elementary signals contributed by each
(thick grey lines); this region may include the source and receiver ifpath.
back-scattering is desired. The spline path is a smooth curve betweenRecall that in developing the path-summation formulation
the source and observation points that passes near, but not through,we required that:
the intermediate control vertices.

(1) the velocity distribution c (r) is smooth;

(2) the maximum path length rmax is sufficiently greater than
the distance r from the source to the observation point that

the source and observations points, in the examples presentedthe truncation of the path summation and the corresponding
below. The main difficulty encountered with this method ofartefact signal occurs at a time Tmax later than any time
path specification is in obtaining a uniform distribution ofof interest;
path lengths because of the complicated relationship between(3) the path lengths are uniformly distributed between the
the location of the control vertices and the location of theminimum and maximum lengths r and rmax . resulting path.

Additionally, each path is subject to two tests before appli-
Path specification and selection

cation of the computationally expensive slowness integral
along the path. First, the path is rejected if its length is greaterA ‘well-distributed’ sample of ‘all possible paths’ is necessary

for the accurate, rapid convergence of the path-summation than the pre-determined, maximum length rmax . Second, for

problems where the model is only specified within a limitedmethod. Consequently, the specification of the geometry and
distribution of the paths and the selection of methods to region, a path is rejected if any part of it falls outside this region.
construct these paths efficiently are primary concerns in the

application of this method. We require a finite set of paths
Waveform construction

that samples the medium in the same way and gathers the
same information as the infinite set of ‘all possible paths’, and In practical applications, the waveform representing the

response at an observation point is constructed following thewhich satisfies the conditions set above in the justification of
the path-summation formula. Since we can only work with a path-summation formula (34) using a discrete time series y(t

i
).

For each path that is sampled, the discrete equivalent of therelatively small sample of paths, it is reasonable to restrict our

selection to the ‘least exceptional’ paths, that is smooth paths derivative of a Dirac delta function is summed into the time
series y(t

i
) at the time t

i
closest to the time t=t

0
+∆r

r
0

ds
k
/c(r),with few inflection points. This choice may be adequate for

smooth media, such as in our 2-D example below, but will the source reference time t0 plus the traveltime for the path

obtained by numerical integration of slowness along the path.prevent the inclusion of multiple-scattering effects in velocity
models with sharp boundaries or strong gradients. We will When all paths have been sampled, the time series y(t

i
) is

convolved with the source time function and scaled by theassume that the path geometry need only allow a radius of
curvature of the paths of the order of and larger than the factor (rmax−r)/√c (r

0
)c (r)K. In addition, because it is difficult

in practice to obtain a uniform distribution of path lengths,characteristic wavelength corresponding to the dominant

period T0 of the source. the contribution from each path is scaled in amplitude to
produce the equivalent of a uniform distribution of lengths.To meet these requirements, we specify the paths in the

present work using cubic B-splines. A cubic B-spline (Fig. 3) This amplitude scaling a for a path of length L is inversely

proportional to the number of paths K
L

with length betweenis a smooth, parametric curve whose shape and location is con-
trolled by a set of control vertices (e.g. Bartels et al. 1987). For L and L +DL ; that is, a=K/K

L
where K is the total number

of paths sampled. No corrections for focusing, defocusing orthe path-summation application we use a spline formulation

with special end conditions (Michelini 1995) so that the paths other non-dissipative amplitude changes due to changes in
the medium velocity along the individual path are applied—connect to the first and last control vertices (i.e. the source

and observation points). We use three to seven vertices, including these effects are accounted for in the summation over paths
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710 A. L omax

through the constructive and destructive interference of the

contributions to the waveform for each path.
Finally, the time series is multiplied by 1/r for a 3-D

simulation, or convolved with 2h (t−r/c:)/√t2− (r/c:)2 in two

dimensions, where c: is the mean velocity of the medium. Note
that the 3-D construction reproduces exactly the corresponding
path-summation ‘Green’s’ function (29), but, as noted earlier,

the 2-D construction uses an approximation to the formula
(32) for efficiency. That is, the convolution with 2h(t−r/c:)/
√t2− (r/c:)2 after the path summation is a convolution with a

homogeneous Green’s function using the constants r/c: for the
traveltime and r for the distance. To match (32) exactly, there
should be, for each sampled path, a convolution with a 2-D

Green’s function based on the traveltime T
k

and length r
k

for
the path.

NUMERICAL EXAMPLES

We next examine the performance and behaviour of the path-

summation method in three and two dimensions and compare
the resulting waveforms with those obtained with accurate
existing methods. In the following discussions we use quotes

to delimit terms such as ‘refracted’, ‘reflected’ and ‘diffracted’
since these are infinite-frequency and geometrical-ray concepts;

they are often not separable as distinct, independent wave
phenomena for finite-frequency wavefields.

Low-velocity sphere in three dimensions

We first apply the path-summation method in a 3-D problem
consisting of a low-velocity spherical inclusion in a homo-

Figure 4. 3-D model geometry and waveform locations. The geo-geneous whole-space. Strictly, this structure violates our
metrical shadow region is illuminated by first-arriving ‘diffracted’restriction to a smooth medium, but it allows a comparison of
waves, but there are no corresponding geometrical rays.the path-summation waveforms with those obtained with an

exact analytic solution.
For the 3-D geometry we take a point source in a homo-

geneous whole-space background with velocity c=5 km s−1 responsible for differences of the wavefield from that for a
homogeneous whole-space. This presents some difficulty for(Fig. 4). A spherical inclusion of radius 4 km and velocity

3 km s−1 is centred at a distance of 20 km from the source. the path-summation method since it is a stochastic, Monte

Carlo sampling technique and thus converges most rapidlyWe consider 25 observation locations along a radius normal
to the axis through the source point and the centre of the when features well distributed in the sampled region make

important contributions to the solution. Consequently, wesphere, and the radius intersects this axis at distance of 20 km

from the sphere. For this geometry, there is a ‘geometrical apply a basic, non-adaptive ‘importance-sampling’ in the path
selection by using only three or four control vertices, theshadow’ region for the observations within 8 km of the axis.

This region is illuminated by finite-frequency ‘diffracted’ source and observation locations and one or two points

between, to define the cubic B-splines. In this way, we constructwaves that can be considered as having passed around the
boundary of the sphere; these waves are not produced with paths of the ‘class’ type that is most likely to contribute to the

differences from the homogeneous problem, namely paths thatinfinite-frequency, geometrical-ray theory.

We obtain the exact finite-frequency waveforms from this bend only once. We thus are primarily sampling paths that
are smooth versions of ‘single-scattering’ paths; that is, pathsproblem using an analytic method (Korneev & Johnson 1992).

This wavenumber-domain method matches boundary con- composed of one straight segment between the source and a
‘scattering’ point, and a second straight segment between thisditions across the surface of the sphere to obtain the complete

3-D response due to elastic wave propagation from a point ‘scattering’ point and the observation location. [Sneider &

Lomax (1996) have show that a summation over such ‘single-source. We obtain a solution for the scalar wave equation by
setting the viscosity equal to zero in the spherical inclusion scattering’ paths recovers the main variations in amplitude

and phase of the first-arriving signal in a pseudo-randomand near to zero in the whole-space, and using an isotropic

pressure source. medium.] This importance sampling improves significantly the
recovery on the path-summation waveforms of features seenWe construct path-summation waveforms using the 3-D

path-summation formula (34 and 29). However, because of on the exact waveforms.

Each path-summation waveform consists of a sum overthe simplicity and high degree of symmetry of the inclusion
and problem geometry, a very small portion of the model, 10 000 paths, which takes only a few seconds of CPU time on

a desktop workstation (Hewlett-Packard 715-100 workstation).namely the boundary and interior of the sphere, will be
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Path-summation waveforms 711

For this simulation, if the sum is extended beyond 10 000 these waveform features; consequently, the use of the path-

summation method in a waveform inversion may give morepaths the background oscillations on the traces are reduced in
amplitude, but the shapes of the primary signals on the accurate imaging than ray-based first-arrival-time techniques.

Although not perfect, the results of this 3-D simulation arewaveforms do not change appreciably. We use the same source

time function for both solution methods. significant because the stochastic path-summation method
(with simple importance sampling) performs well for this highlyFig. 5 shows the exact and path-summation waveforms for

the low-velocity spherical inclusion. We find a near-exact symmetric geometry which has a velocity variation that is not

smooth. However, it will be necessary to perform a comparisonagreement for the ‘direct’ first-arriving pulse at locations
beyond 17 km. This result is expected since the wavefield in of the path-summation method with near-exact results for

more complicated 3-D structures which are more representativethese regions is not strongly influenced by the sphere, but it

also indicates that the path-summation method converges of natural structures and thus of primary interest in inversion
problems. Below we present such a comparison for a 2-Daccurately for a 3-D whole-space. There are small mismatches

in phase and amplitude between the two methods for the first- problem.

arriving pulse at locations less than 16 km. However, the path-
summation synthetics reproduce well the general shape and

Quasi-random two-dimensional medium
variation of the exact waveforms. Most notably, the path-

summation waveforms include the ‘diffracted’ first-arriving We examine the behaviour of the path-summation method in
a complicated, smooth 2-D medium that is representative ofsignal in the geometrical shadow zone at distances of 0 to

8 km. This is a finite-frequency wave phenomenon that cannot the models that might be obtained from inversion of realistic

earth structures. We compare the resulting waveforms withbe recovered with ray theory.
The secondary arrival at about 9 s traveltime on the trace those from a finite-difference solution for the scalar wave

equation, and we examine the relationship between features ofat location 0 km is formed by waves that are ‘scattered’,

‘refracted’ and ‘focused’ by the low-velocity inclusion. Here the medium, features on the waveforms, and the corresponding
path-summation paths.we also find that the path-summation waveforms show some

phase and amplitude differences from the exact results, but Fig. 6 shows the 2-D model and the source and observation
locations. The velocity distribution is quasi-random (Gaussian)again reproduce well the main features of the exact waveforms.

In particular, it is notable that the path-summation waveforms and strongly varying, with significant features on the scale of

and larger than the dominant wavelength of the source. Thereproduce much of the phase shift of this signal relative to the
phases of the ‘direct’ and ‘diffracted’ signals and the source velocity varies in the range 4.0±1.0 km s−1 (±25 per cent), with

an RMS variation of about 0.3 km s−1. A similar model istime function (cf. Fig. 5). This result indicates that the path-

summation method can accurately reproduce phase shifts, used in Snieder & Lomax (1996) and Lomax & Snieder (1996)
to examine ‘single-scattering’ and ‘wavelength-averaging’ tech-which are of primary importance in determining the shape of

waveforms. niques for modelling finite-frequency wavefields in complicated

structures.The timing of the ‘direct’ and ‘diffracted’ first-arriving signals
on the waveforms follows closely the traveltime curve for We consider a wide-band point source with centre period

T0=50 s; this corresponds to a dominant wavelength l0=200 kmgeometric rays in the absence of the low-velocity spherical

inclusion (Fig. 5). This illustrates why traveltime inversion for the mean velocity of the medium, 4.0 km s−1. The obser-
vation points are located along a line at distances of aboutusing first-arrival times cannot detect features similar to this

low-velocity sphere (Wielandt 1987). The ‘information’ in the five to eight times the dominant wavelength l0 . (The physical

units we use here are appropriate for the study of, for example,wavefield about the low-velocity sphere is contained primarily
in the secondary ‘scattered’ and ‘refracted’ signals, and to a seismic surface-wave propagation. However, these simulations

are relevant to other problems with equivalent spatial and timelesser degree in the reduced amplitude and slight time delay

of the first-arriving ‘diffracted’ signal in the ‘geometrical scales when measured in terms of the dominant wavelength
and period, respectively, of the source.)shadow’ region. The path-summation method recovers all of

Figure 5. Exact analytic (thin solid lines) and path-summation (thick solid lines) waveforms for the 3-D geometry shown in Fig. 4. The geometrical-

ray traveltime curve for the background medium (c=5 km s−1 ) is shown for outside (thick grey line, distance >8 km) and inside (thick dotted

grey line, distance <8 km) the ‘geometrical shadow’; this curve is shifted ahead 0.5 s so that it does not overlap the waveforms.
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712 A. L omax

Figure 6. 2-D, quasi-random velocity model. (a) velocity distribution. (b)–(d) ‘snapshots’ of the FD wavefield at several time instants.

To obtain a near-exact solution to this problem, we use waveform consists of a sum over 10 000 paths and requires a
few seconds calculation time on our desktop workstation. Thisa finite-different (FD) algorithm to solve the scalar wave
time is about 1/1000th of the CPU time needed for the entireequation (1) on a 2-D grid. This algorithm is second order in
FD calculation, although a single FD calculation can producetime and fourth order in space, and uses transmitting boundary
waveforms at any or all grid nodes. The FD and path-conditions.
summation waveforms for this 2-D simulation are shown inThe FD wavefield at several time instants is shown in Fig. 6.
the lower part of Fig. 7. Fig. 8 shows the spatial distributionAs it spreads away from the source, the primary near-circular
of all paths used to construct a waveform, the paths thatwavefront breaks into segments that are delayed or advanced,
contribute to the first-arriving signal for the case of a homo-and focused or de-focused as they interact with features of the
geneous model, and the paths that contribute to significantmodel. As it passes the line of observation locations, the
signals on several of the waveforms for the quasi-randomwavefield is complicated: it consists of several segments formed
media.by interfering ‘refracted’ and ‘diffracted’ signals that produce a

The prominent signal beginning at about 550 s on all of the
large range of amplitudes. The first-arriving, low-amplitude

path-summation traces is due to the truncation of the sum-
signals at observation points located between about 900 to

mation for paths lengths r
k
≥rmax ; this artefact can be easily

1300 km and about 1500 to 1900 km are due in part to
identified and ignored during application of the method. For

‘diffracted’ waves that have passed around the strong, low-
times earlier than this artefact, all the path-summation traces

velocity region near the centre of the model. This low-velocity show a close resemblance to the corresponding FD traces.
feature also causes a strong focusing of the wavefield that Note that this resemblance includes places where there is
produces the high-amplitude secondary arrivals at observation no ‘signal’ on the FD waveforms. This is important since with
locations between about 1100 and 1500 km. However, the the path-summation method there are contributions to the
overall wavefield is not strongly segmented and scattered, and waveform at all times between the first arrival and the cut-off
thus it is representative of signals with maximal information due to rmax ; these contributions must interfere properly to sum
content for the purpose of deterministic waveform inversion to a near-zero trace. In effect, all of the waveform represents a
to infer velocity structure. ‘response’ to a significant volume of the medium with both the

We construct path-summation waveforms using the approxi- FD and path-summation methods. In contrast, ray methods
mation to the 2-D path-summation formula (34 and 33) for produce only a few signals on the waveform, and these signals
the same observation locations, source location and source represent information only from a few lines or thin tubes in

the medium.time function as in the FD simulation. Each path-summation
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Path-summation waveforms 713

Figure 7. FD (thin lines) and path-summation (thick lines) waveforms for the 2-D quasi-random model shown in Fig. 6.

There is good agreement in both amplitude and phase of paths that contribute to the waveform around the time of

these signals. This asymmetry is apparent in Fig. 8(f ) in thebetween the FD and path-summation waveforms for most
parts of the waveforms. In particular, the path-summation increased density of paths to the right side of the volume filled

by the paths. In contrast, the paths that contribute to the firstwaveforms show excellent recovery of the significant changes

in signal amplitude, phase and timing in the region of focusing arrival at location 1067 km pass to the left of the low-velocity
region (Fig. 8e)and interference around 1400 km. The cause of this change in

the signal and an explanation for the accuracy of the path- As with the 3-D low-velocity sphere example, if the path
sum is extended beyond 10 000 paths the small backgroundsummation results can be understood by considering the paths

that contribute to this signal for observation location 1327 oscillations on the traces are reduced in amplitude, but the

shapes of the primary signals on the waveforms do not change(Fig. 8c). There are a large number of paths that fill a relatively
large subvolume of the model relative to the volume filled by appreciably. In particular, the mismatches in phase and ampli-

tude discussed above do not change significantly as the numberthe first-arriving paths for the homogeneous case (Fig. 8b).

The paths for the quasi-random model are ‘focused’ by the of paths is increased beyond 10 000. It appears that deficiencies
in the path-summation waveforms may be due to inherentcentral low-velocity region; that is, paths with a variety of

lengths and positions give similar traveltimes, and so interfere limitations of this approximate method, or they may be due

to the difficulty of constructing and selecting a ‘representative’constructively to form the high-amplitude signal. It is also
interesting to note in Fig. 8(c) that the paths that contribute sample of paths.

For this 2-D simulation, since each path-summation syntheticmost to the high-amplitude signal pass to either side of the

low-velocity region and avoid the shorter route through the requires about 1/1000th of the computation time required for
the complete FD simulation, the complete set of 33 path-middle of this region. These paths thus indicate the existence

of at least two, stationary-time, ‘Fermat’ paths for this signal. summation waveforms requires about 1/100th of the time of

the FD calculation. Consequently, depending on the numberThis phenomenon is recovered well by the path-summation
method but would lead to significant difficulty for inversion of waveforms required, the path-summation method would

be from one to three orders of magnitude faster than theusing geometrical-ray modelling or ray-bending algorithms.

In contrast to this excellent signal recovery in a region of equivalent FD simulation. The path-summation calculation
also requires insignificant computer memory over that requiredfocusing, the path-summaton waveforms show an overestimate

of amplitude for the early first-arriving signals on the wave- to store the velocity model. Since it is not necessary with

the path-summation method to store the model in a grid, theforms for locations around 1100 and 1700 km. An examination
of the paths that contribute to the signal at locations 1067 km model can be specified using a compact, analytic or geometrical

description. This reduction in memory requirements over(Fig. 8e) and 1695 km (Fig. 8d) shows that they fill a small

volume that has an arcuate form. This volume is related to finite-difference and finite-element numerical methods may be
significant or critical in both two- and three-dimensionalthe minimum-time, ‘Fermat’ path between the source and

observation points. It may be that the mismatch in amplitude applications.
In addition, the path distributions shown in Fig. 8 formof this signal is due to a relative undersampling in the path

construction algorithm of paths similar to the ‘Fermat’ path. a finite-bandwidth, multiple-scattering generalization of the

single-frequency, single-scattering ‘wavepaths’ that have beenThe path-summation synthetics recover well a significant
‘secondary’ signal at about 425 s and later on the waveforms proposed recently for waveform inversion (e.g. Woodward

1992). Like these ‘wavepaths’, the sets of path-summationfor locations between about 900 and 1300 km and between

about 1500 and 1700 km. These are ‘refracted’ and ‘diffracted’ paths and associated traveltimes represent a relationship
between time intervals on a waveform and volumes in thewaves, some of which cannot be produced by ray-based

methods. These signals are related to paths that bend through model. Such a relationship is required for many waveform

inversion methods, and thus there is an indication that theand around the central low-velocity region (e.g. location
1067 km, Fig. 8f ). In terms of the path summation, the existence path-summation results could be used for inversion in the

framework of these methods.of this signal is caused by an asymmetry in the distribution
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714 A. L omax

Figure 8. Path-summation paths for selected observation locations for a homogeneous model and for the 2-D, quasi-random model simulation.

(a) A uniform sample of all paths used in the path-summation sum; these paths are representative of the distributions of paths for any velocity

model or source–receiver pair. (b)–(f ) Path samples drawn in proportion to the envelope of the signal to indicate the relationship among ‘significant’

signals on the waveform, the path geometry and the model. (b) Paths contributing to the first-arriving signal at location 1327 km in a homogeneous

model. Samples for the quasi-random model of (c) paths contributing to the main pulse at t~410 s at location 1327 km; (d) paths contributing to

the main pulse at t~380 s at location 1695 km; and paths contributing at location 1067 km to (e) the first pulse at t~390 s and (f ) the second

pulse at t~450 s.

The recovery by the path-summation method of all wave
DISCUSSION

types and the overall quality of the match between the two

sets of waveforms indicates that the path-summation wave- The difference between the path-summation method and other
techniques for the synthesis of wave propagation follows fromforms are accurate enough to give a meaningful misfit value

with observed waveforms. This, combined with the speed of the the consideration of a representative sample of ‘all possible’

paths between the source and observation points in the path-method, indicates that the path-summation method may make
possible stochastic, global, waveform inversion for problems with summation method. Ray-based methods sample the medium

along a small number of 1-D, Fermay rays, regardless of thegeometry and scaling similar to that presented in this example.
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dimension of the medium, while the path-summation method geometry, although it is not clear that this can be done

rigorously, in the mathematical sense.considers a finite subvolume with the same dimension as the
There is also the possibility that the use of importancemedium. The path-summation method includes the interaction

sampling in the selection of paths will improve the efficiency ofof the wavefield with variation of the medium properties
the path-summation method, in analogy to the use of importancethroughout this finite volume. Consequently, the resulting
sampling in Monte Carlo integration (e.g. Hammersley &waveforms include amplitude variations, ‘diffractions’ and other
Handscomb 1967). For the path-summation summation,full-wave features that are difficult or impossible to obtain
importance sampling could be achieved by preferential selectionwith ray methods.
of the paths that contribute to the parts of the waveform thatFrequency–wavenumber of modal-summation techniques
will have the most significant signal after the solution hassum over global, analytic solutions such as plane waves or
converged. However, as with all importance sampling, thisexponential eigenfunctions; the existence and validity of these
selection must be done carefully, and the resulting non-uniformsolutions is inseparable from symmetry and simplicity in the
sampling must be properly normalized, otherwise spuriousmodel geometry. In contrast, the local, direct sampling of
signals and amplitude and phase errors will result.the medium in the path-summation method does not make

Although there is always some error in the path-summationany strong requirements on the model geometry and so allows
waveforms due to the stochastic nature of the path sum, thisthe consideration of more complicated structures.
method exhibits a great increase in computational efficiency overFinite-difference and finite-element numerical methods may
finite-difference, finite-element and boundary integral methods.be thought of as systematically including all possible paths
Moreover, in many cases errors in the waveforms will not bebetween all nodes on a regular grid. The path-summation
significant relative to other sources of error such as noise inmethod, on the other hand, considers only a sample of the
the data, or simplifications in the model parametrization. Also,possible paths between the source and observation point,
the set of sampled paths and associated traveltimes producedand it requires only simple, rapid, slowness integration along
by the path-summation method give information about thethese paths. This difference leads to the significant reduction
relationship between features in the waveform and in the model.in calculation time for individual waveforms with the path-
This type of information is required for iterative, directedsummation method relative to numerical methods, but also
inversion methods, but it is difficult or impossible to obtainaccounts for the approximate nature of the path-summation
from the results of numerical modelling with finite differencesresults.
of finite elements.Although not examined systematically in this paper, it is

apparent that the rate and accuracy of convergence of the

path-summation method are dependent on certain parameters CONCLUSIONS
of the problem. The convergence time (measured by the number

We have presented a heuristic development and applications
of paths sampled) will increase, in general, as the distance

of a Monte Carlo path-summation method to obtain approxi-
between the source and receiver or the length of the time

mate waveform solutions to the scalar wave equation for a
window required on the waveform is increased; that is, the

smooth, heterogeneous medium.
convergence time increases with the size of the subvolume of

Because it is a numerical, stochastic method, the convergence
the model that is sampled. The convergence time may also

rate of the path-summation method depends on the source–
increase with decreasing dominant period of the source time

receiver distance, the medium properties and the dominant wave-
function, or as the amplitude of the dominant features in the

length of the source. Our applications of the path-summation
medium is increased or their characteristic scale-length is

method indicate that it can produce rapidly the main features
reduced. For example, for complicated media with time and of the early arriving, finite-frequency wavefield in complicated
spatial scaling similar to the 2-D numerical example examined 2-D and 3-D structures.
here, the convergence is rapid when the distance R between The speed and accuracy of the method may be sufficient to
the source and the observation point is up to the order of 10 allow waveform inversion in three dimensions; this is significant
times the dominant wavelength in the source signal. However, for analysis of acoustic and elastic waveforms in natural sciences
as the velocity distribution becomes smoother, the maximum such as seismology and ocean acoustics where complicated,
distance R of applicability will increase. irregular distributions in material properties are expected.

Two of the primary concerns in the application of the path-

summation method are the definition and the construction
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