Journal Of Biogeography

October 2015, Volume 42 Issue 10 Pages 1907-1918
https://doi.org/10.1111/jbi.12564
https://archimer.ifremer.fr/doc/00467/57915/

An inter-ocean comparison of coral endemism on
seamounts: the case of Chrysogorgia

Pante Eric 2", France Scott C. 1, Gey Delphine 2, Cruaud Corinne 4, Samadi Sarah 3

1 Univ Louisiana Lafayette, Dept Biol, Lafayette, LA 70504 USA.

2 Univ La Rochelle, CNRS, UMR 7266, Littoral Environm & Soc, F-17000 La Rochelle, France.

3 Sorbonne Univ, Univ Paris 06, ISYEB UMR CNRS 7205, MNHN,EPHE, F-75231 Paris 05, France.
4 GENOSCOPE, Ctr Natl Sequencage, Evry, France.

* Corresponding author : Eric Pante, email address : pante.eric@gmail.com

Abstract :
Aim

The biogeography of seamount fauna remains poorly known, with less than 1% of the world's seamounts
having been investigated. Here, we report data on the geographical isolation of species in the octocoral
genus Chrysogorgia from south-west Pacific seamounts and slopes, and contrast the results with patterns
observed in the north-western Atlantic.

Location

Seamounts of the Norfolk Ridge (NR) and Loyalty Ridge (LR), the slope of New Caledonia, and the
Matthew and Hunter Islands, south-west Pacific Ocean, with comparative material from the Pacific and
Atlantic oceans.

Methods

The mitochondrial gene mtMutS was used to measure diversity within Chrysogorgia. Community structure
was analysed using rarefaction, multivariate analyses, parsimony analysis of endemicity and analysis of
molecular variance. The impact of underestimating species richness when using mitochondrial haplotypes
was tested using simulations.

Results

Six hundred and thirty-four colonies and 31 haplotypes were sampled from New Caledonia. Contrary to
what was observed in the north-western Atlantic, seamount-scale endemism of south-west Pacific
Chrysogorgia was substantial (23% and 39% for haplotypes with n20 and n2, respectively). LR sheltered
64% of the New Caledonian haplotype diversity. Assemblages were structured less by habitat type (slope
versus seamounts) than by depth. Rarefaction analyses suggested that LR and NR seamounts hold more
species than the New Caledonian slope, but additional sampling in the south-western Pacific (133
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colonies) revealed that some seemingly geographically restricted haplotypes from New Caledonia have
wide geographical distributions, reaching as far as Taiwan.

Main conclusions

The distribution of Pacific Chrysogorgia is characterized by high levels of rarity, patchiness and diversity,
with the levels of seamount-scale and seamount-chain-scale endemism higher than in the Atlantic. We
hypothesize that the contrast between the wide geographical distribution of Atlantic Chrysogorgia
haplotypes and the higher proportion of endemics in the Pacific is largely explained by differences in depth
between the seamounts of these two regions.

Keywords : Atlantic Ocean, marine biogeography, marine connectivity, Octocorallia, Pacific Ocean,
parsimony analysis of endemicity, seamount, species delimitation
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INTRODUCTION
Seamounts, typically defined as undersea mountains that rise above the sea floor, are
among the most ubiquitous underwater features in the oceans (Wessel et al.,, 2010), and
constitute one of the largest marine biomes, with a total surface area similar to that of
Europe and Russia combined (Etnoyer et al, 2010; Yesson et al., 2011). The geological and
hydrographical setting in which seamounts are found makes them a noteworthy system for
the study of deep-sea biogeography. Most seamounts are volcanic in origin, and they are
commonly characterized by hard substrates and relatively steep slopes, features that are
rare in the deep sea (Rogers, 1994). They emerge at island arcs, mid-ocean ridges and in
intraplate hotspot settings, forming chains (Wessel, 2007). Because of these geological
attributes, seamounts may act as stepping stones between patches of suitable habitats on
continental shelves and oceanic ridges, and contribute to pan-oceanic dispersal (Ekman,
1953; Hubbs, 1959). On the other hand, hydrographical features such as Taylor caps, local
upwelling, jets and eddies (reviewed in Rogers, 1994), and sheer geographical isolation,
may significantly impede dispersal between habitat patches (Parker & Tunnicliffe, 1994).
One question that has generated great interest and debate among deep-sea
biologists is whether the fauna associated with seamounts is highly endemic. The
topographical and hydrographical conditions associated with seamounts could contribute
to faunal isolation and the accumulation of highly endemic taxa (Hubbs, 1959). Wilson &
Kaufmann (1987) provided the first global assessment of levels of endemism on
seamounts, and reported that 11.6% of fishes and 15.4% of invertebrates were endemic to
individual seamounts or seamount groups. Since this seminal review, many estimates of
endemism have been published, ranging from 0 to 100%, reflecting various geographical
ranges and sampling efforts (Stocks & Hart, 2007). Most notably, Parin et al. (1997)
compiled information from 22 seamounts of the Nazca and Sala y Gomez chains in the

south-eastern Pacific, and found that 44-51% of fishes and invertebrates were seamount
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endemics. Richer de Forges et al. (2000), summarizing the results of 24 exploration cruises,
found that 29-34% of 850 fish and invertebrate species collected from the Norfolk Ridge,
Lord Howe and Tasmanian seamounts were potential endemics.

From these studies emerged the general paradigm that seamounts harbour high
levels of endemism (Rowden et al., 2010a). Even though this paradigm is largely
unsupported by recent studies (Samadi et al., 2006; Stocks & Hart, 2007; Hall-Spencer et
al, 2007; O’'Hara, 2007; Lundsten et al., 2009a,b; McClain et al, 2009; Howell et al., 2010),
the debate is not closed. Indeed, a minuscule proportion of seamounts have been
biologically sampled (less than 1%; Staudigel et al.,, 2010), and the scarcity of data prevents
us from conceptualizing the processes that shape and maintain seamount faunal
assemblages (see, for example, reviews by McClain, 2007; Clark et al., 2012). In addition,
most current estimates of endemism are based on morphological variation, which can be a
highly biased metric of biodiversity. Molecular studies are also subject to biases, in that it
can be difficult to establish whether a lack of genetic divergence reflects past or current
faunal connectivity (Clark et al, 2010; Miller et al., 2010). It is therefore important to
integrate taxonomic and biogeographical approaches when considering questions of faunal
isolation (Castelin et al., 2010). Characterizing these faunal assemblages is becoming
increasingly important for conservation, as seamounts can be targets of commercial mining
and fishing (e.g. Clark et al, 2010; Williams et al., 2010; Schlacher et al., 2014).

Chrysogorgia Duchassaing & Michelotti, 1864 is a relatively diverse genus of
Octocorallia (Cnidaria, Anthozoa). It is globally distributed, and is found both on slopes and
on seamounts, where it can be locally very abundant (Watling et al,, 2011). The
bathymetric range of Chrysogorgia is extremely large (Pante et al., 2012a, and references
therein), and encompasses the entire depth range of catalogued seamount summits and
slopes (Stocks, 2009). In addition, the genus appears to be monophyletic based on current
data (Pante et al.,, 2012a), offering opportunities for specific hypotheses about the
historical biogeography of species and species groups to be tested. Finally, the relative
congruence between morphotypes and mitochondrial mtMutS haplotypes described in four
North Atlantic species suggests that endemism can be investigated reliably at the species
level (Pante & Watling, 2012). This result was recently confirmed by comparing genome-

scale data to mtMutS haplotypes (Pante et al., 2014).
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Based on these characteristics, Chrysogorgia offers a model system that is well
suited to estimating species endemism at different spatial scales, across the spectrum of
seamount environments (e.g. depth range or geological origin) and geographical locations
(e.g. latitude or isolation from continental margins) in a phylogenetically comprehensive
manner. Here, we investigate the geographical distribution of Chrysogorgia species from
seamount and non-seamount environments in the south-western Pacific, and contrast the
patterns of species distribution with those observed in the north-western Atlantic (Thoma
etal., 2009). To the best of our knowledge, this is the first study to look at the seamount-

scale endemism of a genus in different ocean basins.

MATERIALS AND METHODS

Sampling and genotyping

Specimens from the New Caledonian exclusive economic zone were collected during the
Muséum national d’Histoire naturelle (MNHN) / Institut de Recherche pour le
Développement (IRD) Terrasses and ExBoDi cruises of 2008 and 2011 on the NR, LR,
eastern slope of New Caledonia, and Matthew and Hunter Islands (MH) (Figs 1 & 2, and see
Appendices S1 & S2 in Supporting Information). The Terrasses and ExBoDi cruises are part
of a long-term research endeavour - the Tropical Deep-Sea Benthos (TDSB) program
(Bouchet et al.,, 2008; details of the cruises are available at
http://expeditions.mnhn.fr/program/tropicaldeep-seabenthos) - and relied on the
combined use of a beam trawl and a dredge to maximize the types of substrates and faunal
diversity collected. During the Terrasses cruise, 256 Chrysogorgia colonies were collected,
213 of which were successfully genotyped (see below). An additional 439 and 421 colonies
were collected and genotyped, respectively, during the ExBoDi cruise. Specimens from
other cruises in the Pacific (including the TDSB cruises BIOPAPUA, EBISCO, MADEEP,
Norfolk 2, PAPUA NIUGINI, Salomon 1, Salomon 2, SMIB 4 and TAIWANZ2013) provided
additional specimens for biogeographical comparisons (n = 133; Appendix S1). For
comparison, the study of Thoma et al. (2009) in the north-western Atlantic included 24
Chrysogorgia colonies among 188 octocorals. Sampling maps (Figs 1 & 2) were made with

MARMAP (Pante & Simon-Bouhet, 2013; R Core Team, 2014).
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Specimens were preserved in 80-100% ethanol or RNAlater (Ambion, Austin, TX,
USA), or frozen at -80 °C. Protocols for DNA extraction, PCR and sequencing are detailed in
Pante et al. (2012b). The 5' region of mtMutS was PCR-amplified using the primers
ND4L2475F and MUT3458R. For specimens with sheared DNA template, internal primers
were used (Pante et al., 2012a). Haplotypes were defined as unique mtMutS sequences, as

described in Thoma et al. (2009).

Evaluation of putative endemism, haplotype richness and sampling biases

Previous work in the north-western Atlantic that compared genetic variability with
morphological data suggested that mtMutS haplotypes had the power to resolve species of
Chrysogorgia, at least at a regional scale (Pante & Watling, 2012), although the number of
haplotypes studied (four) was relatively small. It is therefore possible that, among our
Pacific samples, a single haplotype may represent multiple species of Chrysogorgia,
reducing our power to detect narrow geographical ranges (e.g. Baco & Cairns, 2012). To
test whether unrecognized species diversity significantly affects our estimates of
connectivity between island slopes and seamounts, we performed computer simulations in
which haplotypes were split into two species of equivalent biogeography (Appendix S2).

To test the hypothesis that seamounts and island slopes harbour different species,
we analysed the site x haplotype matrix using non-metric multidimensional scaling (NMDS;
Kruskal, 1964a,b) and analysis of similarities (ANOSIM; Clarke, 1993). Sites are groups of
stations as presented in Fig. 2 and Appendix S1. We also grouped sites into five regions
(Fig. 2) to perform hierarchical clustering. Jaccard’s index was used to compute distance
matrices from presence/absence data, because dredging and trawling are semiquantitative
sampling methods that may not capture the true abundance of organisms. Analyses were
performed in R using the package VEGAN 2.2-1 (Oksanen et al,, 2015).

To test the hypothesis that seamounts harbour more endemics than island slopes,
we looked for species that were limited to individual seamounts and seamount chains. We
completed this qualitative survey by parsimony analysis of endemicity (PAE; Rosen &
Smith, 1988). This method relies on parsimony to infer the relationship among sites, based

on their shared haplotypes. Sampling sites were grouped by region (slope, NR, southern LR,
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northern LR and MH), for which species occurrence was coded as 0 (absent), 1 (present at
one site) or 2 (present at more than one site). A ‘zero vector’ containing no species was
included in the region x haplotype data matrix to polarize characters (Morrone, 1994). The
most parsimonious tree was searched using nearest-neighbour interchange
rearrangements, and 1000 independent replicates were run. The consistency index (CI)
and retention index (RI) were calculated to evaluate how well the haplotype distribution
data fitted the most parsimonious tree (i.e. the degree of homoplasy). PAE was performed
in R using the package PHANGORN (Schliep, 2011).

To test the hypothesis that seamount communities are richer than island-slope
communities, haplotype richness was estimated using sample-based rarefaction, because
the total numbers of individuals and stations sampled varied among localities (Gotelli &
Colwell, 2001). Estimated species richness (as computed in Colwell et al., 2012) was scaled
both using samples (Colwell et al., 2012) and using individuals (Gotelli & Colwell, 2001), in
order to ease interpretation. Computations were performed in ESTIMATES 9.0 (Colwell,
2013). No rarefaction analysis was performed on the north-western Atlantic data, because
specimen collection during dives was non-random. Similarly, data from NR collected on
TDSB cruises prior to the Terrasses cruise (Bouchet et al.,, 2008) were not used in the
rarefaction analysis, because their sampling of Chrysogorgia was more qualitative than
quantitative.

Finally, we tested whether mtMutS$ haplotypes that share a distributional pattern
(specialist on seamounts or island slopes, or generalist) are phylogenetically close. To do
so, we inferred the phylogenetic relationships of all the known Pacific haplotypes by
building a median-joining haplotype network (http://popart.otago.ac.nz/, Bandelt et al,,
1999). We also ran one-level analyses of molecular variance (AMOVA; Excoffier et al., 1992)
in ARLEQUIN 3.5 (Excoffier & Lischer, 2010) on the data from the Terrasses and ExBoDi
cruises to partition the molecular variance (1) among seamount and slope groups and (2)
among depth groups (Kimura two-parameter distance matrix, gamma null, 10,000

permutations; Kimura, 1980).
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RESULTS

Chrysogorgia biogeography on seamounts and slope of New Caledonia

Chrysogorgia was found on the slope of New Caledonia, on the NR and LR, and on the slope
of MH, over most of the geographical and bathymetric range sampled during the Terrasses
and ExBoDi cruises. Out of 261 stations sampled (99 and 162 for Terrasses and ExBoDi,
respectively; Appendix S2), 74 recovered Chrysogorgia, 49 (66%) of which were sampled
by dredging, reflecting the preference of Chrysogorgia for hard substrates. This proportion
was consistent across slope and seamount stations. Over the 74 stations containing
Chrysogorgia colonies, 31 haplotypes were detected from 71 stations (specimens from
three stations could not be sequenced), eight of which were represented by single colonies
(Appendix S1). Most haplotypes (52%) were represented by fewer than 10 specimens; 33
of the 71 stations contained multiple haplotypes. The most diverse stations (CP3898 and
DW3855 on LR) contained 10 haplotypes. Most haplotypes were found in the 200-600 m
depth range, a bathymetric zone that has been extensively sampled (Fig. 3).

Of the 31 haplotypes, five were found exclusively on the slope, 16 exclusively on
seamounts (19 if MH is included), and only six haplotypes were shared between the slope
and the seamounts of the NR and LR (seven including MH); 20 haplotypes were sampled on
LR, 9 of which were sampled nowhere else during the Terrasses and ExBoDi cruises. Only
five haplotypes were found on both seamount chains. Seamount-level endemism was
detected for 14 haplotypes, but five of these were observed only once each. Only three
relatively well-sampled haplotypes were each restricted to one seamount (haplotypes 11,
24 and 27 on LR; n = 20). Haplotype 11 was sampled at especially great depths (750-

990 m); if this taxon were indeed restricted to these depths, it could explain why we did
not observe it elsewhere, most stations being shallower. Haplotypes 24 and 27, in contrast,
were restricted to one seamount but were within the depth range of most sampling
stations (240-345 m).

The abundances of the seven haplotypes shared between slopes and seamounts
varied widely. To investigate whether species distributed across these habitats are found in
different densities, we calculated the proportion of stations containing each of the seven

haplotypes for slopes and seamounts, and sorted these proportions into vectors of high-
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density and low-density occurrences. If haplotypes shared between these environments do
not differ in their relative abundances, we expect the difference between these vectors to
be non-significant. This was not the case (paired Wilcoxon signed rank test: V=0, P =
0.016). For example, haplotype 23 was found at 5 of the 42 seamount stations where
Chrysogorgia was collected and only at one station (out of 29) on the slope.

Seamount regions did not group together under hierarchical clustering. Rather, the
slope region clustered with seamounts of the northern LR and MH, whereas the assemblage
of the NR and southern LR grouped together. NMDS recovered a weak association of sites
based on habitat (i.e. seamounts versus slope) (Fig. 4; ANOSIM R-statistic = 0.02, P = 0.367),
and a stronger association of sites of similar depth (< 400 m, 400-600 m, = 600 m; ANOSIM
R-statistic = 0.22; P = 0.048).

Rarefaction curves suggest that seamounts are more haplotype-rich than the south-
eastern slope of New Caledonia (Fig. 5). We observed 12 haplotypes in 181 individuals
from 101 slope stations. For comparison, rarefaction of the seamount data recovered 18
haplotypes from 180 individuals, and 23 haplotypes from 101 stations. These richness
estimates are relatively well supported statistically, as little (individual-scaled rarefaction)
or no (sample-scaled rarefaction) overlap in 95% confidence intervals was observed. This
pattern (seamounts being richer than the slope) is largely driven by the richness observed
on southern LR seamounts (a total of 17 haplotypes). No rarefaction curve reached an
asymptote, suggesting that more haplotypes would be discovered with additional sampling.

The most parsimonious tree produced by the PAE (score of 45, CI = 0.89, R = 0.5)
nested groups mostly according to geography (Fig. 6). PAE lumped stations on NR and the
southern LR together, this clade comprising 11 of the 31 detected haplotypes (35%). The
slope was sister to this clade, forming a group sheltering 17 endemics, i.e. over half of the
total haplotype richness. Haplotype 3 was the only haplotype to be shared across all five
regions, and seven haplotypes (2, 8,9, 10, 16, 19 and 23) were shared by different clades
(homoplastic haplotypes). Even though there are haplotypes shared between slope and
seamounts, the haplotype network showed some evidence of evolutionary subdivision
between these two groups (Fig. 7). This qualitative result was confirmed by the AMOVA,
which suggests that the amount of genetic variance partitioned between groups (8.5%) is

larger than expected by chance (P = 0). However, the amount of genetic variance explained
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by depth stratification was 3.4 times greater (variance component, 28.8%; P = 0; see

Appendix S3).

Regional and global haplotype distributions

As reported in Thoma et al. (2009), the geographical distribution of haplotypes across the
New England Seamounts (NES) and Corner Seamounts (CS) was accompanied by wide
faunal connections with the Azores, the bathyal slope of the Bahamas, and Hawaii. Some
haplotypes collected during the Terrasses and ExBoDi cruises had wide distributions within
the Pacific, but none of them were observed in the Atlantic. For example, eight haplotypes
occurring in New Caledonia were collected in Papua New Guinea (PNG) (haplotypes 5, 7, 8,
9,10, 16, 22 and 30; Pante et al,, 2012b). Three of these (haplotypes 7, 10 and 30) were
collected on Sanguma Seamount (5.42° S, 154.02° E), the others coming from the PNG
island slopes. None of these haplotypes were restricted to a single seamount peak, but four
were restricted to seamounts (haplotypes 7, 10, 16 and 30; haplotype 22 being found
exclusively on the slope, and haplotypes 5, 8 and 9 on both slope and seamounts).
Haplotype 7, restricted to the seamounts of NR and LR, was also sampled on Nova Bank
Seamount (780 km west of New Caledonia; 330-340 m depth), from a depth zone
consistent with the bathymetric range observed on NR for this haplotype (300-390 m),
deeper on a seamount off Taiwan (517-573 m), and on slopes and Sanguma Seamount in
PNG (369-860 m). Similarly, a single colony of haplotype 12 was collected during the
Terrasses and ExBoDi cruises. We found a specimen with an identical mtMutS sequence and
congruent morphology from the south-west of the Kermadec Ridge (north-east of New
Zealand). This haplotype is an example of a rare but widespread species. Interestingly,
haplotype 9 appeared to have a very restricted distribution on the south-eastern slope of
New Caledonia, but a specimen with an identical mtMutS sequence and with congruent
gross morphology was sampled in the Solomon Islands during a TDSB cruise. This
haplotype was also sampled in Hawaii (Middle Bank) and the Aleutian Islands (Alaska). The
broad geographical distribution of some haplotypes points to the crucial role of sampling in
assessing endemism. Haplotype 9, for instance, was the fourth most frequently collected

taxon in New Caledonia, and was exclusively sampled on the south-western slope of the
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[sle of Pines (n = 45) and MH (n = 1). This haplotype was, however, also sampled in the

Solomon Islands, over 1500 km from the Isle of Pines.

DISCUSSION

Correspondence between haplotypes and nominal species

A major issue for studies of coral biogeography and connectivity, this one included, is the
difficulty of separating historical from contemporary connectivity. Wide geographical
distributions could reflect either strong dispersal capabilities or ancient connections
between ocean basins. We recently used genome-wide SNP (single nucleotide
polymorphism) data to evaluate the hypothesis that mitochondrial mtMutS haplotypes can
reliably represent species-level lineages, and found good congruence (67%) between
mtMutS-based species delimitation and genomic divergence (Pante et al., 2014). Specimens
characterized by haplotypes 2, 8 and 13 may belong to a single species. Conversely, the
New Caledonian specimens with haplotype 7 where phylogenetically distinct from the ones
sampled in PNG, suggesting that colonies bearing this haplotype may belong to at least two
species. Nevertheless, our simulation data (Appendix S2) suggest that, at the community
level, underestimation of species richness due to lack of genetic resolution only has a
moderate impact on the overall measure of faunal connectivity between slopes and
seamounts. In addition, the apparent lack of geographical structuring on the NES and CS
(Thoma et al, 2009) is in sharp contrast with the data from New Caledonia. Our data are

therefore useful in a comparative biogeographical framework.

Chrysogorgia on seamounts and slope

The apparent lack of endemism of chrysogorgiid corals on Atlantic seamounts is consistent
with recent biogeographical and molecular studies of other seamount fauna (reviewed in
Clark et al., 2010; Rowden et al.,, 2010a; Schlacher et al.,, 2010). The overall consensus is
that Pacific seamounts do not harbour significantly more endemic species than other,
equivalent deep-sea habitats (Samadi et al., 2006; O’'Hara, 2007; Rowden et al.,, 2010b). For
instance, no endemism was detected among bamboo corals based on mitochondrial

sequence data (Smith et al., 2004). Similarly, Miller et al. (2010) recently reported on the
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genetic connectivity among nine species of corals (six scleractinians and three
antipatharians) and found weak evidence for isolation by distance and barriers to dispersal
between seamount peaks in the south-western Pacific. Our results are in contrast with
those patterns, as up to 29% of Chrysogorgia haplotypes sampled more than once could be
restricted to a single seamount. Durand Reef in particular appeared to be a hotspot of
diversity and endemism, with 14 haplotypes, half of which were observed nowhere else.
The difference between our study and the studies of Smith et al. (2004) and Miller et al.
(2010), may lie in the overall depth range surveyed; Miller and colleagues used specimens
collected between 110 and 2136 m (median 542 m, mean 721 m), covering a much deeper
range than we have here (70-1180 m; median 456 m, mean 497 m). The haplotypes
reported by Smith et al. (2004) were also mostly restricted to waters deeper than 500 m,
some extending as deep as 3000 m. These observations are consistent with the wide
geographical distribution observed in the Atlantic, where sampling was mostly performed
at depths between 1500 and 2000 m. In fact, Pante & Watling (2012) noted that none of the
Chrysogorgia species previously detected on the slope of the north-western Atlantic were
detected on the NES and CS, and that the sampling depth of these two species pools barely
overlapped (see Fig. 14 in Pante & Watling, 2012).

Geographical distribution structured by depth

The effect of depth on the distribution (reviewed in Etter & Rex, 2010) and genetic
structure (e.g. France & Kocher, 1996; Zardus et al., 2006; Cho & Shank, 2010; Jennings et
al, 2013) of deep-sea organisms has long been known, and is gaining recognition for corals
(Eytan et al, 2009; Baco & Cairns, 2012; Quattrini et al,, 2013, 2015; Doughty et al., 2014).
Environmental conditions such as pressure, temperature, dissolved oxygen and habitat
heterogeneity (to name a few; Gage & Tyler, 1991) can change significantly with depth,
resulting in vertical zonation of benthic communities. These effects are, however, still little
characterized for seamount fauna. McClain et al. (2010), investigating the structure of
invertebrate and fish communities on Davidson Seamount in the north-eastern Pacific,
found that assemblage composition, rather than diversity or density, changed with depth

(1246-3656 m). In particular, they reported that octocorals showed significant species
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turnover between depths, which accounted for a significant proportion of the variation
observed. In our study, differences in geographical and bathymetric haplotype
distributions might be due to differences in the environmental setting, such as the sampled
depth regimes, which overlapped only slightly (deepest NR/LR station: 1130 m; shallowest
NES/CS station: 823 m). Etter et al. (2005) showed that genetic differentiation decreases
with increasing depth in populations of deep-sea bivalves. Likewise, Bradbury et al. (2008)
found a positive correlation between depth and pelagic larval duration, and a negative
correlation between depth and amounts of genetic structure in marine fishes. Our results
may therefore suggest that the stratification of Chrysogorgia haplotypes decreases with
depth. This hypothesis, which implies that environmental conditions are less structuring at
deeper depths, cannot be rigorously tested across ocean basins with the data at hand, but
preliminary observations from our data suggest more complex patterns, because the
deepest haplotypes observed on the LR and NR are not necessarily the most geographically
widespread (e.g. haplotypes 12, 30 and 31, although sampling was less intensive below
800 m) and some shallow haplotypes are widely distributed (e.g. haplotypes 3 and 4; Fig. 3,
Appendix S1). The stratification of haplotypes may therefore decrease below a depth of
1130 m; this could be tested by deeper sampling on the LR and NR.

Regional and global haplotype distributions

Chrysogorgia species pools from the Atlantic and Pacific Oceans seem to be characterized
by different distributional ranges and diversity patterns. The Terrasses and ExBoDi
haplotypes that were found outside the New Caledonian exclusive economic zone were
mostly limited to the south-west Pacific region (from Taiwan to the Kermadec Ridge, a
range of approximately 59° of latitude and 61° of longitude; with the exception of
haplotype 9, the distribution of which extends to Hawaii). In contrast, all chrysogorgiid
genera (Chrysogorgia, Iridogorgia, Radicipes and Metallogorgia) sampled on the Atlantic
NES and CS contain haplotypes that are represented in the Pacific (Thoma et al, 2009). In
other words, the Atlantic chrysogorgiids appear to have an overall geographical range that
is wider than that of New Caledonian chrysogorgiids. On the other hand, Pacific

Chrysogorgia were characterized by high levels of patchiness, rarity and haplotypic
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diversity. Rarity and patchiness were observable at two levels. At the local scale, the
number of colonies sampled at a single station was highly variable. For instance, at stations
with Chrysogorgia, abundance varied from 1 to 109 colonies, with an average of 9 and a
standard deviation of 18. At the regional scale, some haplotypes categorized as rare in New
Caledonia were nevertheless sampled very far apart, such as in New Zealand, Papua New
Guinea or Taiwan. These patterns of rarity and patchiness of deep New Caledonian fauna
have also been observed in gastropods (Castelin et al., 2011). These observations suggest
that the sampling effort necessary to accurately describe the distribution of Chrysogorgia
haplotypes in the Pacific is far greater than in the Atlantic. Nevertheless, sampling over 760
Pacific specimens provided data that emphasize the importance of depth, rarity and

patchiness in structuring these communities, both on seamounts and on oceanic slopes.
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Additional Supporting Information may be found in the online version of this article:
Appendix S1 Excel table of Chrysogorgia specimens with biogeographical and haplotype
information.

Appendix S2 Supplemental text.

Appendix S3 Median-joining network for Pacific Chrysogorgia haplotypes, plotted by depth
and geography.
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FIGURE CAPTIONS

Figure 1 World map with the two major sampling locations and the sampling locations of
specimens used in biogeographical comparisons. Samples used in previous studies are
plotted using different symbols. NES, New England Seamounts; CS, Corner Seamounts.
Figure 2 Bathymetric map of New Caledonia and parts of the Norfolk and Loyalty ridges. All
stations sampled during the Terrasses and ExBoDi cruises are plotted as grey squares.
Stations containing at least one Chrysogorgia colony are marked by black circles. Isobaths
are plotted every 500 m from 100 to 3000 m. Slope stations were divided into three
geographically discrete areas for biogeographical analyses. The feature labelled ‘6756’ is a
nameless seamount (Allain et al., 2008) adjacent to the New Caledonian slope. Although a
Chrysogorgia specimen was collected from this seamount, it could not be genotyped. LR,
Loyalty Ridge; NR, Norfolk Ridge.

Figure 3 Geographical (top) and bathymetric (bottom) distributions of the 31 haplotypes
sampled during the Terrasses and ExBoDi cruises. Minimum and maximum depths were
calculated based on the minimum and maximum depths of trawling and dredging stations
that contained Chrysogorgia. The colour of each bar represents the number of colonies
sampled for each haplotype (n; see key in the bottom left corner). Haplotype number is
provided on top of each bar. LR, Loyalty Ridge; NR, Norfolk Ridge; MH, Matthew and Hunter
[slands.

Figure 4 (a) Hierarchical cluster analysis and (b) non-metric multidimensional scaling
(NMDS) based on Jaccard’s dissimilarity between regions and sites. For NMDS, the symbol
size is proportional to the number of haplotypes recorded at each site, and different
symbols represent different mean depths (light grey, seamounts; dark grey, slope). Site
names and depth ranges (m) are provided next to each symbol.

Figure 5 Haplotype richness on the south-eastern New Caledonian slope and seamounts of
the Norfolk Ridge (NR) and Loyalty Ridge (LR). Left: individual-scaled rarefaction curves.
Right: sample-scaled rarefaction curves. Upper panels: rarefied haplotype richness for all
regions. Lower panels: rarefied haplotype richness for seamounts and slopes, with 95%
confidence envelopes. For each group, the total observed number of haplotypes is given in

parentheses.



641
642
643
644
645
646
647
648
649
650
651

Figure 6 Parsimony analysis of endemicity (PAE). The dots placed on branches of the tree
represent haplotypes endemic to a clade (synapomorphic haplotypes), which can be
defined by one or several regions.

Figure 7 Median-joining network for all known Pacific Chrysogorgia haplotypes (left) and
Venn diagram showing the haplotype distribution among Pacific regions (right). Network:
mutational steps are represented by hashes on network branches; circle size is
proportional to sample size. A detailed list of sampling locations and networks drawn
according to depth and geography are available in Appendices S1 & S3 of Supporting

Information.
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Study area: geology, oceanography, and associated fauna

The south-west Pacific Norfolk Ridge (NR) is approximately 1500 km long and 200 km
wide, and connects the south-eastern tip of New Caledonia to the north-western tip of
New Zealand. The seamounts along this ridge have, on average, summit depths between
700 and 1000 m towards the north-east, and between 250 and 500 m towards the
south-west. Some seamount summits are particularly shallow, such as Antigonia
Seamount, which peaks at 57 m depth (Allain et al., 2008). The Loyalty Ridge (LR) runs
parallel to the NR, and harbours many deep seamounts (summit depths 750-1000 m).
The NR and LR are separated by a sedimentary basin that is 2500 m deep and 70 km
wide (Dupont et al, 1995). A total of 57 underwater features were catalogued from the
New Caledonian exclusive economic zone (Allain et al, 2008), including 17 seamounts
more than 1km tall. Most seamounts are shorter, and can be considered guyots
(Castelin, 2010).

Sub-surface currents around New Caledonia are mainly influenced by the South
Equatorial Current (SEC), which flows westward and passes between New Caledonia
and the Solomon Islands (Kessler & Cravatte, 2013, and references therein). The SEC is
composed of several narrow currents, or jets, two of which pass by New Caledonia (the
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Figure S1 Bathymetric range of sampling stations for the Terrasses and ExBoDi cruises. Vertical
segments connect the shallower and deeper sampling depths for each station. Shade represents the
presence (black) or absence (grey) of Chrysogorgia at each station. The numbers of stations
with/without Chrysogorgiaare provided in parentheses for each group.



westward Northern Caledonian Jet, NCJ, and Southern Caledonian Jet, SCJ]). These jets
split from the South Fiji Jet at the southern tip of Vanuatu. The NC] first flows north-
west along the Loyalty Ridge, and continues west as it passes the northern tip of New
Caledonia. The SCJ leaves the southern tip of Vanuatu to go over the Norfolk Ridge and,
further west, over the Lord Howe Rise (see Fig. 6 in Kessler & Cravatte, 2013).

The taxonomy of Chrysogorgia in this zone is very poorly known. Whereas 25
species are known from the Malay Archipelago, only one species was documented from
New Caledonia (Bayer & Stefani, 1988), and there are no records of Chrysogorgia
specimens identified to the species level within a 1300-km radius of this location. We
are in the process of testing species hypotheses using genomic markers (Pante et al,
2014) and plan to formally describe Chrysogorgia species from the SW Pacific area. In
the following sections, we will refer to the south-western slope of New Caledonia as ‘the
slope’.

Correspondence between haplotypes and nominal species

A single nominal species of Chrysogorgia (C. admete, Bayer & Stefani, 1988) is currently
known from the area (type locality: south-eastern slope of New Caledonia). We attemp-
ted, without success, to amplify mtMutS from the holotype of this species. Preliminary
observations suggest that colony morphology correlates well with genetic identity
within the region, and that mtMutS haplotypes might therefore represent evolutionary
units that are close to the species level. Specimens belonging to haplotype 12 are among
the rare pinnate colonies ever collected. It is, however, genetically distinct from the only
pinnate Chrysogorgia species described to date (C. pinnata Cairns, 2007), suggesting
that this specimen belongs to an undescribed species.

Evaluation of putative endemism, haplotype richness and sampling biases
Computer simulation methods

To test whether unrecognized species diversity significantly affects our estimates of
connectivity between island slopes and seamounts, we performed computer simulat-
ions in which haplotypes were split into two species of equivalent biogeography. For
example, if a haplotype present both on slopes and on seamounts represents two
species instead of one, these two species may both be present on seamounts and slopes.
Alternatively, one of them may be present in both environments, whereas the second is
(1) absent from both environments, (2) present on slopes but not seamounts, or (3)
present on seamounts but not slopes. We used the presence-absence matrix built for
slopes and Norfolk Ridge stations (16 haplotypes in common) to perform simulations in
R. We split 1-16 haplotypes (sampled at random without replacement) into two species
each. The presence/absence pattern of the two ‘new’ species are chosen at random, but
always match the original haplotype biogeography. The modified matrices therefore
contained 17-32 species. Jaccard’s dissimilarity index (JI) was recalculated for the
modified matrix, and 1000 replicates were performed for each condition (total of
16 x 1000 simulations).
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Figure S2 Results of the species simulation study comparing the slope of New Caledonia and the
seamounts from the northern end of the Norfolk Ridge. Distributions (represented as box-and-whisker
plots) of Jaccard’s dissimilarity index (JI) when haplotypes (from 1 to 16) are split into two species of
equivalent biogeography. The horizontal dashed line represents the observed value of |1 for 16
haplotypes. The thick black line represents the median of simulated data. Boxes include data from the
first to the third quartile, and vertical bars represent the non-outlier range. Outliers are defined as
values > 1.5 the interquartile range.

Results of computer simulations

Computer simulations aiming at artificially splitting haplotypes into two putative
species show an increase in median JI with increasing number of species (i.e. slopes and
seamounts become more dissimilar as the number of species increases), and an increase
in the variance of JI with increasing number of species (see Fig. S2). These increases are,
however, moderate: when all haplotypes are split into two species (total of 32 species),
JI varies between 0.73 and 0.89, with a median of 0.84. The observed ]I of 0.81, calcula-
ted on the empirical data based on 16 haplotypes, is included in the simulated inter-
quartile range of most simulation sets (11 / 16 sets; overall interquartile range for all
16,000 simulations: 0.81-0.84).
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Appendix S3: Median-joining network for Pacific Chrysogorgia haplotypes, plotted by depth (top) and geography (bottom).
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