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Abstract :   
 
Plastic debris in the environment contain plasticizers, such as phthalates (PAEs), that can be released 
during plastic aging. Here, two common plastic materials, i.e., an insulation layer of electric cables 
(polyvinylchloride, PVC-cables) and plastic garbage bag (polyethylene, PE-bags), were incubated in 
natural seawater under laboratory conditions, and the PAE migration to the seawater phase was studied 
with varying light and bacterial conditions over a 90-day time course. Free PAEs diluted in seawater 
were also studied for bacterial degradation. Our results showed that, within the first month of incubation, 
both plastic materials significantly leached out PAEs in surrounding water. We found that di-isobutyl 
phthalate (DiBP) and di-n-butyl phthalate (DnBP) were the main PAEs released from the PE-bags, with 
the highest values of 83.4 ± 12.5 and 120.1 ± 18.0 ng g-1 of plastic, respectively. Furthermore, dimethyl 
phthalate (DMP) and diethyl phthalate (DEP) were the main PAEs released from PVC-cables, with 
mass fractions as high as 9.5 ± 1.4 and 68.9 ± 10.3 ng g-1, respectively. Additionally, we found that light 
and bacterial exposure increased the total amount of PAEs released from PVC-cables by a factor of up 
to 5, whereas they had no influence in the case of PE-bags. 
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INTRODUCTION     39 

The worldwide production of plastics has increased considerably since the development of synthetic 40 

polymers in the middle of the 20
th
 century,

1,2 
reaching 335 million tons of plastic produced globally in 2016

2
 41 

and giving rise to large emissions and transport of plastic debris
3,4

 through rivers, sewage and the atmosphere 42 

toward the Ocean.
5
 Plastic materials are dispersed by winds and currents, and significant amounts may either 43 

sink into the water column,
6,7

 incorporate into sediments
8,9

 or be assimilated by organisms.
10

 Although plastic 44 

degradation processes are extremely slow,
5,11

 more than 90% of the plastic debris, by numbers, are generally 45 

smaller than 5 mm (MP < 5 mm) in aquatic systems.
3,12

 These particles find their origins in primary MPs, but 46 

most importantly in secondary MPs that are the result of a series of physical, chemical and biological 47 

macroplastic degradation processes,
1,13,14,15

 which are intensified in coastal environments due to higher 48 

seawater dynamics and abrasion induced by sand/coastline.
16

 MP may otherwise be assimilated and 49 

transferred in the whole marine food web,
10,17-20

 including marine mammals.
21,22

 50 

Most plastics contain a number of additives such as phthalic acid esters or phthalates (PAEs) that are 51 

used as plastic softeners
23,24

 and are considered priority pollutants by the US-EPA, the European Union (EU) 52 

and the Chinese water regulations
25

 due to their endocrine disruption and carcinogenic properties.
26-30

 53 

Importantly, PAEs are not covalently bound to the plastic polymer and are thus likely to leach out of the 54 

plastic into the environment or inside an animal‟s stomach or tissue
1
 during abiotic/biotic aging, although 55 

little is known regarding these processes. Although PAEs have been detected in aquatic environments,
24,31-36

 56 

there is a paucity of data dealing with the preferential pathway driving their introduction in aqueous marine 57 

media, the kinetics of their release from various plastic materials and their degradation processes.
37,38

 The 58 

Mediterranean Sea is a semi-enclosed basin with high solar radiation
39

 and high atmospheric inputs,
40,41

 a 59 

slow turnover time of ~ 80 years
42

 and strong urbanization with a large range of industrial activities spread 60 

all along the Mediterranean basin,
43

 which is greatly affected by marine litter.
3,12,14,31,44-46

 Here, we 61 

investigated in laboratory i) the potential for commercially available plastic material to release PAEs into the 62 

surrounding seawater under varying light exposure, bacterial density and temperature and ii) the 63 

biodegradation of 7 common PAEs diluted in Mediterranean coastal seawater. 64 

 65 
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EXPERIMENTALS 66 

Seawater sampling and pretreatment 67 

For all laboratory experiments, a pool of one hundred liters of seawater was collected in Marseille 68 

Bay (NW Mediterranean Sea: 43°16‟N; 05°20‟E) in June 2015 at a 3 m depth by using a 12-L GO-FLO© 69 

(GENERAL OCEANICS) bottle. The bottle was previously rinsed with 1% hydrochloric acid and ultrapure 70 

water (Milli-Q, resistivity > 18.2 M) to prevent contamination. The water was then transferred in 5 and 10 71 

L glass bottles and brought back in the laboratory within one hour. Then, the seawater was directly filtrated 72 

in an ISO class 6 cleanroom (temperature: 22 °C; SAS pressure: +15 Pa; SAS brewing rate: 30 vol h
-1

; lab 73 

pressure: +30 Pa; brewing rate: 50 vol h
-1

) through precombusted (450 °C for 6 h) GF/C filters (1.2 µm 74 

retention size and 47-mm diameter, which was rinsed with 2 L of Milli-Q and 150 mL of sample prior to 75 

filtration) in a precombusted glass apparatus, transferred into 1-L glass bottles and stored for 2-3 h at 4 °C 76 

for further experiments. Physiochemical properties, bacterial abundance and ΣPAEs concentration of the 77 

sample are reported in Table S1. 78 

PAE release from plastic material experiments  79 

For the PAE release experiments, two commercially available plastic types were selected: one black 80 

plastic garbage bag (2 fragments of 2 cm  2 cm  10 µm, total mass of 0.4 g, 8.1 cm
2
 surface area) and one 81 

insulation layer from an electrical cable (2 tube fragments of 1 cm length, 9 mm O.D., 5 mm I.D., total mass 82 

of 1.5 g, 4.8 cm
2
 surface area). Both materials were analyzed by Fourier Transform Infrared Spectroscopy 83 

(FTIR attenuated total reflectance, Thermo Scientific Nicolet iS50 FT-IR, 4000-600 cm
-1

, 16 scans per 84 

sample, 0.5 cm
-1

 resolution, Figure S1), which allowed for identifying the plastic bag as polyethylene (PE) 85 

and the electric cable as polyvinylchloride (PVC). The plastic bag and electric cable will hence be named 86 

“PE-bag” and “PVC-cable” in the rest of the document, respectively. PE is largely used for garbage bags, 87 

and is predominant among all plastic debris found in the Ocean, mainly at the Ocean surface.
12,15

 Although 88 

less abundant than PE,
12

 PVC is expected to sink rapidly through the water column to the seafloor due to its 89 

density > 1, therefore affecting its exposure to light and then colonization by biofilm. Each type of fragment 90 

was transferred into separate 1-L glass bottles that were previously filled with 600 mL of filtrated seawater 91 

(1.2 µm GF/C filters, see “Seawater sampling and pretreatment” section) and each bottle corresponds to one 92 
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incubation time. The bottles were filled to 60% of the bottles‟ volume to ensure well-oxygenated conditions. 93 

Before the experiment, plastic surfaces were cleaned with Milli-Q and cut into pieces with metal scissors that 94 

were previously cleaned with hexane, DCM and Milli-Q water. The plastic fragments were incubated for 95 

three months under various conditions of light and bacteria content. Experimental details are given in Table 96 

1. 97 

Table 1. Experimental design of PE-bag and PVC-cable exposure 98 

Experiment name Irradiation Biology Temperature (°C) 

LA22 Light Abiotic 22 

DA22 Dark Abiotic 22 

DB22 Dark Biotic 22 

 99 

The artificial light inside the thermostatic room was left on for the light samples, whereas the dark 100 

samples were wrapped up with aluminum paper and kept in cardboard boxes. Then, all „light‟ samples were 101 

not subjected to radiation in the UV range. The abiotic condition was obtained by poisoning the samples with 102 

1 mL of 10 g L
-1

 HgCl2 (17 mg L
-1

 in seawater), which has been successfully used to account for abiotic 103 

conditions in a series of degradation study of a wide variety of organic contaminants (e.g., pharmaceuticals, 104 

polycyclic hydrocarbon) in various matrices (e.g., soil, sewage effluent, estuarine waters)
47-49

. Temperature 105 

was controlled in a thermostatic room. The bottle samples were gently swirled for a few seconds three times 106 

a day and twice during the weekend. Duplicate samples were extracted for PAE after 0, 1, 2, 4, 7.5, 10, and 107 

12 weeks of exposure. Briefly, 400 mL of the total 600 mL were transferred to another clean glass bottles, 108 

poisoned with sulfuric acid to a pH ~ 2 to avoid any biological activity, closed with polytetrafluoroethylene-109 

lined (PTFE) screw caps and stored in the dark at 4 °C until analysis. The remaining 200 mL were used for 110 

dissolved organic carbon (DOC) measurements (10 mL in duplicate in glass vials, stored at 4 °C before 111 

analysis), and prokaryote abundance determination (1.8 mL transferred into cryovials and fixed with 2% 112 

(w/v final dilution) formaldehyde solution and -80 °C frozen until analysis). 113 

PAE bacterial degradation experiment  114 

For the PAE biodegradation study, 700 mL of filtered seawater (1.2 µm GF/C filters, see “Seawater 115 

sampling and pretreatment” section) was transferred into precombusted 1-L glass bottles, spiked with a 116 
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mixture of 7 PAEs‟ solution (grade > 98%, Supelco, Bellefonte) to reach a final concentration of 1 µg L
-1

 in 117 

seawater, and incubated in duplicate at 22 °C for two months in the dark in a thermostated laboratory. Only 118 

2-thirds of the bottles were filled to ensure well-oxygenated conditions. The abiotic control samples were 119 

prepared in duplicate, poisoned with sulfuric acid to a pH ~ 2 to avoid any biological activity and measured 120 

at the end of the experiments to be able to attribute all the PAE loss to biotic processes. Aliquots of all 121 

samples were collected by using precombusted Pasteur pipettes at 0, 1, 2, 4, 7, 13, 21, 28, 35, 42, 49 and 60 122 

days for the flow cytometry analysis, as detailed in the previous section. 123 

Phthalate analyses 124 

For PAE analyses, seawater samples were performed following a method described elsewhere.
33

 125 

Briefly, PAEs were extracted from seawater by solid phase extraction (SPE) with a precombusted 6 mL-126 

glass reaction tube and 200 mg of Oasis HLB sorbent (Waters Corporation, 30 µm). After sample percolation, 127 

PAEs were eluted by 6 mL of ethyl acetate and then evaporated up to a final volume of 200 µL under a 128 

gentle stream of nitrogen (purity > 99.995%). The extractions were carried out in controlled air conditions in 129 

an ISO class 6 chemistry cleanroom. The seven phthalates that were studied included dimethyl phthalate 130 

(DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), di-isobutyl phthalate (DiBP), di-n-butyl phthalate 131 

(DnBP), benzylbutyl phthalate (BzBP) and di-(2-ethylhexyl) phthalate (DEHP). Before use, all the glassware 132 

was kept in an acid bath overnight (10% hydrochloric acid), combusted at 450 °C for 6 h and rinsed with 133 

methanol and dichloromethane. The analysis was performed using an Agilent Technologies 6850 gas 134 

chromatograph system coupled to an Agilent Technologies 5975C mass spectrometer (GC/MS) operated 135 

with electron impact ionization (70 eV). Chromatographic separation was achieved using an Agilent HP-136 

5MS capillary column (30 m x 0.25 mm, 0.25 µm film thickness). PAEs average recovery ranged from 90 % 137 

(DEHP) to 108 % (DiBP). Method detection limits ranged from 0.1 to 0.9 ng L
-1

 for DMP and DEHP, 138 

respectively. Although caution was paid to prevent contamination, DEP, DiBP and occasionally DnBP were 139 

detected in the procedural blanks at levels that remained below 0.4-2%, 2-3% and 0-4%, respectively, of the 140 

masses that were measured in different seawater samples.   141 

Heterotrophic prokaryotes, DOC analyses and scanning electron microscopy (SEM)  142 
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For the heterotrophic prokaryote determination, seawater aliquots were analyzed by using the flow 143 

cytometry core facility PRECYM of the Mediterranean Institute of Oceanology 144 

(http://precym.mio.osupytheas.fr). Immediately after sampling, the samples were thawed at room 145 

temperature and stained using SYBR Green II (Molecular Probes®). The analyses were performed on a 146 

FACSCalibur flow cytometer (BD Biosciences®) equipped with an air-cooled argon laser (488 nm, 15 147 

mW).
50

 The DOC concentrations were measured using a Shimadzu TOC-5000 carbon analyzer.
51

 The plastic 148 

pieces were analyzed with SEM at t0 and tf to obtain insights into the potential surface modification of the 149 

materials. To this end, the samples were carbon-coated before being examined on two different zones with a 150 

Zeiss Supra 40VP microscope with an accelerating voltage set at 10 kV and a working distance of 9 mm.  151 

RESULTS AND DISCUSSION 152 

Release from plastic fragments: light effect 153 

Our results indicated that, regardless of the indoor light/dark conditions, both PVC-cable and PE-bag 154 

leached specific PAEs toward the surrounding seawater, with higher release rates for the latter. Only the 155 

DMP and DEP migrations (expressed as ng g
-1

 of plastic incubated) were detected from the PVC-cable, 156 

whereas only DiBP and DnBP were detected from the PE-bag (Figures 1). The absence of other targeted 157 

PAEs may be explained by i) their absence from the selected polymers or ii) the low release rate to the 158 

surrounding water phase due to high affinity with the polymer. In all experiments, the larger migration was 159 

measured within the first two weeks of incubation with a specific magnitude and trend for each individual 160 

treatment. LA22 were compared to DA22 treatment to isolate the effect of the light (Table 1). 161 

Note that for the PVC-cable (Figure 1a-b), a higher migration was observed during the first 1-2 162 

weeks (up to 6.6 ng g
-1

 and 23.2 ng g
-1

 for DMP and DEP, respectively), whereas the measured 163 

concentrations reached a plateau and remained stable in both the light- and dark-abiotic conditions 164 

throughout the following 6 weeks. After 8-10 weeks, the measured concentrations started to slightly 165 

decrease, most likely due to the glass bottle adsorption or hydrolysis
52

, although late prokaryotic 166 

development and subsequent biodegradation cannot be precluded. Overall, our results showed that i) DEP 167 

was predominantly released from the PVC-cable over DMP (3.5 times more) and ii) the indoor light 168 

condition induced up to two times more DEP and DMP releases compared to the dark condition. In contrast, 169 

for the PE-bag experiments, a higher amount of PAEs, including DiBP followed by DnBP, were released (up 170 
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to 139 ng g
-1

) mainly during the first week. Differently from the PVC-cable experiments, the PE-bag results 171 

indicated no significant release differences between light- and dark-abiotic conditions (Dark-Abiotic: DiBP: 172 

83.4 ± 12.5 ng g
-1

 and DnBP: 120.1 ± 18.0 ng g
-1

 and Light-Abiotic: DiBP: 103.6 ± 15.5 ng g
-1

 and DnBP: 173 

138.8 ± 20.8 ng g
-1

) during the time course experiment (Figure 1c-d), thus suggesting that only seawater 174 

leaching promotes PAE release whatever the light conditions. Similar decreases for both dark and light 175 

conditions during the last weeks of the experiment suggest that photodegradation in the visible radiation 176 

range was not a significant process on freely dissolved DiBP and DnBP destruction. Therefore, the different 177 

patterns observed for both PVC-cable and PE-bag could be rather linked to the 3-dimension configuration of 178 

each plastic piece (i.e., 2 mm vs. 10 µm thicknesses, respectively). Indeed, the very thin PE-bag material 179 

could release a large part of its PAE burden either with light or not. In contrast, photochemical oxidation 180 

reactions may alter the PVC-surface, thereby making more PAE quantities water-accessible.  181 

DOC leaching confirms the PAEs trend, with the PE-bag‟s highest release in the first week and small 182 

differences between dark the and light conditions (24.4 x 10
3
 and 24.6 x 10

3
 ng C g

-1
 of plastic bag) and with 183 

the PVC-cable‟s highest release after 1-2 weeks and higher release during the light experiment (13.4 x 10
3
 184 

and 21.9 x 10
3
 ng C g

-1
 in the dark and light conditions, respectively) (Figure S2). The PAE carbon content 185 

released from the PE-bag and PVC cable thus represented a small portion of the DOC that leached, i.e., only 186 

0.05-0.09% of the DOC released from the PVC-cable and 0.15-0.17% of the DOC from the PE-bag. In 187 

addition to PAEs, other groups of organic additive or oligomers could be leached from this plastic during the 188 

experiment, thus increasing the concentration of DOC in the surrounding water. The amount of DOC leached 189 

per surface area unit of the PE-bag in this study (5.5 and 5.6 µg C cm
-2

 of the plastic surface in the dark and 190 

light conditions, respectively) are higher than the migration observed by Romera-Castillo et al. (2018) in PE 191 

food packaging (0.26-0.31 µg C cm
-2

), which is probably due to the lower amount of additives mixed in food 192 

plastic resins, but is in the same range of LDPE and HDPE pellets‟ leaching (2.4-8.9 µg C cm
-2

). In the same 193 

study, similar leaching kinetics were reported, with the peak of leaching observed in the first week of the 194 

experiment, which was followed by a sharp decrease of DOC migration during the first month. Interestingly, 195 

we observed a second strong DOC leaching after 10-12 weeks (83-96 x 10
3
 ng C g

-1 
for the PE bag and 28-38 196 

x 10
3
 ng C g

-1 
for the PVC-cable), which was probably due to the initial degradation of the plastic surface. 197 

The lack of a strong weathering such as UV-exposure or a strong mechanical abrasion induced a slow 198 
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degeneration of the polymers and thus, part of the organic matter pool more strongly bounded to the polymer 199 

could be leached only when the fragments were affected by major surface modifications.  200 

 201 

Figure 1. Graphical representation of the release kinetics of DMP (a) and DEP (b) from the PVC-cable 202 

experiments and of DiBP (c) and DnBP (d) from the PE-bag experiments. The two experimental conditions 203 

were Dark Abiotic (DA) and Light Abiotic (LA) incubated at 22 °C (in situ temperature). Curves are given to 204 

assist in the reading and do not represent data modeling.  205 

 206 

 207 

Release from plastic fragments: Biotic effect  208 

Biotic effects were studied by comparing the results of the previous abiotic conditions with the PAE 209 

release kinetics from the same plastic materials diluted in seawater comprising its natural prokaryote 210 

assemblage (biotic conditions, seawater filtered through 1.2µm GF/C and not poisoned with HgCl2; Figure 211 

2). The results indicated that DiBP and DnBP are more rapidly released and in higher proportions (up to 122 212 

ng g
-1

) from the PE-bag than the DMP and DEP from the PVC-cable (63.5 ng g
-1

). Globally, the same PAEs 213 

were detected for both light and biotic experiments. However, 5-fold higher quantities of DMP/DEP were 214 

produced from the PVC-cable in the biotic conditions during the first month rather opposed to the abiotic 215 

conditions, thus indicating that PAE leachates were promoted by prokaryotic activity. In contrast, no 216 

influence of prokaryotes was observed on the initial release of DiBP and DnBP from the PE-bag. For the 217 

light effect, a PAE release catalyzed by bacterial communities seemed to be more efficient for the PVC-cable 218 
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than for the PE-bag. The large difference in PAE release between biotic and abiotic conditions observed in 219 

the case of PVC-cable was not observable in the case of PE-bag experiments. This could be attributed to i) 220 

the low thickness of the material, thus allowing for a complete release of PAE burden regardless of the 221 

conditions or ii) the low PE aging under the action of bacteria.  222 

Interestingly, for both materials incubated with seawater prokaryote assemblages, an increase in the 223 

PAE concentration was followed by a net decrease of this PAE concentration, as low as almost zero after 4 224 

and 12 weeks for the PE-bag and PVC-cable experiments, respectively, thus suggesting the subsequent 225 

assimilation of dissolved PAEs by prokaryotes.  Re-adsorption of PAE by the plastic could also explain the 226 

decrease of PAE content in the dissolved fraction. Indeed, plastic surface modification during aging includes 227 

an increase of surface polarity,
53

 and therefore changes the partition coefficient of individual PAEs between 228 

water and plastic fragments. It is of importance to note that the DiBP and DnBP released from the PE-bag 229 

are more rapidly consumed by prokaryotes than the DEP and DMP produced from the PVC-cable. After the 230 

beginning of the fragments incubation and PAE leaching, bacterial abundance increased probably as a result 231 

of the leached available for prokaryote consumption and growth (Figure 2). In PE-bag experiments, the lack 232 

of available PAEs after 4 weeks corresponds a decreasing of the prokaryotic abundance. This was not 233 

observed in PVC-cable experiments, where the growth ended after one week. The reason could be the 234 

smaller amount of leachate from PVC that may support a smaller community than the larger amount of 235 

leachates from PE-bag. The plastic fragments at t0 and tfinal exposed under dark biotic conditions were 236 

observed through SEM and showed a diffuse degradation of the PVC-cable surface, with characteristic 237 

cavities along the fragments after 3 months of incubation (Figure 3a-b) and no evident differences on the PE-238 

bag surface at the end of the incubation (Figure 3c-d). This observation seems to confirm that PVC-cable 239 

fragments are a better substrate for prokaryote colonization and subsequent degradation. This outcome may 240 

probably explain the large differences observed between the biotic and abiotic samples for the PVC-cable 241 

experiments and the lack of differences for the PE-bag experiments, whether these differences are linked to 242 

the total or only the surface PAE release, regardless of the exposure conditions. Then, this experiment 243 

indicated that DiBP and DnBP are more rapidly released from the PE-bag and quickly exhausted by 244 

prokaryotes, whereas both processes are found to be slower in the case of the PVC-cable/ DMP/DEP 245 

experiment. 246 
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The observed DOC leached results are smaller or negligible compared with the 2 abiotic experiments 247 

in the incubation with bacteria. The DOC release of 7 x 10
3 ng C g

-1 
was measured from the PVC-cable in 248 

the first week, and no DOC leaching was observed from the PE bag in the first weeks of the experiments. 249 

This result is probably because the plastic derived DOC is immediately available for bacterial degradation 250 

and supports the bacterial growth. The prokaryotic consumption of the plastic-derived DOC agrees with a 251 

previous study.
15

 Interestingly, the DOC from the PE and PVC plastics was characterized by large leaching 252 

after 10-12 weeks of incubation (23 x 10
3
 and 36 x 10

3
 ng C g

-1
 for the PVC-cable and the PE-bag, 253 

respectively), as already shown by the abiotic experiments. This kinetic is not supported by the PAE results 254 

and could be due to the release of organic substances derived from polymer degradation and weathering. 255 

  256 

Figure 2. Graphical representation of the release kinetics of DMP (a) and DEP (b) from the PVC-cable 257 

experiments and of DiBP (c) and DnBP (d) from the PE-bag experiments. The two experimental conditions 258 

were Dark Abiotic (DA) and Dark Biotic (DB) incubated at 22 °C (in situ temperature). Total bacteria 259 

include LNA and HNA cell abundance. The curves are given to assist in the reading and do not represent the 260 

data modeling. 261 

 262 
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 263 

Figure 3. Surface of plastic fragments observed through SEM in the DB (Dark Biotic) condition at t0 and tfinal 264 

(3 months). a) PVC-cable fragments at t0, b) PVC-cable fragments at tfinal, c) PE-bag fragment at t0, and d) 265 

PE-bag fragments at tfinal. The yellow circles highlight the cavities on the PVC-cable fragments after three 266 

months of incubation.  267 

 268 

PAE biodegradation in seawater  269 

A dissolved phthalate biodegradation experiment was undertaken to study the biodegradability of 270 

PAEs that could have been released from any plastic fragments in the natural environment. Our results 271 

showed that the PAE concentrations in the dark under abiotic conditions (controls) remained relatively stable 272 

over the 60 days of exposure for all compounds (Figure 4). Indeed, minor concentration changes, ranging 273 

from -3.5% (DEP) to -6.1% (DEHP), were observed, thus suggesting no significant abiotic degradation and 274 

slight sorption on the glass bottle
52

 during the time course experiment. However, under biotic conditions, 4 275 

of the 7 target PAEs in seawater, including DnBP, DiBP, BzBP and DEHP, were almost completely 276 

degraded (> 85%) within 49 days of incubation (Figure 4), whereas 28-46% of DMP, DEP and DPP were 277 

degraded. No significant correlations were found between bacterial abundance and PAE consumption, either 278 

as individual PAEs or as total PAEs. A first order regression (Eq. 1) was applied to the data to estimate the 279 

degradation rate (i.e., k) and half-life (t1/2, Eq. 2) (Table 1).  280 

                 (1) 281 
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 (2) 282 

where C(t) and C(t=0) are the PAE concentrations at each time t or t = 0, respectively. 283 

The calculated values of k ranged from 0.046 ± 0.005 d
-1

 (DnBP) to 0.009 ± 0.001 d
-1

 (DEP), thus 284 

resulting in t1/2s ranging from 21 to (DnBP) to 79 days (DEP). It is of interest to note that the lowest values of 285 

k (0.009-0.013 d
-1

) were observed for the shortest chain PAEs (DMP and DEP), whereas longer and 286 

branched chain PAEs exhibited higher values (0.024-0.046 d
-1

) (Table 1), which is consistent with our PAE 287 

plastic release experiment (Figure 2). PAEs biodegradation rate has been reported to decrease with 288 

increasing of alkyl chain length as a result of the stereospecific blockade
54

. However, our results confirm this 289 

trend only between the longer chain PAEs and showed an extremely lower rate for the short chain PAEs. 290 

This behavior has been previously reported in another study, where DnBP was degraded faster than DEP, 291 

showing an inhibitory effect of DnBP on DEP, probably cause by the competition for the same enzyme 292 

active site
37

. Another reason might be the production of intermediate short chain-PAE products during the 293 

long chain-PAE degradation. Indeed, monobutyl phthalate and DEP have been reported as the two major 294 

intermediate compounds of the degradation of the DiBP, DnBP and DEHP by the primary degradation 295 

pathway and by the secondary pathway,
54-56

 in which PAEs with longer side chains are converted to those 296 

with shorter chains by β-oxidation, which removes one ethyl group each time until getting DEP
56

 and, 297 

eventually, by further transesterification, ethyl-methyl phthalate and then DMP.
57

 Accordingly, DMP and 298 

DEP can be considered intermediate or end products of long chain PAE degradation oxidation reactions.   299 

Additionally, the difference in the prokaryotic degradation is very likely the result of the specific 300 

abundance of the organisms with the specific ability to degrade individual PAEs.
54,58

 Note that the DEHP and 301 

DnBP biodegradation by pure cultures of bacteria isolated from activated sludge, mangrove sediments and 302 

wastewater have been already reported,
59-63

 whereas several microorganisms were identified for phthalate 303 

degradation, such as Pseudomonas fluorescens, Rhodococcus rhodochrous and Comamonas acidovoran.
64-67

 304 

The already published DnBP degradation rate and half-life of the isolated bacteria ranged from 0.018 to 305 

0.035 h
-1

 and from 20 to 72 h, respectively.
37,43,55

 However, most of the microorganisms have been isolated 306 

from terrestrial subsurface environments, and far less is known about their counterparts in marine 307 

environments. In addition, complete phthalate degradation is always carried out syntrophically by several 308 

members of microorganisms in natural environments.
68

 The k of DnBP and DEHP reported in several studies 309 
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with mixed cultures in environmental conditions ranged from 0.015 to 0.024 d
-1

,
54-57,69

 which is consistent 310 

with our findings (Table 1). Additionally, in an aquatic environment, PAE can also be degraded by the intra 311 

and extracellular enzymes of phytoplankton.
37,70

 312 

 313 

Table 1. Degradation rates (k) and half-lives (t1/2s) of 7 PAEs under dark biotic conditions. A first order 314 

regression was fitted to the experimental data using XLSTAT software. The RSD (relative standard 315 

deviation) is applicable for both k and t1/2 316 

 317 

Compound k (d
-1

) t1/2 (d) RSD (%) R
2
 

DMP 0.013 53 11.4 0.905 

DEP 0.009 79 9.2 0.932 

DPP 0.024 29 20.1 0.727 

DiBP 0.024 29 20.1 0.822 

DnBP 0.046 15 10.2 0.964 

BzBP  0.034 21 20.8 0.824 

DEHP 0.027 26 8.3 0.963 

 318 

 319 
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320 
   321 

Figure 4. Bacterial degradation of the 7 PAEs in seawater at 22 °C and in the dark condition. (a) DMP, (b) 322 

DEP, (c) DPP, (d) DiBP, (e) DnBP, (f) BzBP and (g) DEHP kinetics of degradation. Abiotic samples 323 

poisoned with sulphuric acid were used as controls in this study at t0 and tfinal. Total bacteria include LNA 324 

and HNA cell abundance. 325 

 326 

 327 

Release from plastic fragments, material effects  328 

The two common plastic products that were studied here, including the LDPE plastic trash bags and 329 

PVC electrical cables, were found to release distinct PAEs in different ways during the time course 330 
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experiments. Note that an extension of these results must be taken cautiously because there is some 331 

variability in the chemical composition of these commercially available products. Indeed, trash bags, which 332 

are commonly manufactured, can be either made from plastic beads of low-density polyethylene including 333 

(LDPE) or HDPE (or both), whereas the insulation sheath of electric cables can also be made of a polymer 334 

composition comprising a polymer base resin of polyethylene, ethylene-propylene rubber (EPR) or polyvinyl 335 

chloride (PVC, this study). In addition, these materials layers usually contain large range additives to 336 

improve the physical proprieties and resistance to different surrounding conditions, which range from 0.5 to 337 

5% of the weight of total polymer composition.
71

  338 

PAE migration from plastic materials was already reported in cases concerning the potential release 339 

in food and water from bottles, packaging materials and disposable tableware.
72-81

 The polymer has a three-340 

dimensional porous structure in which the additives are dispersed, and the pore diameter and additive size are 341 

important parameters
82

 that could determine a selective release of the lower molecular weight additives, 342 

which in this case are the DMP and DEP for the PVC-cable. In addition, the depletion of these PAEs from 343 

the resin surface and a negative concentration gradient from the inside to the surface may cause the 344 

migration.
82

 In contrast, DEHP, which has the highest molecular weight phthalate target in this study, and the 345 

other high molecular weight PAEs are more resistant to migration due to their hydrophobicity and higher 346 

partitioning coefficient. The nature of the polymer of the insulation layer of electrical cables, which is 347 

compact and dense, and the tube-shape of the fragments used for the incubation experiments could be two 348 

factors involved in PAE selective migration in the surrounding medium. DMP and DEP could be better 349 

candidates for the migration process from this fragment of plastic if compared with DiBP, DnBP and DEHP. 350 

However, a significant DiBP and DnBP release was observed from the plastic bags. This material was 351 

constructed by a different polymer structure that was less compact and more flexible, and the fragments used 352 

for the incubation were characterized by a larger surface to mass ratio. In addition, the two plastic materials 353 

could be made of different amount of plasticizers since the purpose for which they have been produced and 354 

their necessary features are different. The release may take place during the service life of the plastics or 355 

their production as well as after their disposal. Moreover, due to the lower steric hindrance of DMP and 356 

DEP, it could be possible that this material has already lost most of its low molecular weight PAEs content 357 

before the incubation experiments.  358 
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Environmental implications  359 

Overall, these results confirm that, according to the origin and aging of the material, plastic aquatic 360 

dilution may provide variable amounts of PAEs in their surrounding environments, including seawater and 361 

the guts of marine organisms, birds and mammals. During the study period (three months), the PE-bag 362 

provided approximately 1 order of magnitude more PAEs than the PVC-cable. PAE leaching from plastics 363 

and its subsequent effects might be important in areas with high plastic concentrations
3,11,12,83 

and certainly 364 

contribute to the high PAE concentrations reported in coastal areas in the vicinity of large rivers and 365 

urbanized areas.
33,34,84

 It has been estimated that between 4.8 x 10
6
 and 12.7 x 10

6
 MT of plastic entered in 366 

the oceans in the year 2010
15,85

, with 28% and 5% being made of polyethylene and PVC, respectively.
2
 By 367 

extrapolating our results to the oceans, our results would suggest that between 0.32 MT and 0.86 MT and 368 

between 0.02 MT and 0.05 MT of PAE leach in the first two months of their introduction into the oceans 369 

every year from plastic bags and PVC-cables, respectively, and it is important to understand that the myriad 370 

of plastic items in the oceans may release different types of PAEs. Our study suggests that most of the PAEs 371 

produced are exhausted by marine prokaryotes within one month (PE-bag) and 2.5 months (PVC-cable). 372 

Similarly, intense solar radiation in the surface water
15

 may certainly modify the release and bioavailability 373 

of PAEs produced from plastics in the oceans, whereas high hydrostatic pressure in deep waters is able to 374 

modify the prokaryotic degradation of particulate organic matter
86

 and certainly have a significant effect on 375 

the plastic aging deposited on the deep sediment. Considering that we found that PAEs that were released 376 

ranged from 71 ng g
-1

 to 241 ng g
-1

 and that plastics usually contain 0.5-5% of PAEs, our results suggest that, 377 

after three months, more than 90% of the PAEs in the plastic remain and will ultimately leach out over a 378 

longer period of time. 379 
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