TY - JOUR T1 - On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study A1 - Savelli,Raphael A1 - Dupuy,Christine A1 - Barille,Laurent A1 - Lerouxel,Astrid A1 - Guizien,Katell A1 - Philippe,Anne A1 - Bocher,Pierrick A1 - Polsenaere,Pierre A1 - Le Fouest,Vincent AD - Univ La Rochelle, CNRS, LIttoral Environm & Soc LIENSs, UMR 7266, 2 Rue Olympe Gouges, F-17000 La Rochelle, France. AD - Univ Nantes, Lab Mer Mol Sante, MMS EA 21 60, 2 Rue Houssiniere, F-44322 Nantes, France. AD - Univ Paris 06, CNRS, Observ Oceanol Banyuls Sur Mer, UMR8222,Lab Ecogeochim Environm Benth, Rue Fontaule, F-66650 Banyuls Sur Mer, France. AD - IFREMER, LER PC, BP7, F-17137 Lhoumeau, France. AD - UR - https://archimer.ifremer.fr/doc/00471/58226/ DO - 10.5194/bg-15-7243-2018 N2 - Microphytobenthos (MPB) from intertidal mudflats are key primary producers at the land–ocean interface. MPB can be more productive than phytoplankton and sustain both benthic and pelagic higher trophic levels. The objective of this study is to assess the contribution of light, mud temperature, and gastropod Peringia ulvae grazing pressure in shaping the seasonal MPB dynamics on the Brouage mudflat (NW France). We use a physical–biological coupled model applied to the sediment first centimetre for the year 2008. The simulated data compare to observations, including time-coincident remotely sensed and in situ data. The model suggests an MPB annual cycle characterised by a main spring bloom, a biomass depression in summer, and a moderate fall bloom. In early spring, simulated photosynthetic rates are high due to mud surface temperature (MST) values close to the MPB temperature optimum for photosynthesis and because increasing solar irradiance triggers the onset of the MPB spring bloom. Simulated peaks of high P. ulvae grazing (11 days during which ingestion rates exceed the primary production rate) mostly contribute to the decline of the MPB bloom along with the temperature limitation for MPB growth. In late spring–summer, the MPB biomass depression is due to the combined effect of thermo-inhibition and a moderate but sustained grazing pressure. The model ability to infer biotic and abiotic mechanisms driving the seasonal MPB dynamics could open the door to a new assessment of the export flux of biogenic matter from the coast to the open ocean and, more generally, of the contribution of productive intertidal biofilms to the coastal carbon cycle. Y1 - 2018/12 PB - Copernicus Gesellschaft Mbh JF - Biogeosciences SN - 1726-4170 VL - 15 IS - 23 SP - 7243 EP - 7271 ID - 58226 ER -