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Abstract :   
 
Individual-based models are increasingly used by marine ecologists to predict species responses to 
environmental change on a mechanistic basis. Dynamic Energy Budget (DEB) models allow the 
simulation of physiological processes (maintenance, growth, reproduction) in response to variability in 
environmental drivers. High levels of computational capacity and remote-sensing technologies provide 
an opportunity to apply existing DEB models across global spatial scales. To do so, however, we must 
first test the assumption of stationarity, i.e., that parameter values estimated for populations in one 
location/time are valid for populations elsewhere. Using a validated DEB model parameterized for the 
cosmopolitan intertidal mussel Mytilus galloprovincialis, we ran growth simulations for native, 
Mediterranean Sea, populations and non-native, South African populations. The model performed well 
for native populations, but overestimated growth for non-native ones. Overestimations suggest that: (1) 
unaccounted variables may keep the physiological performance of non-native M. galloprovincialis in 
check, and/or (2) phenotypic plasticity or local adaptation could modulate responses under different 
environmental conditions. The study shows that stationary mechanistic models that aim to describe 
dynamics in complex physiological processes should be treated carefully when implemented across 
large spatial scales. Instead, we suggest placing the necessary effort into identifying the nuances that 
result in non-stationarity and explicitly accounting for them in geographic-scale mechanistic models. 
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growth simulations for native, Mediterranean Sea, populations and non-native, South 25 

African populations.  The model performed well for native populations, but overestimated 26 

growth for non-native ones.  Overestimations suggest that (1) unaccounted variables may 27 

keep the physiological performance of non-native M. galloprovincialis in check, and/or (2) 28 

phenotypic plasticity or local adaptation could modulate responses under different 29 

environmental conditions.  The study shows that stationary mechanistic models that aim to 30 

describe dynamics in complex physiological processes should be treated carefully when 31 

implemented across large spatial scales.  Instead, we suggest placing the necessary effort 32 

into identifying the nuances that result in non-stationarity and explicitly accounting for them 33 

in geographic-scale mechanistic models. 34 

 35 
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 50 

Introduction 51 

Understanding and predicting species’ responses to environmental variability requires 52 

careful consideration of individual-level physiological processes (Kearney 2006; Denny and 53 

Helmuth 2009; Monaco and Helmuth 2011).  Individual-based energy budget models offer 54 

an opportunity to make mechanistic links between environmental drivers and the ecological 55 

success of species in both natural and altered systems (Hochachka and Somero 2002). The 56 

main strength of such mechanistic models, as opposed to the more widely applied statistical 57 

models (e.g. species distribution correlative models), is an explicit focus on the organism’s 58 

fundamental niche. The more process-based nature of this approach implies no assumptions 59 

about the influence of locally contingent factors (e.g. biotic interactions) on species baseline 60 

responses, and therefore holds greater potential for reliably anticipating dynamics in a 61 

species’ performance and distribution (Kearney 2006). 62 

Different types of energy budget models exist, varying in degree of generality, 63 

sophistication, or theoretical justification (Karasov and Martínez del Rio 2007).  Depending 64 

on the investigator’s research goals, these models can be as complex as desired.  For 65 

example, energy budget models have been constructed to account for gradients in single or 66 

multiple stressors that can be either biotic or abiotic (Branch 1981; Widdows and Johnson 67 

1988; Hölker and Mehner 2005; Kitazawa et al. 2008; Sokolova 2013), and can incorporate 68 

behaviour (e.g. microhabitat use for regulating body temperature, Grant and Porter 1992).  69 

Indeed, thorough descriptions of the ecological and physiological context are increasingly 70 

favoured in mechanistic studies (Denny and Helmuth 2009; Pincebourde and Woods 2012; 71 
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Potter et al. 2013).  Simultaneously, given the global scale of some of the challenges facing 72 

species today (e.g. climate change) and the growing number of species exhibiting shifting or 73 

expanding distribution limits, notably, invasive species (Walther et al. 2002; Seebens et al. 74 

2017), there is a pressing need for accurate models that can be implemented at both local 75 

and global scales.  Ideally, models should therefore strive to balance the context-76 

dependence of physiological performance, without compromising the power to describe the 77 

larger scale processes that may ultimately define the ecological performance of the species. 78 

While technological bottlenecks prevented the application of individual-based 79 

models across large spatial scales in the past, advances in remote sensing technology and 80 

computational power provide today’s marine biologists with access to large-scale 81 

environmental data, and allow the rapid performance of the necessary calculations (Kerr 82 

and Ostrovsky 2003; Hofmann and Gaines 2008).  It is now possible for energy budget 83 

models to describe and project the physiological condition of species across their entire 84 

distributional range. 85 

Importantly, however, for many existing mathematical models to be applicable 86 

across space, we must assume ‘spatial stationarity’, i.e. that parameter values estimated for 87 

populations in one location/time are valid for populations elsewhere (Stenseth et al. 2003; 88 

Woodin et al. 2013; Montalto et al. 2015).  The assumption of model stationarity has been 89 

challenged extensively in the literature on species distribution models (i.e. correlative 90 

modelling), and innovative solutions have been proposed.  For instance, instead of assuming 91 

fixed regression coefficients for the whole distribution of their species, Kupfer and Farris 92 

(2007) relied on geographically weighted regression models that are flexible/adaptive across 93 

space.  Such flexibility was also embraced by Hothorn et al. (2011), using a method that 94 

decomposes the variability of local and global effects of environmental drivers to produce 95 
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statistical models that can deal with not only non-stationarity, but also spatiotemporal 96 

autocorrelation.  While such implementations can incorporate non-stationarity, these 97 

solutions still suffer from the drawbacks of species distribution models: they are grounded 98 

on statistical approximations that describe relationships, often neglecting cause-effect 99 

mechanisms.  Unfortunately, however, predictive mechanistic models put forward by 100 

physiological ecologists rarely test the stationarity assumption, and few attempts have been 101 

made to account for non-stationarity in parameter values (for exceptions see Buckley 2008; 102 

Alunno-Bruscia et al. 2011).  For energy budget models, this implies that parameter values 103 

defining flow of energy through an individual are constant.  Because phenotypic plasticity 104 

and local adaptation are pervasive in nature (Sanford and Kelly 2011; Valladares et al. 2014), 105 

regarding species as uniform entities is probably incorrect.  Thus, for energy budget models 106 

to be useful at all spatial scales, we must first test the assumption of stationarity. 107 

Here we examine stationarity in a Dynamic Energy Budget (DEB) model (Kooijman 108 

2010) developed for the Mediterranean mussel Mytilus galloprovincialis.  We choose to use 109 

DEB modelling due to its growing popularity among ecologists owing to its ability to model 110 

underlying physiological processes (growth, reproduction, and maintenance) based on first 111 

principles that are applicable across different taxa and ontogenetic stages (Sousa et al. 112 

2010; Monaco et al. 2014).  DEB models also have the advantage of being able to 113 

accommodate temporal/spatial variability in environmental drivers such as temperature, 114 

food availability (Saraiva et al. 2011), and pH (Klok et al. 2014), all of which are predicted to 115 

vary at a global scale with climate change.  We worked with M. galloprovincialis because, as 116 

a cosmopolitan species present on all continents except Antarctica, this mussel offers the 117 

chance to compare the model’s performance across very large (inter-hemispheric) 118 

geographical scales.  Additionally, because M. galloprovincialis is such a successful invasive 119 
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species, evaluating its physiological performance at non-native sites could improve our 120 

understanding of its spread and impact on natural systems. 121 

Although DEB theory has existed for over 35 years and its utility has been widely 122 

confirmed by virtue of the many species already parameterized (van der Meer et al. 2014), 123 

its application to model species, including M. galloprovincialis, is mostly constrained to very 124 

local spatial scales (but see Tagliarolo et al. 2016).  DEB models are generally parameterized 125 

based on real data collected from few populations, and plasticity in traits is often ignored, 126 

i.e. stationarity is assumed.  Given the rapid progress in DEB theory and the prospect of 127 

applying it to large spatial scales in applied and exploratory research (Alunno-Bruscia et al. 128 

2011; Montalto et al. 2015), testing the assumption of stationarity thus becomes an 129 

imperative. 130 

This study tests the stationarity assumption by comparing the ability of a DEB model 131 

to predict size-at-age for individuals collected from Mediterranean Sea native sites, for 132 

which we develop the model (control region), and South African non-native sites.  133 

Anticipating possible non-stationarity, we explored variability in the two main driving 134 

variables, temperature and food availability, in relation to the model’s skill.  Finally, in light 135 

of these environmental data, we examine and discuss possible ways to incorporate non-136 

stationarity in key DEB model parameters to obtain better predictions for non-native 137 

regions. 138 

 139 

Materials and methods 140 

Study regions and sites 141 

Mytilus galloprovincialis is a cosmopolitan species spread across temperate rocky shores in 142 

both hemispheres.  Here we focused on two regions, the European coast of the 143 
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Mediterranean Sea (Italy), and the southern tip of Africa (South Africa) (Fig. 1A).  M. 144 

galloprovincialis is a European native, and the original DEB model used here was 145 

parameterized based on populations from that region, specifically located in the Gulf of 146 

Castellammare (38°02’26.9’’ N, 12°55’18.5’’ E) (Sarà et al. 2012).  Here we sampled four 147 

intertidal Italian populations that were different from those used by Sarà et al. (2012) to 148 

develop the original model: Gaeta (41°13’00.7’’ N, 13°32’02.9’’ E), Otranto (40°08’ 38.0’’ N, 149 

18°30’08.3 E), Ancona (43°33’32.7’’ N, 13°36’24.1’’ E), and Trieste (45°38’58.3’’ N, 150 

13°46’36.5’’ E) (Fig. 1B), which were used for quality control of the performance of the 151 

existing DEB model.  To test the current model under conditions experienced by mussels in a 152 

non-native region, we used four intertidal South African populations: Hondeklip Bay 153 

(20˚18’19.2” S, 17˚16’18.5” E), Paternoster (32˚48’44.3” S, 17˚52’48.8” E), Brenton-on-sea 154 

(34˚04’31.1” S, 23˚01’26.1” E), and St. Francis (34˚12’30.5” S, 24˚50’00.6” E) (Fig. 1C).  155 

Important differences in wave height and tidal range exist between the regions and can 156 

presumably influence the degree of mussel submergence and body temperatures.  On 157 

average, the Mediterranean experiences negligible tidal fluctuations, while the tidal range in 158 

South Africa is c. 2m.  Food availability in the form of primary production also differs 159 

significantly between the studied sites.  The Mediterranean Sea is characteristically 160 

oligotrophic (Colella et al. 2016), and the west coast of South Africa, where two of our four 161 

sites occur, exhibits higher productivity due to frequent upwelling than the south coast, 162 

where the other two sites occur (Brown 1992; Bustamante et al. 1995).   163 

 164 

Mussel size-at-age determination 165 

At each of our sites (Fig. 1) we collected animals to determine size-at-age.  Italian and South 166 

African sites were sampled on July 2013 and August 2014, respectively.  The earlier study 167 
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that employed DEB to model subtidal M. galloprovincialis from Gulf of Castellammare 168 

covered the period 2006-2009 (Sarà et al. 2012).  We sampled the lower section of mussel 169 

beds by collecting all individuals within each of three randomly placed quadrats of 20 x 20 170 

cm.  Mussels were fixed in 70% ethanol and transported to the laboratory where shell 171 

length, soft tissue dry weight (gonads and soma separated), and age were recorded for each 172 

individual.  Age was estimated by cutting the shell with a rotary disk and counting the 173 

number of annual rings under a stereomicroscope (Peharda et al. 2011; Sarà et al. 2013).  174 

The age-length relationship obtained with this method was compared with previous studies 175 

done in the same area using several different methods and the results were comparable 176 

(Kaehler and McQuaid 1999; McQuaid and Lindsay 2000).  Shell length was measured using 177 

callipers (± 1 mm). 178 

In this study we used all mussels from the quadrats that were estimated to be 1 or 2 179 

years old.  Because mussels were collected from random quadrats, the number of 180 

individuals reaching 1 and 2 y was unbalanced among sites and between regions.   181 

 182 

DEB model and original parameter values 183 

Using the DEB model, we simulated mussel growth, in terms of soma dry weight, from birth 184 

to age 1 and 2 y at all our sites.  Predictions were then compared with the observed size (see 185 

Mussel size-at-age determination). 186 

Here, we briefly refer to the fundamentals of the DEB model and the main 187 

components that allowed testing of the stationarity assumption.  More detailed descriptions 188 

are given in Kooijman (2010), Sarà et al. (2013), and Monaco and McQuaid (2018).  We used 189 

a ‘standard DEB model’ (i.e. one reserve compartment, one structure compartment, 190 

isomorphic growth).  Food, measured as chlorophyll-a concentration (a proxy for 191 
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phytoplankton concentration in the water), enters the organism’s body following a Type II 192 

functional response model dependent on a half-saturation coefficient (Xκ) (Holling 1959).  193 

Assimilated energy is stored in a reserve pool, from which it is allocated according to the κ-194 

rule; a fixed proportion (κ) goes to maintenance of somatic tissues and growth of structure, 195 

while the rest (1- κ) is used for maintenance of maturity level and maturation (or gamete 196 

production in adults).  The rates of all energy flows are modulated by a thermal sensitivity 197 

model that describes a typical negatively skewed curve, with zero values marking the 198 

temperature tolerance range, and highest values at the temperature at which rates are at 199 

maximum values.  The chief parameter here, controlling thermal sensitivity within the 200 

thermal-tolerance range, is the Arrhenius temperature (TA).  These and other parameters 201 

(Appendix S1 in Supporting Information) directly or indirectly influence growth (Kooijman 202 

2010; Sarà et al. 2013; Monaco et al. 2014). 203 

 204 

Driving variables: temperature, food availability, and tidal height 205 

For intertidal mussels, both body temperature and food ingestion vary with the tidal cycle.  206 

To account for this in our model simulations, we included tidal height as a modulating 207 

variable.  When the tidal height was below the shore level of the mussel bed, feeding was 208 

suspended and all temperature-dependent physiological processes were stalled on the basis 209 

of metabolic depression (Anestis et al. 2007; Tagliarolo and McQuaid 2015; Monaco and 210 

McQuaid 2018).  To identify emersion/immersion periods in South Africa, we used tidal 211 

height values estimated for each site by the prediction software Marées dans le monde 4.00 212 

(StrassGrauerMarina Softwares), and body temperature data logged by 3 biomimetic 213 

sensors or “robomussels” deployed between June 2014 and January 2015 at each site 214 

(Helmuth et al. 2016).  The height on the shore was identified by a sharp drop in 215 



 10 

temperature of ≥ 3°C in 30 min during summer following Harley and Helmuth (2003) and 216 

comparison with tide tables.  The effective shore level (m above MLLW) for each site was 217 

determined by averaging the height on the shore estimated over 20 days (Hondeklip Bay = 218 

0.77 m; Paternoster = 0.72 m; Brenton-on-sea = 0.72 m; Saint Francis = 0.72 m).  Because 219 

waves are important at South African sites, a buffer zone of +0.3 m was added to this 220 

estimated tidal height to ensure temperature readings represented periods when loggers 221 

were completely submerged at high tide.  For Italian sites, periods of emersion/immersion 222 

were identified based on empirical observations of water level and the same tidal prediction 223 

software (Gaeta = 0.1 m; Otranto = 0.15 m; Ancona = 0.25; Trieste = 0.3 m).   224 

The DEB model was run for each site using estimated body temperature (derived 225 

from Sea Surface Temperature [SST] and air temperature) and chlorophyll-a data as driving 226 

variables.  Time series of daily SST and concentration of chlorophyll-a, both at processing 227 

Level 4 (i.e. spatially gridded and continuous over the time period analysed), were extracted 228 

for the years 2011-2014 for all of our sites (Fig. 1) via the R packages raster (Hijmans 2016) 229 

and ncdf4 (Pierce 2015) (R Core Team 2016).  Air temperature data were extracted from 230 

Weather Underground’s API, accessed via the R package rwunderground 231 

(https://github.com/ALShum/rwunderground). 232 

Time series of daily SST were obtained from the “Group for High Resolution Sea 233 

Surface Temperature” (GHRSST – NASA; JPL MUR MEaSUREs Project, 2010) produced using 234 

wavelets as basis functions through an optimal interpolation, with a spatial resolution of 235 

0.011˚ grid (≈ 1 km).  Data were obtained from numerous instruments, such as the NASA 236 

Advanced Microwave Scanning Radiometer-EOS (AMSRE), the Moderate Resolution Imaging 237 

Spectroradiometer (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave 238 

WindSat radiometer and in situ SST observations from the NOAA iQuam project. 239 
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Previous studies comparing SST and in situ loggers revealed that satellite data are 240 

often ineffective at capturing extremes in intertidal water variability (Lathlean et al. 2011; 241 

Smit et al. 2013).  For this reason, the satellite-derived SST dataset was ground-truthed 242 

using in situ data obtained either from the Italian Oceanographic Buoy Network 243 

(Mediterranean Sea sites) or from “robomussels” (South African sites) (Helmuth et al. 2016).  244 

In situ SST data were correlated to satellite data to establish site-specific linear relationships 245 

(Tagliarolo et al. 2016).  The estimated submerged body temperature fed into the DEB 246 

models was computed based on these relationships (see Appendix S2 in Supporting 247 

Information for linear regression parameters, and S5 for underlying data).  Similarly, 248 

estimated aerial body temperature was obtained from a relationship between robomussel 249 

data and air temperature data computed aggregately for all sites (Appendix S3 and S6).   250 

Daily chlorophyll-a data (µg L-1), with a spatial resolution of 4km, were provided by 251 

the European MyOcean project (Copernicus Marine Environment Monitoring Service – 252 

CMEMS – Ocean monitoring and forecasting service; http://www.myocean.eu/) produced 253 

by the merging of MERIS, MODIS/AQUA, VIIRS and SeaWiFS data using Optimal-254 

Interpolation, based on the kriging method with regional settings of the estimated 255 

covariance between the chlorophyll-a anomalies observations (Saulquin et al. 2011).  We 256 

used these data directly in the DEB model, as previous accounts have revealed that satellite 257 

data do not differ significantly from in situ intertidal measurements, at least in the 258 

Mediterranean Sea (Sarà et al. 2011).    259 

The DEB model R script used to run the mussel growth simulations is available in 260 

Appendix S4 and all the environmental data compiled in Appendix S7. 261 

 262 

Model skill comparisons 263 
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Model predictions of soma dry weight at the end of the simulated periods (1 and 2-y old 264 

mussels grouped together) were compared against observed size-at-age.  First, to assess the 265 

magnitude of differences between observations and simulations for each site, we calculated 266 

the error statistics Mean Absolute Error (MAE) and Root-Mean Square Error (RMSE).  267 

Second, we compared the model skill between regions and sites using absolute errors.  268 

Because the number of samples was unbalanced (see Mussel size-at-age determination), we 269 

conducted bootstrapped ANOVA (Wilcox 2012; Mancuso et al. 2015).  The bootstrap 270 

involved resampling the data from each region 1000 times and calculating 95% confidence 271 

intervals, which were then contrasted against the critical F-value to evaluate statistical 272 

differences (Wilcox 2012).  Statistical significance was additionally assessed based on the p-273 

value (α = 0.05).  The bootstrap ANOVA to test for site effects was followed by a post hoc 274 

pairwise comparison with Bonferroni correction. 275 

 276 

Results 277 

Size-at-age observations 278 

Random sampling of mussels provided the necessary 1 and 2-year-old individuals for testing 279 

the DEB model.  Unfortunately, however, the numbers were unbalanced between ages, 280 

sites, and regions (Table 1). 281 

 Mean observed size-at-age was homogenous amongst sites and regions, ranging 282 

between 0.297 (0.093 SD) g for 2-y old mussels in Brenton-on-sea and 0.024 (0.007 SD) g for 283 

1-y old mussels in Gaeta.  The difference in mean soma dry weight between 1 and 2-y old 284 

mussels was consistently greater for Mediterranean than South African sites (Fig. 2). 285 

 286 

DEB model growth simulations and skill comparisons 287 
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Using DEB model parameters validated for Mediterranean Sea Mytilus galloprovincialis 288 

(Appendix S1), we successfully simulated increases in size (soma dry weight) from birth to 1 289 

and 2-y old (Fig. 2).  Simulated growth dynamics varied among sites and between regions in 290 

response to differences in the driving environmental variables temperature and food 291 

availability.  For example, growth in the Mediterranean Sea was greater in Ancona and 292 

Trieste than Gaeta and Otranto, and generally more pronounced for South African than 293 

Mediterranean Sea sites.  Growth was similar amongst South African sites despite generally 294 

warmer SST on the south (Brenton-on-sea and St. Francis) than the west (Hondeklip Bay and 295 

Paternoster) coast. This probably reflects compensation for low temperatures by the much 296 

higher chlorophyll levels in the west coast Benguela system, where values can be three 297 

times higher than on the south coast (Demarcq et al. 2003; see Model non-stationarity: 298 

influence of environmental drivers). 299 

 Our assessment yielded no support for model stationarity across the studied regions.  300 

Both error statistics, root mean square error and mean absolute error, revealed a 301 

consistently better agreement between observed and predicted soma dry weight for 302 

Mediterranean Sea than South African mussel populations (Table 1, Fig. 2-3).  This was 303 

confirmed by a bootstrapped 1-way ANOVA (Table 2).  An effect of site on the model mean 304 

absolute error was also detected, and post hoc analysis revealed differences between all 305 

sites, expect Brenton-on-sea (South Africa), Ancona, and Trieste (Mediterranean Sea) (Fig. 306 

3). 307 

 308 

Model non-stationarity: influence of environmental drivers 309 

We found marked differences between regions in the data for the environmental drivers 310 

chlorophyll-a and estimated submerged temperature (Fig. 4A-B), but not estimated aerial 311 
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body temperature (Fig. 4C).  Variability in mean chlorophyll-a across sites was positively 312 

correlated to the model’s skill (Fig. 4D), while submerged temperature affected model skill 313 

negatively (Fig. 4E).  Importantly, while the overall relationships were strong for data pooled 314 

for both regions, the regions differed in where they lay along the spectrum of values for 315 

both chlorophyll-a and submerged temperature (Fig. 4D-E).  The similar mean aerial 316 

temperatures experienced by mussels across regions did not correlate with the model’s skill 317 

(Fig. 4F).     318 

 319 

Model non-stationarity: parameter re-estimation 320 

Since the original DEB model failed to provide good fits for non-native populations, we re-321 

estimated some parameters searching for better matches in that region.  To narrow the 322 

search for candidate parameters, we focused on two physiological processes that are critical 323 

for growth, energy intake and thermal sensitivity, which respond to variability in chlorophyll-324 

a and temperature respectively.  The former is primarily controlled in the model by the half-325 

saturation coefficient (Xκ), and the latter by the Arrhenius temperature (TA), which is 326 

homologous to the more widely utilized Q10 (for reference, TA = 6000 equates to a Q10 of 327 

~2).  A comprehensive grid search allowed us to vary these parameters simultaneously and 328 

test the model predictions using 10000 combinations (Xκ = 0.05-5 μg L-1; TA = 2080-10000 329 

˚K).  Predictions improved from a mean absolute error of 0.995 g, when using original 330 

parameters, to 0.049 g when using the parameters that provided the best fit.  Despite the 331 

improvements, however, the parameter values that minimized the error were extreme (Xκ = 332 

5 μg L-1; TA = 10000 K) and unrealistic, in comparison to other temperate filter feeder 333 

species listed in the DEB add_my_pet collection (http://www.bio.vu.nl/thb/deb/deblab/).  334 

Note that this grid search also considered values that matched empirical derivations 335 
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available in the literature.  For example, a value of TA = 7090 K was reported by Tagliarolo 336 

and McQuaid (2015) for South African populations of M. galloprovincialis. 337 

 338 

Discussion 339 

Climate change is driving dramatic alterations to natural ecosystems through changes in 340 

species distributions and by exacerbating the trend of increasing frequency of biological 341 

invasions (Walther et al. 2002; Seebens et al. 2017).  Anticipating the consequences of these 342 

two effects on ecosystem services can be accomplished using mechanistic models that can 343 

quantify the physiological condition of native and non-native individuals.  A wealth of 344 

individual-based models, which can account for aspects of physiology and behaviour, is 345 

becoming available (Kearney 2006; Buckley 2013).  Because these models capture life-346 

history traits that are susceptible to evolution, their parameter values can presumably vary 347 

as a function of genetic differentiation (Valladares et al. 2014).  Thus, to apply these models 348 

across global scales, we must test the assumption of ‘stationarity’. 349 

We provide evidence that a standard Dynamic Energy Budget model developed for 350 

native, Mediterranean Sea populations of Mytilus galloprovincialis (Sarà et al. 2012) is 351 

unable to perform well for non-native, South African populations.  We now discuss possible 352 

causes of poor performance in DEB models, and then propose ways of moving forward.  In 353 

general, a model’s ability to describe real world processes depends on the estimated 354 

parameter values, which in turn are inherently constrained by the number and magnitude of 355 

external forces (e.g. environmental drivers) considered during the parameterization stage, 356 

as well as physiological constraints imposed by genetics. 357 

Models and parameter values are a reflection of the environmental and biological 358 

data used to train and validate them.  The model used here explicitly considered the effect 359 
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of variability in the two main environmental drivers of mussel physiological performance: 360 

temperature (during periods of both aquatic submergence and aerial exposure) and food as 361 

expressed by chlorophyll-a.  Taking these variables into account, the model predictably 362 

provided good fits for the growth of native populations, but overestimated growth for non-363 

native populations.  In both regions we strove to describe realistic conditions actually 364 

experienced by intertidal mussels by validating SSTs and aerial body temperatures 365 

experienced in the field and determining periods of submergence/emergence (Appendices 366 

S1-S7).  It is important to note, however, that these calculations can only yield rough 367 

estimates of the conditions experienced by populations.  During aerial exposure, the body 368 

temperature of individual ectotherms responds to several weather variables that operate in 369 

concert, including not only air temperature but also solar radiation and wind speed 370 

(Helmuth 1998).  In the absence of direct measurements of body temperatures, our 371 

estimates nevertheless captured the expected differences between sites, and thus should 372 

serve for large-scale analyses like the one conducted here.   373 

Another caveat is that the DEB model used here does not explicitly account for 374 

possible anaerobic metabolism or oxidative stress incurred by intertidal mussels during 375 

prolonged aerial exposure, which can further affect the energy balance of organisms 376 

(Anestis et al. 2007; Jimenez et al. 2016; Lesser 2016).  Based on recent evidence from 377 

Tagliarolo and McQuaid (2015), our model simply assumed metabolic depression during 378 

emersion, thus buffering the influence of variable body temperatures in air on energetics 379 

and growth.  While real mussels probably exhibit initial metabolic depression followed by 380 

increased energetic expenditure through the costs of heat shock responses during low tide 381 

periods, their exact responses depend on the magnitude, frequency, and duration of 382 

thermal/desiccation stress events.  Consequently, further empirical work is needed before 383 
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we can integrate these costs into dynamic models like DEB (Gilman 2017).  Note, however, 384 

that, although we cannot assess how much of that time is spent being splashed vs. fully 385 

submerged, the estimated duration of high tide periods was comparable between regions 386 

(Mediterranean Sea = 74.9%; South Africa = 78.3%).  Thus, based on duration alone, failing 387 

to consider the extra costs of anaerobiosis would contribute to the model error equally 388 

across regions.  We also found that similar mean aerial temperatures were experienced by 389 

mussels in both regions, suggesting that the effect of temperature on physiological rates 390 

during periods of low tide should not differ greatly either.  The data presented here suggest 391 

that the differences in model skill between regions are more tightly linked to those 392 

conditions experienced during high tide periods than low tide events.  Indeed, while 393 

chlorophyll-a and submerged temperatures were correlated with the model error, aerial 394 

temperatures differed little between sites and had no discernible effect on model skill. 395 

Therefore, the poor predictions of the model for populations in South Africa suggest 396 

that other factors that limit energy allocation towards growth were overlooked.  First, 397 

intertidal mussels in South Africa are often parasitized by endolithic cyanobacteria that 398 

cause considerable shell damage, prompting shell repair and increasing the energetic costs 399 

of maintenance.  These parasites are known to occur in Europe, on the Atlantic coast of 400 

Portugal, but both prevalence and intensity of infestation are dramatically lower there 401 

(Marquet et al. 2013).  Second, wave exposure also increases maintenance costs in mussels, 402 

as more energy is directed towards byssal thread production (Carrington 2002; Zardi et al. 403 

2007; Nicastro et al. 2010).  Because wave action is much lower in the Mediterranean Sea 404 

(Izaguirre et al. 2011), mussels in South Africa sites are again likely to be more energetically 405 

constrained (e.g. Zardi et al. 2007).  Both of these external factors limit the scope for growth 406 

in mussels.  That they were not considered in the original DEB model parameterization can 407 
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help explain the model overestimates at non-native sites.  Upon entering new systems, non-408 

native species can both benefit (e.g. increased food, predator/disease release) and suffer 409 

(e.g. new enemies, physical stressors) from the new conditions encountered.  Our 410 

overestimations of growth in non-native sites suggest that the potentially higher 411 

physiological performance of M. galloprovincialis in South Africa linked to food availability is 412 

kept in check by unaccounted variables such as parasitism and wave action (Nicastro et al. 413 

2010; Marquet et al. 2013) that may nullify the advantages of higher chlorophyll 414 

concentrations. 415 

The role of genetic variability may also help explain our results.  For models seeking 416 

to describe physiological processes subject to plasticity and local adaptation, like individual-417 

based energy budget models, model skill is additionally determined by the capacity of the 418 

parameters to capture variability in traits across time and space (Woodin et al. 2013; 419 

Valladares et al. 2014; Montalto et al. 2015).  By comparing populations from vastly 420 

different coastlines, our study captured a range of environmental conditions, which M. 421 

galloprovincialis is necessarily adapted to cope with.  The fact that our model can simulate 422 

growth for one region but not the other suggests that traits can be flexible.  In order to 423 

perform well at a global scale, this DEB model needs to incorporate such flexibility in its 424 

parameters.  The notion that species exhibit phenotypic plasticity and local adaptation has, 425 

of course, existed for a long time.  Different populations coping with disparate 426 

environmental conditions can have different sensitivities to these drivers (Sinervo and 427 

Adolph 1994).  Little work has, however, been done on the incorporation of genetic 428 

variability into predictive models applied across distant populations (but see Buckley 2008). 429 

Previous DEB modelling efforts to capture differences in physiological performance 430 

between distant sites have taken two approaches: (1) maintaining parameter values by 431 
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assuming stationarity (Montalto et al. 2015), or (2) modifying key parameters based on 432 

specific conditions (Alunno-Bruscia et al. 2011), i.e. non-stationarity.  As a third approach 433 

(not discussed here), we could consider independent DEB parameterizations done by 434 

separate studies/researchers; however, because these efforts are uncoordinated, their 435 

parameter values and predictions are not easily comparable.  Our results revealed that the 436 

first alternative was not viable for this inter-hemispheric model application.  Therefore, we 437 

explored the possibility that simple adjustments of parameter values controlling food 438 

ingestion (Xκ) and temperature sensitivity (TA) could improve our predictions, offering a 439 

‘quick-fix’ solution.  Alunno-Bruscia et al. (2011) successfully used this approach to model 440 

growth and reproduction in the invasive pacific oyster (Crassostrea gigas) collected from 441 

different sites with contrasting food quality/quantity conditions along the French coastline.  442 

By allowing Xκ to vary freely they significantly improved model fits at each site.  This ‘quick 443 

fix’, however, did not yield better predictions for our data.   444 

The most parsimonious explanation for our poor predictions in South Africa is that 445 

the greater distance between populations in our study than in that of Alunno-Bruscia et al. 446 

(2011) prohibits genetic connectivity, allowing genetic divergence drift and through 447 

adaptation to local conditions.  This explanation is partly supported at a local scale in Italy by 448 

the fact that the model performed better at sites closer to the location where it was first 449 

parameterized (Otranto and Gaeta) than those farther away (Ancona and Trieste).  450 

However, food availability and SST were similar at Ancona and Trieste in Italy and at 451 

Brenton-on-sea and St Francis in South Africa, but, while the model error for Brenton-on-sea 452 

was on a par with that for Ancona and Trieste, it was worse at St Francis, suggesting that 453 

environmental similarity alone does not explain model skill.    454 
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The assumption that evolutionary relatedness among species is reflected in similarity 455 

in parameter values is a fundamental tenet in DEB theory.  While DEB models are commonly 456 

built for a ‘species’, the theory maintains that the continuum in parameter values could be 457 

followed down to population and individual levels (Nisbet et al. 2000; Kooijman 2010; Sousa 458 

et al. 2010).  Theoretically then, one could envision different sets of parameter values for 459 

different individuals and populations.  In practice however, this is not feasible for realistic 460 

ecological application, and parameterizations are typically conducted to the species level.  461 

The underlying mechanisms that orchestrate phenotypic plasticity and local 462 

adaptation at the genome level are complex and still poorly understood in many model 463 

species.  While flexibility in traits or parameter values due to existing genetic variance can 464 

be exposed experimentally (Lesser et al. 2010; Pespeni et al. 2013), plastic responses may 465 

not be obvious unless properly tested.  Context dependence can complicate the issue to the 466 

point that it is impossible to recommend general solutions.  Instead, we suggest that a 467 

better approach is to expend the necessary effort in identifying the traits that drive poor 468 

performance of the model.  For instance, because feeding in bivalves depends on several 469 

behavioural and physiological responses (filtration efficiency, particle selection, assimilation 470 

efficiency) that vary with the environment (Bayne et al. 1993), some DEB models have 471 

suggested explicitly incorporating them in models to widen their spatial application (Alunno-472 

Bruscia et al. 2011; Saraiva et al. 2011; Lavaud et al. 2014).  Fine-tuning of model 473 

parameters appears to be the only way to maintain the mechanistic nature of this approach.  474 

Alternatively, one may re-parameterize the model using locally collected data, but this 475 

implies ignoring the processes driving differences between regions, therefore incurring 476 

similar drawbacks to those of correlative models (Buckley 2008). 477 

 478 



 21 

Conclusions and future directions 479 

Mechanistic models hold great potential for anticipating species physiological and ecological 480 

performance across increasingly large spatial scales (Kearney and Porter 2004).  However, 481 

when working with cosmopolitan species at global scales, notably invasive generalists, 482 

ecologists must test the assumption of model stationarity.  This study reveals that spatial 483 

stationarity cannot be assumed in a Dynamic Energy Budget model built for Mytilus 484 

galloprovincialis, and non-stationarity should thus be embraced.  The reasons behind a 485 

model’s failure can be categorized as either ‘unaccounted environmental or biological 486 

drivers’ or as ‘genetics’.  Unfortunately, the two cannot be separated with our data.  487 

Optimal use of DEB models across global scales should address this question by conducting 488 

tailored experiments.  Furthermore, explicit consideration of the relevant factors that vary 489 

amongst populations requires moving beyond the standard DEB model used here to more 490 

specialized formulations (Kooijman 2010). 491 

Physiological ecologists have warned about the dangers of predicting species 492 

distributions in the future based on habitat conditions experienced by populations today 493 

(i.e. a ‘climate envelope’ approach).  Although climate envelope models may accurately 494 

predict responses under conditions within the realized niche of a species, they perform 495 

poorly in scenarios that lie outside of the envelope (Kearney 2006).  Therefore, unless 496 

corrected, these models inherently assume stationarity in parameter values (Kupfer and 497 

Farris 2007; Hothorn et al. 2011).  Because mechanistic models aim at describing a species’ 498 

fundamental niche, they could be considered safe from this problem.  However, as we have 499 

shown, when used across large geographical scales, mechanistic models can also provide 500 

flawed predictions.  Progress in the critical endeavour of predicting species’ responses to 501 
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climate change requires addressing the issues responsible for poor predictive power rather 502 

than ignoring them. 503 

 504 
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Tables 758 

Table 1.  Error statistics (RMSE = Root Mean Square Error, MAE = Mean Absolute Error) to 759 

compare Dynamic Energy Budget model mussel shell length (g) predictions against 760 

observations of size at age.  The number (N) of individuals aged as 1 and 2 years old is 761 

provided.        762 

Region/Site N age 1 N age 2 Total N RMSE (g) MAE (g) 

Mediterranean Sea 

Gaeta 93 4 97 0.014 0.012 

Otranto 153 21 174 0.039 0.035 

Ancona 44 47 91 0.188 0.140 

Trieste 88 12 100 0.197 0.152 

Total N 378 84 462   

South Africa 

Hondeklip Bay 2 25 27 0.958 0.930 

Paternoster 31 78 109 0.698 0.608 

Brenton-on-sea 4 9 13 0.286 0.234 

St. Francis 40 68 108 0.923 0.780 

Total N 77 180 257   

 763 

  764 
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Table 2.  Bootstrapped one-way ANOVA results testing the effect of region (Mediterranean 765 

Sea vs. South African coast) on Mytilus galloprovincialis DEB model skill (absolute error).  766 

Source SS df F 95% CI p 

Region 64.69 1 987.35 782.16 - 1236.35 < 0.001 

Residuals 53.53 817    

 767 

  768 
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Figures captions 769 

Fig. 1  Maps illustrating the geographical extent covered by this study and that which 770 

resulted on the original parameterization of the Dynamic Energy Budget model used here 771 

(Sarà et al. 2012).  (A) Global scale showing a portion of Europe and Africa.  The countries 772 

sampled, Italy and South Africa, are indicated in grey.  The main bodies of water influencing 773 

our sampled mussels are also provided (M.S. = Mediterranean Sea).  The sampled 774 

populations in the Mediterranean Sea region are shown in (B), and those from the South 775 

African region in (C).  Our study sites are represented by circles, while that used by Sarà et 776 

al. (2012) is indicated by a star.  Maps produced using SimpleMappr 777 

(http://www.simplemappr.net). 778 

Fig. 2  Dynamic Energy Budget model soma dry weight (g) growth simulations for 1 (grey) 779 

and 2 (black) year old Mytilus galloprovincialis (using original parameter values and local 780 

environmental conditions).  Observations of size-at-age are illustrated by circles and crosses 781 

for 1 and 2-year-old mussels, respectively.  The symbols are slightly offset to prevent 782 

cluttering.  The scale differs between panels.  Panels (A)-(D) correspond to Mediterranean 783 

Sea populations, and (E)-(H) South African populations. 784 

Fig. 3  Absolute errors calculated from Dynamic Energy Budget model simulations vs. 785 

observed growth for each site (see Fig. 2).  Data are separated by region: native populations 786 

from the Mediterranean Sea in grey (GA = Gaeta, OTRA = Otranto, ANCO = Ancona, TRI = 787 

Trieste) and non-native South African populations (HB = Hondeklip Bay, PA = Paternoster, BR 788 

= Brenton-on-sea, SF = St. Francis) in white.  The violin shapes represent distribution 789 

densities.  The white circles are the medians.  The boxes are the 25th and 75th percentiles of 790 

the distribution.  The lines extending vertically are maximally 1.5 times the interquartile 791 
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range.  Different letters above the violins reflect significant differences between sites 792 

(bootstrapped ANOVA, post hoc pairwise comparison with Bonferroni correction). 793 

Fig. 4  Environmental conditions, (A) chlorophyll-a, (B) submerged body temperature, and 794 

(C) aerial body temperature experienced by mussel populations at each site over a period of 795 

2 years.  Data are given in violin plots and separated by region as in Fig. 3.  Correlations 796 

between Mean Absolute Error (MAE) and mean environmental variables (D) chlorophyll-a 797 

concentration, (E) submerged body temperature, and (F) aerial body temperature. 798 

  799 



 37 
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