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ABSTRACT: As we move towards shipboard-underway and automated systems for monitoring
water quality and assessing ecological status, there is a need to evaluate how effective the existing
monitoring systems are, and how we could improve them. Considering the existing limitations for
processing numerous and complex data series generated from automated systems, and because of
processes involved in phytoplankton blooms, this paper proposes a data-driven evaluation of an
unsupervised classifier to optimize the way we track phytoplankton, including harmful algal
blooms (HABs), and to identify the main associated hydrological conditions. We used in situ data
from a portable flow-through automatic measuring system coupled with a multi-fixed-wavelength
fluorometer implemented in the eastern English Channel during a bloom of Phaeocystis globosa
(high biomass, non-toxic HAB species). This combination of technologies allowed high resolution
online hydrographical and biological measurements, including spectral fluorescence as a means
of quantifying phytoplankton biomass and simplifying the phytoplankton community structure
inference. An unsupervised spectral clustering method was applied to this multi-parameter high-
resolution time series, which allowed discrimination under near real-time of 6 to 33 contrasting
water masses based on their abiotic and biotic characteristics. In addition, areas subject to extreme
events such as HABs could be precisely identified, so controlling factors or their direct and indirect
effects could be hierarchized. Considering the benefits and limitations of such a strategy, future
applications of such methods will be important in the context of implementing the Marine Strategy
Framework Directive.
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1.  INTRODUCTION

Processes involved in phytoplankton bloom dy -
namics cover a wide range of spatio-temporal scales
(Cloern 1996, Dickey 2003); bloom events may only
last a few days, but can have strong direct and indi-
rect effects on ecosystems. The lack of high resolu-
tion in situ monitoring systems for water quality
assessment is critical given that the eastern English
Channel (EEC) is classified as ‘moderate’ to ‘poor’

with respect to the Water Framework Directive’s
(WFD) phytoplankton quality element. The French
coastal zone of the EEC is also classified as a poten-
tial eutrophication problem area when implementing
the Oslo and Paris Convention (OSPAR) Common
Procedure (OSPAR Commission 2010). Indeed, the
French part of the EEC is regularly affected by
Phaeocystis globosa bloom events, leading to mas-
sive foam production and accumulation, with nega-
tive direct and indirect effects on benthic and pelagic
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components of the ecosystem (Lancelot 1995, Rous -
seau et al. 2006). P. globosa is classified as a high bio-
mass, nontoxic harmful algal bloom (HAB) species,
and P. globosa blooms are often concomitant to
Pseudo-nitzschia sp. events, when paralytic shellfish
poisoning could occur (Sazhin et al. 2007). Phyto-
plankton dynamics are particularly sensitive to anthro -
pogenic pressures (Boyce et al. 2010, Hernández-
Fariñas et al. 2014) and this biological com partment
and the resulting primary production play a funda-
mental role in influencing the dynamics and diversity
of other biological compartments. HABs are at the
core of important health and environmental issues
(Smayda 1990, Cloern & Jassby 2008) and there has
been a significant increase in their occurrence world-
wide (Heisler et al. 2008, Glibert 2017). This respon-
siveness of phytoplankton to environmental change
(from eutrophication to global changes) and to the eco-
system goods and services associated with it explain
why phytoplankton is widely used as an indicator
for the development of environmental quality assess-
ment systems (European Parliament and Council
2000, 2008, OSPAR Commission 2009).

The Marine Strategy Framework Directive (MSFD)
is the legal framework for the future management of
Europe’s marine environment. It requires that the EU
achieve Good Environmental Status (GES) of its mar-
ine waters by 2020, due to the implementation of a
monitoring programme. The Directive defines GES
as ‘the environmental status of marine waters where
these provide ecologically diverse and dynamic
oceans and seas which are clean, healthy and pro-
ductive’ (European Parliament and Council 2008,
p. 25).

In general, observation and monitoring of highly
dynamic systems like coastal waters requires inten-
sive sampling in space and time to detect short-term
events which might have a strong impact on the
 ecosystem (Petersen et al. 2006). Focusing on the
English Channel−North Sea MSFD sub-region, we
suspect that existing observations and monitoring
programmes in the French part of the EEC lack the
high spatio-temporal resolution coverage required to
determine the state of the marine environment and
changes therein. Unfortunately, this is also the case
for other EU marine waters where there is a lack of
standardized and accessible observational data in
offshore areas (Crise et al. 2015, Teixeira et al. 2016).
Most of the regular and continuous observations
and monitoring programmes in the EEC only cover
the coastal zone. The number of stations drastically
declines or is nonexistent offshore (beyond the 20 m
isobath) (French MSFD initial assessment 2012; http://

sextant. ifremer.fr/en/web/dcsmm/pamm/evaluation-
initiale). Whereas the French part of the EEC is of
strong ecological and socio-economic importance,
only 2 areas are equipped with a high temporal reso-
lution system—a fixed platform based on buoy tech-
nology: MAREL Carnot, since 2004 in the northern
part of the EEC (50° 44’ 26’’ N, 1° 34’ 4’’ E) (Zongo &
Schmitt 2011, Zongo et al. 2011, Rousse euw et al.
2015), and the SMILE buoy implemented in 2015 in
the Bay of Seine (49° 20’ 37’’ N, 0° 18’ 27’’ W).

In the EuroMarine Strategy Research report, Boyen
et al. (2012) highlighted several issues. (1) Do we
really understand marine ecosystems well enough to
use present knowledge (mainly based on low fre-
quency, conventional studies) in such a context? (2)
What are the relevant advances in knowledge and
where are the gaps? (3) What are the new techno -
logies being required to observe and understand
marine ecosystems?

Since ecological studies and overall ecological
assessments need to integrate physical, chemical and
biological information to provide a comprehensive
view of the states and dynamics of the ecosystems,
and since they need to be in line with their main
 spatial and temporal controlling scales (Cloern 1996,
Mantua et al. 2002), we decided to implement an
integrated, autonomous, multi-sensor system called
Pocket Ferry Box (PFB),  coupled with a multiple-
fixed-wavelength spectral fluoro meter (Algae Online
Analyser [AOA]; bbe Moldaenke).

This study takes place within the framework of
research projects devoted to the development of
dynamic observation systems for assessing marine
water quality based on high resolution phytoplank-
ton analysis (www.dymaphy.eu, www.jerico-ri.eu).
The main objective was to develop and/or implement
a high spatial and temporal resolution measuring
system, then to assess its added value considering
conventional approaches (low resolution with mainly
delayed laboratory analysis) in order to deepen
knowledge on phytoplankton bloom dynamics. It
deals more generally with the study of marine water
quality at appropriate spatial and temporal scales:
either we assess phytoplankton indicators, or we con-
sider the MSFD issues for descriptors on biodiversity
and eutrophication.

Our paper was built as a proof-of-concept to char-
acterize simple phytoplankton communities using
high resolution measurement devices coupled with
optimized numerical methodologies for data process-
ing. The main objectives of our paper were: 

(1) Considering numerical methodological develop -
ment issues, to test the performance of several unsu-
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pervised classification methods in order to propose
the most optimized one to comply with label-specific
environmental conditions as a way to discriminate
phytoplankton spectral groups and asso ciated hydro-
logical conditions; 

(2) From an ecological viewpoint, to characterize
high resolution spatio-temporal variability of phyto-
plankton spectral fluorescence in a temperate, well-
mixed open coastal system. We also studied the rela-
tionships between spectral fluorescence and major
abiotic variables in order to evaluate the usefulness
of such techniques to identify environmental condi-
tions, eco-regions, and the main factors controlling
phytoplankton structure, as well as direct and indi-
rect effects of blooms events on ecosystems, making
a link with eutrophication and HAB issues. Consider-
ing the complex hydrodynamics of the studied area
and the specificity of such an environment partly
dominated by the Prymnesiophyceae P. globosa in
spring, we hypothesised that there would be (i) a
high spatio-temporal variability of phytoplankton
spectral fluorescence and total chlorophyll a (chl a)
concentration, and (ii) a strong difference in phyto-
plankton fluorescence signatures between UK and
French waters; 

(3) From a technical viewpoint, to identify advan-
tages and drawbacks of spectral fluorometry,
using a limited number of phytoplankton
spectral groups, as a preliminary taxonomic
approach.

The added value of such a system for contin-
uous monitoring purposes and environmental
indicator development was assessed while
considering the need to obtain a thorough un -
derstanding of optimal spatio-temporal scales
controlling phytoplankton blooms. Moreover,
we also anticipated and discussed the im -
plementation of the monitoring programme
for the EU directives (i.e. MSFD) and regional
sea conventions (i.e. OSPAR).

2.  MATERIALS AND METHODS

2.1.  Sampling sites and strategies

The EEC is characterized by a macrotidal
regime, with a tidal range of ~3 and ~9 m dur-
ing neap and spring tides, respectively, in the
Dover Strait (Anonymous 1988). The latter
generates fast tidal currents essentially paral-
lel to the coast and a  northeast-flowing tidal
residual current from the English Channel to

the North Sea (Salomon & Breton 1993). Along the
French coast in the EEC, fluvial supplies from the
Bay of Seine to Cap Gris-Nez (including the Bay of
Somme, which is the second most important main
river at the English Channel scale, and some other
minor contributors) generate a coastal water mass
that drifts nearshore, separated from the open sea by
a frontal area. This frontal area plays an important
role in structuring exchanges (non-biological and
biological particles) between coastal and offshore
water masses (Brylinski & Lagadeuc 1990). Along the
southern UK coast of the English Channel, the main
rivers are the Avon and the Arun, and the riverine
inputs are consequently lesser than those on the
French side. In the EEC no seasonal pycnocline
occurs; where freshwater influence is prevalent,
stratification is scarce and intermittent depending on
levels of freshwater discharge.

Data were collected during DYMAPHY ((Devel -
opment of a DYnamic observation system for the
assessment of MArine water quality, based on
PHYtoplankton analysis) cruises on board the RV
‘Côtes de la Manche’ (CNRS/INSU) between 20 and
21 April 2012 (Leg 1), between 27 and 29 April 2012
(Leg 2) and between 31 May and 4 June 2012 (Leg 3)
(Fig. 1). During these 3 legs, we investigated water
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Fig. 1. Location of the 3 sampling routes (Leg 1: bold orange line; Leg
2: broken green line; Leg 3: dotted red line) in the eastern English 

Channel for cruises during spring 2012 
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masses at high resolution (<200 m) (see Section 2.2)
along routes approximately 100, 200 and 300 nautical
miles long, respectively. During the cruises, water
samples were regularly collected from sub-surface
waters as ground truth reference results using con-
ventional analytical procedures (see ‘Low resolution
sample analysis’ section below).

2.2.  High resolution sample analysis

A detailed description of the PFB system (4H-JENA)
implemented during the cruises was made by
Schroeder et al. (2008) and Aiken et al. (2011). For our
campaigns, the water intake was at the front of the
ship’s cooling system at a fixed depth (3 m); in normal
ship operation seawater is constantly pumped. The
non-filtered seawater flow through the PFB was set to
be, on average, between 3 and 4 l min−1. All parame-
ters were recorded at a frequency of 1 min−1 and geo-
graphical coordinates were provided by an external
GPS receiver. The RV ‘Côtes de la Manche’ sailed at
approximately 6 knots during the cruises, so the spa-
tial resolution of recording was about 185 m. Because
of the relatively brief transit time of water from the
water intake to the PFB, the observations are repre-
sentative of sub-surface conditions. The system used
during this project was assembled with sensors for
salinity and temperature (conductivity sensor 3919;
AANDERA), pH (MV 3010; Meinsberg), oxygen con-
centration (oxygen optode 3835; AANDERA) and
coloured dissolved organic matter (CDOM; Cyclops
7 sensor; AANDERA). Unfortunately, poor quality of
pH and CDOM data did not allow data processing
as planned. All sensors were quality checked by the
manufacturer before the cruise.

The PFB was coupled with a  multiple-fixed-
wave length spectral fluorometer, the AOA (bbe
 Mol daenke), which continuously measures the chloro-
phyll fluorescence of microalgae under real time (re-
sults are expressed in eq. µg chl a l−1). The measure-
ment corresponds to wet chemical chlorophyll analysis
(DIN/ISO) and is based on determination of the fluo-
rescence spectrum and fluorescence kinetics of the
 algae. All measurements in the AOA are based on the
fluorescence characteristics of chlorophyll and other
pigments of the algae (Yentsch & Yentsch 1979, Ruser
et al. 1999, Beutler et al. 2002). The algae classes can
be differentiated by their pigments and therefore by
the different fluorescence responses of their differing
photosystem antenna systems and accessory pigments
to light of various wavelengths. Each algae class has
its own fluorescence signature or fingerprint, which is

a special pattern according to which they react to dif-
ferent excitation wavelengths (470, 525, 570, 590 and
610 nm). With this technique, the chl a content of
green algae (G) (Chlorophyta), blue-green algae (BG)
(Cyanobacteria with phycocyanin), Cryptophyceae
(C) (Cryptophyta, Rhodophyta, Cyanobacteria with
phycoerythrin) and brown algae (B) (Heterokonto-
phyta and Dinophyta) (in AOA parlance) was ana-
lysed. To compensate for the influence of turbidity on
fluorescence, transmission measurement was used as
a tool for correction (370 nm).

Our AOA was calibrated by the manufacturer using
cultures of Chlorella vulgaris, Microcystis aerugi-
nosa, Cyclotella meneghiniana and Cryptomonas
sp., respectively for G, BG, B and C signals. During
calibration, the photosystem was excited with visible
light, one wavelength after another. Between excita-
tions, the red fluorescence emission was measured.
So the response of all phytoplankton for this excita-
tion wavelength was collected. From the calibration,
the fluorescence intensity of 1 µg l−1 of each group
was deduced for each excitation wavelength. The
AOA software allocates the fluorescence emission
intensity to the fingerprint of the algae groups and
makes the best fit. The resulting ratio of fluorescence
to chl a (F :chl) is used to convert the fluorescence
data into units of chl a (eq. µg chl a l−1). Deviations
between reference concentrations and actual values
were 0.96, 0.26, 0.13 and 2.39%, respectively for G,
BG, B and C signals. The linear model based on the
relationship between active chl a measured by fluo-
rescence by AOA (Chl_AOA) and total chl a meas-
ured by spectrometry analysis (Chl_Spec) confirmed
that the AOA signal could be used as a proxy for chl
a even if it is better to consider the overall trends, the
qualitative aspect rather than the quantitative one
(Chl_AOA = 2.13 × Chl_Spec + 0.15, with adjusted
R2 = 0.55, p < 0.001, n = 23).

2.3.  Low resolution sample analysis

As in Lefebvre et al. (2011), water samples were
collected from sub-surface waters using a 5 l Niskin
bottle. Each hydrological sampling station was refer-
enced using an internal code (identified as DPM or
Stn) followed by a number. Chl a concentrations
were estimated by spectrophotometry (Shimadzu
UV-1700) after filtration through Whatman 47 mm
GF/F glass fiber filters and after extraction in 90%
acetone (Aminot & Kérouel 2004).

Phytoplankton samples were collected from the
Niskin bottle and preserved with an acid Lugol’s
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solution. Sub-samples of 10 ml were settled for 24 h
in a counting chamber according to the Utermöhl
method (Utermöhl 1958). Cell enumerations were
performed by inverted microscopy within 1 mo of
sample collection to prevent any significant changes
in phytoplankton size and abundance. Except for
Phaeocystis globosa enumeration, over 400 phyto-
plankton cells in each sample were counted with a
20× Plan Ph1 0.5NA objective, resulting in an error of
10%. For assessment of P. globosa counts, only the
total number of cells was computed. A minimum of
50 solitary cells were enumerated from several ran-
domly chosen fields (10 to 30) with a 40× Plan Ph2
0.75NA. The abundance of cells in a colony was
determined using the relationship between colony
biovolume and cell number defined by Rousseau et
al. (1990) (see the Supplement at www.int-res. com/
articles/suppl/m608p073_supp.xlsx for details about
phytoplankton cell enumeration for each reference
discrete sampled station).

2.4.  Data analysis

The basic statistical analyses applied here are
detailed in Legendre & Legendre (1998) and Shum -
way & Stoffer (2006). All statistical analyses were
performed using R statistical software (R Develop-
ment Core Team 2009). The main R packages used
were ‘uHMM’, ‘kmeans’, ‘hclust’, ‘mclust’ and ‘e1071’.

Different types of features were used as inputs for
the classification system: 

• Set 1, named AOA: 4 raw algae concentrations
from AOA (G, BG, B and Cryptophyceae). 

• Set 2, named Prop: proportions of the 4 algae
groups derived from the raw algae concentrations
from Set 1 and the chlorophyll (sum of the 4 spectral
groups). This set is similar to the one used by the
marine water manager to see the principal ruptures
in the water composition and to detect algae blooms,
in particular the presence of Phaeocystis algae. 

• Set 3, named PFB: 4 raw hydrological para meters
from the PFB—salinity, sea surface water tempera-
ture, oxygen concentration and oxygen saturation. 

• Set 4, named AOA-PFB: concatenation of AOA
and PFB (Sets 1+3).

Sensors were selected considering the range in the
variables expected in the area. Regardless of the set,
data outside of the sensor’s range were removed (NA).
Then, an algorithm of detection of outliers or aberrant
data was processed. It consisted of erasing features
(by NA) when the value was out of the 1−99% range
or when the consecutive gap divided by both the boat

speed and the median speed was greater than 2× the
upper whisker. For any classifier, data features were
centred and scaled by the standard deviations. Time
information and  longitude− latitude information were
not included in the clustering process.

Three clustering methods were compared in order to
optimize extraction of the maximum amount of
 information contained in this high-resolution time se-
ries: hierarchical clustering (HC), Hartigon k-means
(k-means) and NJW-spectral clustering (SC). HC was
included due to its popularity in the marine com -
munity; here, the Ward’s minimum variance method
(Ward 1963, Murtagh & Legendre 2014) was chosen.
Labels were obtained by cutting the resulting dendo-
gram at the desired k number of clusters. The k-means
approach was preferred over the more general expec-
tation− maximization (EM) algorithm approach both
for its fast computing time and its single para meter, k,
to tune. EM requires a choice of the covariance struc-
tures, and has no real added-value on result im -
provement, according to Rousseeuw et al. (2015). k-
means is based on minimization of the within-cluster
sum of squares of each cluster. It is well adapted to
globular shape data, whereas EM is preferred for ellip-
soid shape data with different centres. Here, the R
package ‘kmeans’ was used (with Hartigon options if
convergence was assumed, else with the McQueen
 algorithm). SC (Ng et al. 2001) is able to model and
separate clusters with different shapes and the same
center of distributions, but it applies the k-means algo-
rithms not directly on the raw space but on the spectral
subspace. This subspace is composed of the k eigen-
vectors extracted from the Laplacian matrix based on
the Zelnik and Perona similarity (Zelnik-Manor & Per-
ona 2004). The SC algorithm is based on minimization
of the normalized cut criterion i.e. it maxi mizes the
sum of the within-cluster similarity and mini mizes the
sum of between-cluster similarity. It is well adapted for
clusters with a local point-to-point connectivity, so it
does not depend on Gaussian distributions.

3.  RESULTS

3.1.  Selection of the optimal classifier

The implementation of PFB coupled with AOA
allowed for the collection of 10 916 data points. For a
given sampling period, when data was missing for at
least for one parameter, the entire row was deleted.
The time series was then composed of 7074 valid
data points with 1573 data points for Leg 1, a total of
2192 for Leg 2 and 3309 for Leg 3. Missing data were
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mainly caused by water flow interruptions when the
water intake lifted above the waterline due to boat
motion during bad weather conditions.

To highlight the added value of our approach in
terms of clustering power, Fig. 2 illustrates clustering
results on 3 different theoretical data series types: Fig.
2A consists of a simple case with 3 compact squares
that are linearly separable. For this convex data, the 3
algorithms are all able to distinguish each square. Fig.
2B is 1 disk and 2 circles built from the same centre
with an increasing radius. HC distinguishes only the
convex disk with confusions with the 2 circles, and
k-means does not succeed in separating the 3 forms.
SC labels the data without any confusion. Fig. 2C has
a more complex geometry with the data forming 3
close snake shapes. SC is the only method able to
identify the 3 clusters without confusion.

For a large database, it is worth noting that a fast
spectral clustering algorithm or a Nystrom approxi-
mation of eigenvectors for a large matrix can be
 per formed, whereas the other methods, HC or k-
means (also EM), require an unfeasibly high memory
buffer capacity.

A theoretical labelling process was done to identify
the different combinations of the 4 AOA groups that
were observed during the cruises, to compare auto-
matic clustering results obtained from the 3 proposed
algorithms. Considering results presented in Figs. 3−5,
the biologist defined, in a pragmatic manner, the
most relevant and frequent combinations of AOA
groups. Manual labelling was computed based on
the combinatorial inclusion−exclusion principle for
the 4 AOA groups. Each pairwise intersection, triple-
wise intersection, quadruple-wise intersection and
exclusive set (one group) of the set {BG, G, B, C} were
associated with a specific label. Some sets were not
present as a single group or as pairwise intersections
with BG and are therefore not mentioned in Table 2.
These combinations were also compared with a
 theoretical phytoplankton composition (at the Class
taxonomic level; Table 1). Table 2 summarises these
combinations and highlights the number of data
points for each leg and each algae combination when
considering the main patterns observed in Figs. 3−5.
This labelling is called ‘expert-based labelling’ in the
remainder of the paper.
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Fig. 2. Comparison of the performance of clustering algorithms (HC: hierarchical clustering; Kmeans: k-means; SC: spectral
clustering) on artificial data structured differently in the classification space: (A) 3 compact square-shape clusters; (B) 3 clus-

ters with 1 disk surrounded by 2 circles; (C) 3 streamers with point-to-point connectivity
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Stn Class
Bacillario. Chloro. Crypto. Dictyo. Dino. Eugleno. Prasino. Protista Prymnesio.

Leg 1
8 10.06 0 2.17 0 0.46 0 0 0.02 87.29
11 17.45 0 2.41 0 0.74 0 0 0.03 79.33
12 88.94 0 6.76 0 3.07 0.61 0 0.61 0
13 2.31 0 0.31 0 0.24 0 0 0.04 97.06
14 34.97 0 0 0 0.36 0 0 0.04 64.63
15 4.55 0 0.18 0 0.29 0 0 0.02 94.96

Leg 2
36 4.96 0 0.11 0 0.5 0 0 0.11 94.32
40 90.53 0 9.18 0 0.2 0 0 0.04 0
42 83.83 0 11.84 0 4.34 0 0 0 0
44 3.13 0 0.74 0 0.16 0 0 0 95.87
48 12.27 0 0 0 0.33 0 0 0 87.4
49 4.44 0 0.12 0 0.2 0 0 0.08 95.17
50 4.27 0 0.24 0 0.37 0 0 0.13 94.99
51 2.71 0.03 0 0 0.09 0 0 0.05 97.12
52 3.75 0 0.68 0 0.71 0.02 0 0.1 94.73
53 2.01 0 0.01 0.01 0.05 0 0 0 97.93

Leg 3
58 97.73 0 1.14 0 0 0 0 0 0
59 95.67 0 0 0 3.67 0 0 0.33 0
61 84.61 0 0 0 11.54 0 0 0.71 0
72 98.74 0 0 0 1.26 0 0 0 0
76 56.32 0 39.14 0.48 3.58 0 0 0.48 0
77 68.73 0 17.75 0 11.41 0 0 0 0
78 99.3 0 0 0 0.16 0 0 0 0.54

Table 1. Relative abundance (%) of the main phytoplankton taxonomical classes identified during Leg 1 (Stns 8−15), Leg 2
(Stns 36−53) and Leg 3 (Stns 58−78) cruises in the eastern English Channel, from low resolution water samples, using
inverted microscopy for identification. Bacillario.: Bacillariophyceae; Chloro.: Chlorophyceae; Crypto.: Cryptophyceae; Dictyo.:
Dictyochophyceae; Dino.: Dinophyceae; Eugleno.: Euglenophyceae; Prasino.: Prasinophyceae; Prymnesio.: Prymnesiophyceae
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Fig. 5. Time series of chlorophyll a concentration as estimated by the Algae Online Analyser (AOA) (eq. µg chl a l−1) (right axis)
and relative contribution of each spectral group: green, blue-green, brown and Cryptophyceae in AOA parlance (%) (left axis)
during Leg 3 (31 May−4 June 2012) (Stns 54−80 for conventional low resolution sampling). FR: French coast; DS: Dover Strait; 

UK: United Kingdom coast
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In the EEC areas travelled during the 3 legs, AOA
detected at least 2 of the 4 phytoplankton groups. So
for Legs 1 and 2, the number of clusters was set to 3,
and then 5 to 6 for Leg 3. Table 3 presents the recogni-
tion rate (RR) and the adjusted Rand Index (ARI) for
each classifier with each data set compared to the ex-
pert-based labelling. RR corresponds to the number of
well-classified data points by the total amount of data
(%); to assign the label, a class agreement by the max-
imum vote was computed. The RI computes a similar-
ity measure between 2 clustering methods by consid-
ering all pairs of samples and counting the pairs that
are assigned in the same or different clusters in the
predicted and true clustering. ARI score [−1, +1] is a

corrected version of RI [0, 1], excluding the chance
factor. The higher the positive ARI is, the closer the
partitioning will be. A negative ARI value does not
 allow a confident similarity between the 2 clustering
methods. ARI is an unsupervised score whereas RR is
a score for supervised clustering. Here, classifiers
have no training, so RR and ARI scores are not so well
correlated. According to expert-based labelling, the
classes are not homogenous, so a high RR score
cannot be relevant. Indeed, it only means that the
biggest class is well-recognized in contrast to the oth-
ers (Table 3). For these experiments, the number of
clusters is fixed to 3 or 6 classes. However, the number
of relevant eigenvalues of the similarity matrix is
more than 6 clusters, which means more information
can be extracted from the spectral clustering. So, the
strength of SC is not used at all in this part. For the
 following sections, as we wanted to analyse both hy-
drological and biological characteristics, only results
from data set 4 were used.

3.2.  Overview of general environmental 
conditions during the cruises

The first quarter of 2012 was characterized by low
precipitation in the EEC (Meteo France data: https://
donneespubliques.meteofrance.fr). In April, the oce -
anic rainfall disturbances occurred at regular in -
tervals with precipitation values   above normal.

Strong wind events were measured,
especially during the second half of
April. Precipitation and wind condi-
tions were typical in May. Abundant
rainfall and strong SW sector winds
occurred in June. From April to June,
surface salinity fields were higher
than the monthly averages, except in
the Bay of Seine. Turbidity, which is
expected to de cline during this sea-
son, remained at relatively high levels
(Cugier et al. 2005, www.umr-lops.fr/
Donnees/ MARC).

Cruises took place during periods of
low or high tidal ranges, respectively
for Leg 2 and then for Legs 1 and 3.

Statistical summaries for each para -
meter and for each leg are provided in
Table 4. Salinity fluctuated between
34.0 and 34.6 during all legs. Water
temperature was 9.0°C during the first
2 legs, but reached 13.0°C during
Leg 3. Oxygen saturation was always
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No. of Composition Occurrences
algal groups Leg 1 Leg 2 Leg 3

1 G or BG or B or C 0 0 0
2 G−B 526 1394 587

B−C 0 0 20
3 BG−G−C 0 0 10

BG−B−C 0 0 23
G−B−C 248 405 2260

4 All spectral groups 799 393 409

Table 2. Occurrence of several phytoplankton spectral
group combinations (algal groups) and associated com -
position as identified by the Algae Online Analyser during
each cruise (Legs 1 to 3) in the eastern English Channel.
G: green algae; BG: blue-green algae; B: brown algae; C: 

Cryptophyceae

Data set RR RI ARI
HC KM SC HC KM SC HC KM SC

Leg 1
1 0.82 0.59 0.37 0.82 0.79 0.78 0.61 0.55 0.57
2 0.61 0.01 0.00 0.78 0.77 0.80 0.54 0.52 0.61
3 0.37 0.05 0.54 0.70 0.73 0.80 0.40 0.46 0.61
4 0.69 0.00 0.00 0.78 0.78 0.78 0.56 0.56 0.57
Leg 2
1 0.11 0.34 0.53 0.74 0.7 0.61 0.47 0.39 0.21
2 0.35 0.43 0.40 0.67 0.63 0.45 0.34 0.26 −0.08
3 0.07 0.32 0.19 0.67 0.66 0.43 0.33 0.31 −0.09
4 0.11 0.60 0.30 0.66 0.71 0.42 0.31 0.42 −0.13
Leg 3
1 0.22 0.00 0.00 0.62 0.64 0.63 0.26 0.29 0.27
2 0.09 0.01 0.16 0.60 0.61 0.60 0.22 0.23 0.22
3 0.21 0.09 0.10 0.54 0.55 0.53 0.10 0.11 0.08
4 0.04 0.29 0.08 0.64 0.61 0.58 0.30 0.23 0.18

Table 3. Comparison scores (RR: recognition rate; RI: Rand Index; ARI:
adjusted Rand Index) between partitions from automatic clustering (HC: hier-
archical clustering; KM: k-means; SC: spectral clustering) and phytoplankton
composition labelling (2, 3 or 4 algal groups, and then for the 6 detailed 

groups) for each cruise (Legs 1 to 3) and each data set
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higher than 94%,  rising to 122.5% during Leg 3.
Oxygen concentration varied from 7.33 to 10.40 mg
l−1, with the highest  values occurring during Leg 3.

3.3.  Phytoplankton biomass, composition and 
spectral groups

Total phytoplankton biomass (i.e. chl a) as meas-
ured by AOA varied from 1.15 to 42.50 eq. µg chl a l−1

between late April and early June (between Legs 1
and 3) in the studied area. Maximum concentrations
were measured during Leg 2 (median: 7.02 eq. µg
chl a l−1 during Leg 2; respectively 4.35 and 3.73 eq.
µg chl a l−1 during Legs 1 and 3).

Microscopic analyses of discrete samples collected
during the different cruises (Table 1) highlighted
dominance in the phytoplankton community of the
Prymnesiophyceae Phaeocystis globosa (maximum
1.0 × 107 cells l−1, varying according to cruise and al -
most exclusively on the French side of the Channel),
and/or Bacillariophyceae (maximum 3.0 × 106 cells
l−1), with smaller, varying amounts of Cryptophyceae
(maximum 4.3 × 104 cells l−1) and dinoflagellates

(maximum 3.5 × 104 cells l−1). P. globosa contribution
to total cell numbers reached 98% in some areas, but
the species was also absent in other areas, mainly in
the central Channel and on the UK side of the Chan-
nel. Although some dinoflagellates (Gymnodinium
sp., Gyrodinium spirale, Katodinium sp., Protoperi-
dinium sp., Torodinium sp.) were identified, they
contributed a maximum of 3% of total cell numbers
in samples (maximum contribution of 3% for Gymno-
dinium sp., 1.3% for Katodinium sp., while the others
remained below 1%).

Legs 1 and 2 (Figs. 3 & 4) occurred during the main
bloom of P. globosa, whereas this bloom was on the
wane during Leg 3 (Fig. 5).

During Legs 1 and 2, French waters were generally
characterized by higher chl a concentrations (maxi-
mum of 34.30 and 42.50 eq. µg chl a l−1, respectively).
They showed a high spatial variability of chl a
 concentration within a given area dominated by P.
globosa, i.e. where the B/G group signal ratio was
approximately 50/50 (Figs. 3 & 4).

Temporal variability was also important. For a
given French water mass, chl a concentration was
highly variable from day to day: for example, a maxi -

82

Statistic Salinity Temp. Oxygen Sat. (eq. µg chl a l−1)
(PSU) (°C) (mg l−1) (%) G BG B C Chl a

Leg 1
Minimum 33.3 8.51 7.68 84.8 0.00 0.00 0.85 0.00 2.37
1st Quartile 34.5 8.82 8.35 92.2 1.01 0.00 1.80 0.00 3.60
Median 34.8 8.94 8.48 93.3 1.49 0.01 2.19 0.49 4.35
Mean 34.6 8.94 8.57 94.2 2.72 0.11 3.60 0.36 6.78
3rd Quartile 34.8 9.09 8.67 95.1 4.06 0.19 4.50 0.57 8.54
Maximum 35.0 9.48 9.66 106.5 15.60 1.52 18.69 3.91 34.30
na 21 21 23 21 448 448 448 448 448

Leg 2
Minimum 33.3 9.04 8.03 89.4 0.00 0.00 0.17 0.00 1.15
1st Quartile 33.7 9.55 8.35 93.0 1.11 0.00 1.46 0.00 2.91
Median 33.9 9.73 8.51 94.4 3.14 0.00 4.09 0.00 7.02
Mean 34.0 9.71 8.53 94.8 4.07 0.03 6.86 0.14 11.10
3rd Quartile 34.4 9.90 8.77 96.9 6.87 0.00 12.62 0.29 20.70
Maximum 34.5 10.25 9.15 101.4 17.54 8.81 25.01 1.10 42.50
na 238 238 242 238 905 905 905 905 905

Leg 3
Minimum 31.6 11.6 7.33 88.5 0.00 0.00 0.19 0.00 1.32
1st Quartile 33.8 12.9 8.13 97.4 0.88 0.00 0.89 0.14 2.08
Median 34.4 13.5 8.67 103.5 1.17 0.00 2.14 0.29 3.73
Mean 34.2 13.5 8.60 103.3 1.48 0.01 2.91 0.28 4.69
3rd Quartile 34.8 14.1 8.99 108.0 1.65 0.00 4.48 0.41 6.87
Maximum 35.0 15.8 10.40 122.5 7.35 0.80 9.89 1.10 15.80
na 1423 1423 1434 1423 2276 2276 2276 2276 2276

Table 4. Statistical summaries for each parameter from the Pocket Ferry Box (PFB) (Salinity; Temp.: temperature; Oxygen:
oxygen concentration; Sat.: saturation) and from the spectral fluorometer (Algae Online Analyser, AOA) (G: green algae; BG:
blue-green algae; B: brown algae; C: Cryptophyceae; Chl a: chlorophyll a) (eq. µg chl a l−1) and for each cruise (Legs 1 to 3) 
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mum chl a concentration of 34.29 eq. µg chl a l−1 was
measured on 20 April compared to a maximum of
17.49 eq. µg chl a l−1 measured on 21 April (Fig. 3).
The chl a concentration near Boulogne-sur-Mer was
higher (~10 eq. µg chl a l−1) at the end of Leg 2
(29 April) compared to the beginning (~5 eq. µg chl a
l−1) (27 April). Moreover, our high resolution sam-
pling strategy allowed us to highlight changes in
the relative proportion of spectral groups for a given
chl a concentration and change in chl a concentration
for a given proportion of spectral groups moving with
the tide (fixed point offshore from Dungeness, UK, on
20−21 April, offshore from Le Tréport, Fr, on 28−29
April) (Fig. 4).

During Leg 3, chl a concentration was lower (maxi -
mum of 15.80 eq. µg chl a l−1) and the characteristic P.
globosa signal was less dominant. The highest chl a
concentrations were observed in areas under fresh-
water influence (offshore from the 3 main rivers on
the EEC: Canche, Authie, Somme or/and under the
in fluence of the Seine River) (during Leg 1: DPM 49
to 51; during Leg 2: DPM 70 to 80).

UK waters had lower chl a concentrations (<5 eq.
µg chl a l−1) with a minor contribution of Crypto-
phyceae and BG spectral groups during Legs 1 and 2
(Figs. 3 & 4).

3.4.  Unsupervised classification

In order to highlight the added value of our
methodology, we now focus on Leg 2 data, which
contains the lowest number of NA values (2192
 complete AOA−PFB multi-parameter measurements),
proposes interesting variabilities to study and reflects
characteristics of the English Channel water masses
when partially dominated by P. globosa blooms. The
number of cluster k is now automatically computed.
With the eigen gap method, which looks for the max-
imum consecutive gap between sorted eigenvalues,
k is equal to 85 with eigenvalues higher than 0.78.
A proposal with k = 85 corresponds to an optimized
partitioning, and consequently is equivalent to an
optimization of the extraction of the information con-
tained in the HF data series. Nevertheless, for the
time being, expertise is not sufficiently developed to
further interpret, from an ecological point of view,
such an amount of information. Indeed, each of the
85 groups is relative to a specific environmental state
characterized by a specific geometrical arrangement
in spectral space. By restricting this criterion with a
condition on eigenvalues (λ) greater than 0.98, k is
equal to 18, and for λ > 0.99, k is equal to 6 (Fig. 6).
Cluster 0 corresponds to part of the cruise when
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Fig. 6. Temporal and spatial view of the resulting clusters of Leg 2 by spectral clustering for k = 6 (left hand side) and k = 18 
clusters (right hand side) (colours between panels are not related)
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some PFB or AOA data were missing; therefore,
these data were not used during the classification
process.

For k = 6, four clusters highlight the B and G AOA
spectral groups in variable proportions (Clusters 2, 4,
5 and 6) (Fig. 7). Cluster 1 shows a small proportion of
the Cryptophyceae signal, whereas the last cluster, 3,
contains all 4 AOA spectral groups with a  relatively
high proportion of the Cryptophyceae signal, to the
detriment of the G signal. Only Clusters 1 and 3 are
characterized by the BG spectral group (Fig. 7).

3.5.  Biotic and abiotic interactions

After unsupervised classification, it is possible to
highlight the main statistical characteristics of the
studied parameters for each cluster. With k = 6, statis-
tics are summarised using boxplots in Fig. 8.
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Temperature (°C) Salinity (PSU) Oxygen (mg l–1) Oxygen saturation (%)
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Fig. 8. Parameters measured during Leg 2 (27−29 April 2012) and for each cluster according to the spectral classification (k = 
6). Bar: median; box: interquartile range; whiskers: 10th−90th percentiles; dots: outliers

Fig. 7. Relative proportion (%) of each of the 4 Algae On-
line Analyser spectral groups (blue-green, brown, Crypto-
phyceae and green) for each cluster (k = 6) during Leg 2



Lefebvre & Poisson-Caillault: High resolution spectral clustering of phytoplankton

The calculation of the correlation matrix makes it
possible to prioritize the contribution of the physico-
chemical and biological parameters to the structuring
of each group, subsequently for each water mass,
and for each environmental state (Table 5). Parti -
tioning clearly reveals an environmental difference
in terms of the spectral signature of phytoplankton
between the French and English coasts, character-
ized by Clusters 2, 4, 5, 6 and 1 and 3, respectively
(Figs. 6 & 7). Occurrence of the BG group character-
izes Cluster 3 (2.96%). In this cluster, the Crypto-
phyceae signal is also very important (21.05%). More
generally, on the French side of the EEC, it is the pro-
portion between the B and G signals that makes
the difference. Indeed, Cluster 5 represents water
masses with a high proportion of P. globosa; almost
half of the signal is distributed in the B and G groups.
In these water masses, salinity is rather low (median
33.6), oxygen concentration (median 8.29 mg l−1) and
oxygen saturation (92.6%) are the lowest, and tem-
perature is the highest (median 9.94°C). Salinity is
maximum for UK water masses (Clusters 1 and
3). Water temperature is the highest for Cluster 1
(median 9.75°C) compared to Cluster 3 (median
9.27°C). Clusters 2 and 4 highlight changes related to
the tidal cycle during the Eulerian sampling period
off shore from Le Tréport (Fr) on 28−29 April 2012
(> DPM 47 and < DPM 48; Fig. 4). Cluster 6, with a
spectral signature close to that of Clusters 2 and 4
(approx. 50/50 G/B), corresponds to an interim group
between water masses dominated by P. globosa
(95−98% of the total phytoplankton abundance) in
the northern part of the EEC and other water masses
with a higher diatom proportion in the southern area
(P. globosa < 90%). In Cluster 6, salinity is low
(median 33.5), while oxygen concentration (median
8.54 mg l−1) and oxygen saturation (95%) are inter-

mediate compared to that of the other
clusters.

In order to have a synoptic view
of the main structuration of spectral
phytoplankton groups in the EEC, we
merged the data sets of Legs 1, 2 and
3. According to the same methodol-
ogy, we obtained k = 291 in unsuper-
vised mode. With criteria λ > 0.996
and λ > 0.990, we generated, respec-
tively, k = 9 and k = 33 (Fig. 9). Thus,
these clusters make it possible to inte-
grate both the spatial and temporal
variability of the phytoplankton spec-
tral groups and the parameters meas-
ured by the PFB/AOA. The difference

in the number of groups identified between the water
masses of the English and French waters is clear. UK
waters are more heterogeneous than those on the
French side. The offshore water masses are relatively
well individualized.

4.  DISCUSSION

The value of our approach is to propose a concrete
and complete demonstration of the possibilities of -
fered by a sampling strategy based on high fre-
quency (<1 h) automated measurement systems with
a data processing step based on an optimal classifier
in order to extract the best available information for
water quality assessment issues. A multiple-fixed-
wavelength spectral fluorometer (i.e. AOA) coupled
with a PFB was implemented as a means of quantify-
ing phytoplankton biomass and community structure
as well as main physicochemical characteristics. The
implementation of the AOA is commonly presented
as a useful tool for monitoring phytoplankton com-
munity composition only if one implements frequent
calibration by discrete sample collection, calibration
with species representative of the region of interest
and additional HPLC analysis (Richardson et al.
2010, MacIntyre et al. 2010, Houliez et al. 2012). In
this paper, we proposed a pragmatic solution that
does not require labour-intensive analyses. Indeed,
we highlight that even if we used the AOA in its
 original configuration (i.e. with a minimum amount
of time and effort devoted to calibration procedures),
it is possible to change the way we track phyto -
plankton, including HABs.

The high-resolution along-route approach imple-
mented during our cruises in the EEC in 2012 un -
covered a series of results that clearly confirmed the
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Parameter Cluster
1 2 3 4 5 6

AOA
Green −0.39 0.37 −0.64 0.23 0.44 0.23
Blue Green 0.04 −0.16 0.44 −0.09 −0.24 −0.10
Brown −0.44 0.46 −0.52 0.40 0.15 0.40
Cryptophyceae −0.10 −0.26 0.91 −0.15 −0.40 −0.16

PFB
Temperature 0.09 0.24 −0.73 0.02 0.46 −0.09
Salinity 0.42 −0.46 0.65 −0.10 −0.54 −0.10
Oxygen concentration 0.04 0.08 0.09 0.31 −0.56 0.43
Oxygen saturation 0.15 0.12 −0.12 0.34 −0.53 0.46

Table 5. Pearson correlation coefficients between Pocket Ferry Box (PFB)/
Algae Online Analyser (AOA) parameters and clusters for k = 6 and for Leg 2
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added value of taking continuous measurements dur-
ing cruises. It provides a more detailed view of the
spatial distribution (and to a lesser extent in our case
study, the temporal resolution) of the phytoplankton
spectral groups and associated water mass character-
istics in the EEC. The originality of our approach is
that we propose an unsupervised spectral classifica-
tion method to extract as much information as pos -
sible from the high-resolution multi-parameter data-
base.

The advantage of using an unsupervised approach
by spectral classification is to remove any uncertainty
about the distribution of data, as opposed to conven-
tional approaches such as expectation−maximization
or k-means (based on a Gaussian distribution hypo -
thesis), or hierarchical classification (HC implies the
definition of a cutting distance). Otherwise, HC relies
on a strong initial partitioning choice that may bias or
skew the results, while spectral partitioning relies on
a global approach.

The algorithms presented here are constrained to a
complete database without missing data.

Based on recent works from Phan et al. (2017), we
could expect to implement in the very short-term
multiple imputation and data completion methods
using dynamic time-warping algorithms to enhance

our database in order to improve environmental
state/cluster discrimination.

This approach confirms that it is possible to obtain
a near real-time synoptic view of the distribution of
4 phytoplankton spectral groups (preliminary taxo-
nomic approach) and of the main characteristics of
the associated water masses. Moreover, in slightly
delayed time, it is also possible to define environ-
mental states, characterized by a specific combina-
tion of physicochemical and biological parameters,
when implementing an unsupervised spectral classi-
fication approach.

During the 3 cruises between late April 2012 and
early June 2012, implementation of the PFB coupled
with the spectral fluorometer AOA allowed us to
characterize and quantify the high spatial and tem-
poral variability of the phytoplankton biomass and
associated spectral groups.

Characteristics of Cluster 3 (UK offshore and cen-
tral English Channel water masses with high salinity,
low temperature, intermediate oxygen concentration
and saturation) are conditioned by the Atlantic
waters which are channeled north-eastward (Salo mon
& Breton 1993).

During transport towards the North Sea, water
masses are modified by local riverine inputs, espe-
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Fig. 9. Spatialized projection of the 9 (left hand side) and 33 (right hand side) clusters defined by spectral clustering based on 
high frequency data series collected during Legs 1, 2 and 3 (20 April−4 June 2012) (colours between panels are not related)
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cially along the French coast under the influence of
the Seine River (and to a lesser extent the Somme,
Canche and Authie rivers). Nutrient concentration
(nitrate, phosphate and silicate) is higher in these
coastal waters, which are separated from the offshore
water bodies by a frontal structure which evolves
with the tides, mainly in response to the neap-
tide/spring tide cycle (Brylinski et al.1991). This con-
tributes to the creation of favourable environmental
conditions for phytoplankton blooms, and conse-
quently, for Phaeocystis globosa (Cluster 5). This
result is consistent with other observations made in
the same area (Lefebvre et al. 2011, Bonato et al.
2015) or in the neighbouring Belgian coastal zone
(Muylaert et al. 2006). These water masses (Cluster
5) correspond to a sensitive area regarding eutrophi-
cation issues. The most visible indirect effect of P.
globosa blooms in these water bodies is a decrease in
oxygen concentration and saturation. Indeed, oxygen
saturation over 100% generally mimics the phyto-
plankton biomass pattern due to primary production,
but in some cases, under-saturation occurs where
bacterial consumption is associated with decaying
algal blooms or degradation of excessive amounts of
foam, as in the case of the wane of a P. globosa
bloom.

The absence of nutrient data (because of analytical
problems) does not undermine this interpretation,
since it is the winter nutrient concentrations and the
dynamics of their use during the spring diatom bloom
that will explain the proliferation (or not) of P. glo-
bosa under adequate weather and hydrodynamic
conditions. Using complementary low resolution data
from Ifremer’s monitoring programmes REPHY and
SRN (Lefebvre et al. 2011, SRN 2017), we observed
maximum dissolved inorganic nitrogen, phosphate and
silicate concentrations of 34.43, 0.94 and 17.0 µmol
l−1, respectively offshore from Boulogne-sur-Mer, and
42.28, 1.03 and 24.4 µmol l−1, respectively in the
coastal zone of the Bay of Somme. These winter
 concentrations are consistent with what is usually
observed in the area, and are compatible with the
development of an intermediate magnitude spring
bloom of P. globosa (Lefebvre et al. 2011, Hernández-
Fariñas et al. 2014).

Clusters 2 and 4 make it possible to appreciate the
variability of the biotic and abiotic conditions during
a tidal cycle (since the boat was at anchor because of
bad weather conditions, i.e. as in an Eulerian moni-
toring strategy).

Cluster 6 shows a relative proportion of the spectral
groups that are significantly different from that of the
more northern watersheds (Cluster 5), in accordance

with a previous hypothesis based on a low resolution
sampling strategy (Brunet et al. 1996) indicating dif-
ferent structuring of the phytoplankton community
between the south and north region of the Bay of
Somme.

Without any strong riverine input, UK coastal water
masses and the central EEC showed similar charac-
teristics, highlighted in Cluster 1.

The high variability of phytoplankton biomass is
relative to a patchy distribution of phytoplankton
generally observed at scales from centimetres up to
several kilometres (Seuront 2005); that author high-
lighted that in French coastal waters in the northern
part of the EEC (under the influence of a tidal front
and considering the tidal and wind-driven along-
shore transport), it is not surprising to observe patch-
iness at a kilometric scale. Changes in phytoplankton
biomass and the relative proportion of spectral
groups along the French coast at the end of Legs 2
and 3 are related to a change in local conditions in
response to riverine nutrient inputs from the Somme
and Canche rivers.

When merging data from Legs 1, 2 and 3, our
methodology allows automatic separation of 33 clus-
ters. Consequently, in spring 2012, the EEC could be
considered as a complex environment, with 33 com-
binations in the spectral space of the main variables
we measured. Thanks to improving technologies and
reduced costs in recent years, we moved from moni-
toring strategies consisting of explaining ‘how to
measure such or such variable using new technolo-
gies’ to a new approach where the main limitation
seems to be our own capacity, i.e. expertise and inter-
pretation of huge amounts of data.

In situ measurements compared to reference dis-
crete samples during the cruises highlighted that P.
globosa was classified by AOA as a mixture of G and
B algae. In this case, the signal was characterized by
a relative proportion of approximately 50% G and
50% B signals. In the EEC, Houliez et al. (2012) noted
that, when using the original fingerprints of a Fluoro-
Probe (the same technology as in the AOA), the clas-
sification was dominated by the B signal all year,
except during April−May (the P. globosa bloom
period) where the contribution of the G signal was
close to that of the B. Consequently, in our study, and
considering the absence of G algae in the sampled
area, the first idea was to use a new specific finger-
print generated from cultures of P. globosa, and so a
specific combination of spectral groups—P. globosa,
BG, B and Cryptophyceae—rather than using the
original fingerprints as proposed by the manufac-
turer. The core issue is that with our AOA, the library
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of  fingerprints is limited to 4 fingerprints, whereas
we have several dozens of phytoplankton species in
the area. Therefore, it is not possible to include the
fingerprints from all taxonomic phytoplankton groups
found in the studied area (Restriction 1). In addition,
we know from our own tests and from the literature
(Seppälä & Olli 2008, Houliez et al. 2012, Escoffier et
al. 2015) that if we force AOA to attribute part of the
 signal to the P. globosa group, it will lead to major
errors when this species is absent. Indeed, the rela-
tive abundance of all groups must equal 100%
because phytoplankton fluorescence responses are
assigned to 1 of the only 4 available spectral groups
based on similarity of spectral signatures (Restric-
tion 2). As we wanted to sample a large area within a
relatively small time window, we anticipated that the
phytoplankton community will not only be domi-
nated by P. globosa, and that the use of co-varying
fingerprints is not allowed (Restriction 3). The spe-
cific fingerprints derived from cultures do not repre-
sent variability found in situ (diversity in pigments,
and thus spectra; different physiological responses to
different environmental conditions) (Restriction 4).
Finally, results are not comparable between different
AOAs and for a given AOA, results are not compara-
ble before and after factory calibration when servic-
ing and maintenance are needed (Restriction 5).

Considering these restrictions, we decided not to
use field-derived norm spectra as proposed by Harri-
son et al. (2016). As our objective was to propose an
analytical rapid procedure based on the KISS princi-
ple (Keep It Smart and Simple), we want to (1) make
the implementation of the PFB/AOA devices as sim-
ple and as fast as possible for non-specialists (i.e.
without any fine-tuning of the devices and without
laborious experiments with cultures to generate new
specific and regionalized fingerprints); (2) rapidly
generate data on the spatio-temporal dynamics of
phytoplankton spectral groups without any particu-
lar a priori knowledge of the biological characteris-
tics of the studied area, and without any particular
expertise or specialized training required of the user;
and (3) propose a data processing procedure based
as closely as possible on the raw data in order to limit
ex pert judgment and a long-lasting data pre-process-
ing stage (i.e. an adjustment of the fingerprints to
specific taxa in large areas with a high biodiversity/
heterogeneity would require a post hoc modification
of the fingerprint library configuration, only possible
after confirmation of the occurrence of such taxa via
a time-consuming microscopic enumeration).

We had then to compromise between taxonomic
resolution and user-friendly implementation. Our

choice was to work with original fingerprints in order
to (1) be able to tackle changes in phytoplankton
structure with a high spatio-temporal resolution,
such as a screening procedure before implementa-
tion of another more directed sampling strategy (i.e.
discrete samples for conventional microscope-based
analysis, or flow cytometry analysis); and (2) make
results from different seasons and different areas as
comparable as possible (consequently with a poten-
tially high diversity of spectral fingerprints incompat-
ible with the AOA limited library as proposed for the
time being by the manufacturer).

Finally, despite a rather limited taxonomic resolu-
tion to define the structure of phytoplankton commu-
nities, it appears that our results are very close to
those of Bonato et al. (2015). Implementing scanning
flow cytometry (SFCM), and using a large matrix
(sampling locations × optical properties of cells), they
were able to define 4 types of water masses during
Leg 2 using hierarchical classification (Bray-Curtis
dissimilarity index based on Ward distance). It seems
that the differentiation of water masses according to
the phytoplankton structure of the communities is
quite comparable when using either cell level (SFCM)
results discriminated with a common hierarchical
classification, or bulk level (AOA) results analysed
with an optimized spectral classification methodol-
ogy. The use of one or the other approach would only
be justified because of the need for taxonomic resolu-
tion and acquisition of cell structural parameters.
Apart from the scientific objectives, the major differ-
ences lie in the equipment cost (SFCM > AOA by a
factor of 6) and in the time required to extract the
information contained in the data series (SFCM >
AOA by a factor of 60, i.e. 30 vs. 0.5 d of data process-
ing over a 1 mo duration cruise, with a SFCM sam-
pling frequency of 10 min vs. an AOA frequency of
1 min).

Focusing on P. globosa, it is noteworthy that
whereas species cannot be differentiated in an auto-
matic way (considering Restrictions 1 and 2 in partic-
ular), an increasing proportion of the G signal associ-
ated with the B one in the French part of the EEC
should be considered as a possible early signal of the
initiation phase of a Phaeocystis bloom.

With only 3 cruises focalized on a small time win-
dow, i.e. the spring bloom, we were able to provide
new results regarding the spatial and temporal distri-
bution of phytoplankton spectral groups and asso -
ciated water properties, and their variability during
a P. globosa bloom, i.e. during an HAB. All these
variabilities would be difficult to detect by other
low resolution routine monitoring parameters alone,
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or are too prohibitively expensive to be undertaken
as part of a regular monitoring program using con-
ventional approaches (water samples using Niskin
bottles, on-board filtrations, laborious laboratory ana -
lyses). Consequently, generalization of this kind of
high resolution approach on larger data sets (i.e. on
extended spatial and temporal monitoring periods
such as the perennial Ferry Box line) represents a
sig nificant new data source to complement existing
low resolution, conventional monitoring programs. It
is important to note that the idea was not to propose
an alternative to conventional approaches, but to
develop complementary tools and to gain experience,
so other researchers could make a choice considering
the advantages and drawbacks according to their sci-
entific objectives. Such a strategy has already been
recommended in other contrasting environments (i.e.
differing by their main hydrodynamical and hydrobi-
ological characteristics) by, for example, Richardson
et al. (2010) for the Neuse River estuary (Georgetown,
SC, USA), Aiken et al. (2011) for the Chilean Fjords
and Catherine et al. (2012) for lakes and reservoirs.

To summarise, our approach enabled us to (1) pro-
pose a well-fitted and adaptive sampling strategy in
near real-time during a cruise (monitoring objectives
are better defined if geographical boundaries are set;
sampling can be enhanced for areas with high envi-
ronmental gradients and when high variability exists
for a given parameter); (2) implement an early warn-
ing system to track changes induced by HAB events;
(3) more generally, to improve knowledge on the
spatio-temporal distribution of phytoplankton com-
munities and also knowledge of pelagic habitats; and
(4) identify controlling factors and direct and indirect
effects of massive bloom events (including HABs),
with the proviso of adding supplementary supporting
factors while monitoring.

This optimal differentiation of environmental states/
water masses by spectral clustering is primarily sig-
nificant considering the need for hidden Markov
modelling (HMM) as proposed by Rousseeuw et al.
(2015). HMM allows one to characterize the environ-
mental states and to model their dynamics (emission
probabilities and transition probabilities between
states) but also to predict new or future states.

Species composition and the relative abundance of
different algal groups in a community are the funda-
mental determinants of aquatic ecosystem structures
and functions. Alterations in phytoplankton commu-
nity composition can lead to negative ecological
impacts on entire ecosystems; for example, eutrophi-
cation, HABs and hypoxia (See et al. 2005). Conse-
quently, some criteria dedicated to defining the GES

of the MSFD are related to phytoplankton (D5C2:
chl a in the water column; D5C3: HABs) and pelagic
habitats (D1C6: pelagic broad habitat types), and
therefore need to be integrated into the monitoring
program. At this stage of MSFD implementation, the
effect of excessive nutrient inputs would be primarily
measured by changes in the phytoplankton biomass,
hence its proxy, the chl a concentration, which seems
insufficient when taking into account the complexity
of the phytoplankton response to changes in en -
vironmental pressures (Lefebvre et al. 2011, Her -
nández-Fariñas et al. 2014, this study). Moreover,
Alvarez-Fernandez & Riegman (2014) postulated that
in an environment evolving towards a limitation of
phytoplankton growth by nutrients, and subject to in -
creasing temperatures and changing light conditions
because of global changes, the use of chl a con -
centration measurements as an indicator of phyto -
plankton biomass should be considered with caution.
Such a simplification of the assessment using change
in phytoplankton biomass as the only indicator of
change in the phytoplankton community could lead
to 2 situations that are counterproductive to one
another: (1) the assessment may lead to the conclu-
sion that no change in biomass has occurred, and
consequently no environmental measures would be
undertaken (no recommendation for additional re -
quire ments for reducing inputs). However, for a
given stable biomass, the structure of the community
and also the ratio of chl a to carbon concentration can
be significantly different. In our study, we showed
that changes can be favourable to the proliferation of
potentially harmful species (Phaeocystis sp.). Lack of
management actions could lead to deterioration in
this situation. (2) The assessment may lead to the
implementation of additional measures to reduce
nutrient inputs when an increase in phytoplankton
biomass is observed. If this increase in biomass is
only linked to the development of ‘forage’ phyto-
plankton, then these measures will lead to  limiting
energy transfers within the trophic network, which
may be beneficial for higher trophic levels by offset-
ting other pressures. In this case, management action
may inhibit an improvement in the situation.

The strategy of high-resolution measures of envi-
ronmental parameters presented here is in line with
the recommendations and work undertaken by the
FerryBox community (www.ferrybox.org) in the Bal -
tic Sea (Rantajärvi 2003), which was then ex tended to
other European marine areas thanks to projects such
as FP5 FerryBox, FP7 Protool then H2020 JERICO-
Next (Petersen et al. 2008, Thyssen et al. 2015, www.
jerico-ri.eu/). On the basis of the experience gained
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from this proof-of-concept in the EEC, and consider-
ing the promise to improve scientific knowledge
through the use of optimized numerical data process-
ing tools, we have compiled guidance for considera-
tion in the development of a new Ferry Box line
across the EEC.

5.  CONCLUSIONS AND PERSPECTIVES

The implementation of high resolution in situ ana -
lysis using a PFB coupled with a spectral fluorometer
and associated with an optimized unsupervised spec-
tral classifier for data processing allowed us to draw
an environmental state-specific synoptic view of the
main hydrological para meters, phytoplankton bio-
mass and spectral groups, in the EEC while a Phaeo-
cystis globosa bloom was observed along the French
coast. The proposed data processing methodology
allowed us to define environmental states, to de -
lineate water masses based on (1) the geometry of
(unlimited) biotic and abiotic parameters in a new
spectral dimension and (2) the spatial and/or tempo-
ral dynamics of these states, water masses. When
subject to HAB events, these water masses can be
easily identified in time and space. Moreover, con-
trolling factors (e.g. nutrient concentrations) and/or
direct and indirect effects of these events (e.g.
hypoxia) can be hierarchized.

Research in marine ecology (from the description
of bio-geochemical equilibria to the prediction of
ecosystem dynamics) and implementation of obser-
vation and monitoring programs with high temporal
and spatial resolution are currently not limited by our
potential to develop measurement systems, but by
available computing capacities, i.e. by our ability to
develop data processing methodologies to manage
and process the huge amounts of data generated by
these monitoring instruments. The objective for sci-
entists, but also for water managers and stakehold-
ers, should clearly be to integrate high resolution
results in their methods of assessing environmental
status, improving knowledge of marine ecosystems,
answering EU directives (WFD, MSFD) or regional
sea convention (OSPAR) issues, and consequently im -
plementing optimized, cost-effective programs and
measures to achieve a healthy environment where
most of the problems associated with eutrophication
(e.g. loss of diversity) do not occur.
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