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TWINES EQUILIBRIUM IN A FINITE ELEMENT DEDICATED TO
HEXAGONAL MESH NETTING

Daniel PRIOUR1

Abstract. The equilibrium of hexagonal mesh netting is calculated by a finite element method. A
triangular element has been devolopped for such hexagonal meshes [1] [2]. The hexagonal mesh is
made of three families of twines. The basic hypothesis of the triangular element imposes that the three
families of twines be parallel inside the element. The twine tension are calculated to deduce the forces
on the vertex of the triangular element.

The calculation of twine tension needs the concurent resolution of 6 equations with as many un-
knowns. In a first step these equations are reduced to 2 with 2 unknowns. Then they are solved by
the Newton-Raphson method.

Résumé. L’équilibre de filets à mailles hexagonales est calculé par une méthode aux éléments finis.
Pour cela un élément fini triangulaire dédié au filet à maille hexagonale a été développé [1] [2]. La
maille hexagonale est constituée de trois familles de fils. L’hypothèse de base de l’élément triangulaire
impose que les trois familles de fils soient parallèles à l’intérieur de l’élément. Les tensions dans les fils
sont calculées pour en déduire les efforts aux sommets de l’élément triangulaire.

Le calcul des tensions de fils implique la résolution simultanée de 6 équations à autant d’inconnues.
Dans un premier temps ces équations sont réduites à 2 équations à 2 inconnues. Ensuite celles-ci sont
résolues par la méthode de Newton-Raphson.

Introduction

Netting structures could be ranked in 3 classes related to the mesh shape: diamond mesh, square mesh and
hexagonal mesh (fig.1). From mechanical modeling point of view they are ranked in only 2 famillies: the meshes
with 2 twine directions (diamond and square) and 3 directions (hexagonal).
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c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/proc or http://dx.doi.org/10.1051/proc:072217

http://www.edpsciences.org
http://www.edpsciences.org/proc
http://dx.doi.org/10.1051/proc:072217


ESAIM: PROCEEDINGS 141

Figure 1: Nettings with diamond, square and hexagonal meshes

Most of netting modellings have been devoted to the first family (2 directions of twine) [3–9]. For the second
family (3 directions of twine)only few works have been completed [1, 5].

Recently, the use of netting in a given direction has been imposed for specific fishery improvements: The
netting is generally towed along the N direction (horizontal on fig.2), but a recent regulation imposes to tow
the netting in the T direction (vertical on fig.2). Thus the modelling must be able to embed this modification.
Two cases are considered: either the mesh twines are assumed to have two directions, which means that the
knot effect must be taken into account, for example by a mesh opening stiffness [10–12], or the mesh is assumed
to be hexagonal [1].

Figure 2: Netting with large knot. The N direction is horizontal and the T one is vertical. This mesh can be
assimilated to a hexagonal one: the knot would be one side of the hexagon.

In this paper the modelling of hexagonal mesh netting by finite element method is studied [1]. The present
paper focuses on the equilibrium of twines inside the finite element dedicated to hexagonal mesh netting.

1. Method

1.1. Sides of the basic mesh

The modelling is based on a triangular finite element. The netting can be assimilated to a surface, thus the
triangle has been chosen for being the simplest shape of surface.
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Figure 3: Triangular element dedicated to hexagonal mesh netting. Twine directions are l, m and n. Cartesians
coordinates are x1, y1, x2, y2, x3 and y3. Twine coordinates are u1, v1, u2, v2, u3 and v3. The basic mesh is in
grey and is defined by vectors UUU and VVV .

The whole netting is modelled in triangular elements, each of them able to cover a large number of twines.
Each vertex, or node, is linked to the netting, so when the modelling calculates the equilibrium of nodes the
equilibrium of the netting is known.

The basic hypothesis is that each familly of twine in a triangular element stays parallel, i.e. all the l twines
are parallel, the same for m and n twines. It is clear that this leads to a constant deformation per family.
Obsviously both the orientation and deformation of twines vary from one triangular element to another. This
hypothesis is acceptable if the triangular elements are small enough relatively to the gradient of deformation.

A second hypothesis is that the twines are modelled as elastic bars with different moduli of Young to take
into account twine tension and compression. This hypothesis is acceptable because the twine strain being pretty
small (few percents).

From these hypothesis the twine tensions will be calculated and therefore the forces exerted on the nodes.

In each triangular element the netting can be described by a juxtaposition of ”basic meshes”. This basic
mesh is in grey on fig.3 and fig.4. Such basic mesh is made of 6 twines: 2 l, 2 m and 2 n. The basic mesh is a
parallelogram which sides are vectors UUU and VVV . These vectors UUU and VVV are used to define the twine coordinates
of nodes (fig.3 and 4).
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Figure 4: Equilibrium calculation of a netting (dotted lines) stretched at each four sides. 4 triangular elements
are used (solid lines). The initial shape (not equilibrated) is the top one. The final shape (equilibrated) is the
bottom one. The twine coordinates of the 5 nodes are marked. The basic mesh of the bottom triangle is in
grey.

Due to the linear combinations between basic mesh sides and triangle sides, the sides of the basic mesh are
calculated from the sides of each triangular element, with the following equations (fig.3):

121212 = (u2 − u1)UUU + (v2 − v1)VVV
131313 = (u3 − u1)UUU + (v3 − v1)VVV

u1, u2, u3 are the twine coordinates along UUU vector of vertex 1, 2 and 3 of the triangle. The same along VVV
vector.

From these 2 equations with 2 unknowns, UUU and VVV can be deduced:

UUU = v3−v1
d 121212− v2−v1

d 131313
VVV = u3−u1

d 121212− u2−u1
d 131313

with

d = (u2 − u1)(v3 − v1)− (u3 − u1)(v2 − v1)

In fact the number of basic meshes is equal to d
2 , i.e. the number of l twines is d, the same for the number

of m and n twines. Obviously the total number of twines in the triangular element is 3 d.
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1.2. Twines tension

The basic mesh definition leads to (fig.3):

UUU = −mmm + 2nnn− lll
VVV = −mmm + lll

The tension amplitudes are:

|TlTlTl| = EA |l
ll|−lo
lo

|TmTmTm| = EA |m
mm|−mo

mo

|TnTnTn| = EA |n
nn|−no

no

With E the young modulus of twine.
And A the section of twine.

The equilibrium of twine tension gives:

TlTlTl + TmTmTm + TnTnTn = 0

Which gives 6 equations with 6 unknowns (lll, mmm, nnn, TlTlTl, TmTmTm and TnTnTn).

1.3. Equilibrium of the joint knot

The 6 previous equations can be reduced to the two following with two unknowns (mx and my):

(mx+Vx)(
√
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y

+
(mx+ Ux+Vx

2 )(
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2 )2
= 0

(my+Vy)(
√

(mx+Vx)2+(my+Vy)2−lo)

lo
√

(mx+Vx)2+(my+Vy)2
+

(my)(
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With mx (Ux, Vx) and my (Uy, Vy) components of mmm (UUU , VVV ):

These 2 equations are the complete form of the following:

lx
|lll|
|lll|−lo

lo
+ mx

|mmm|
|mmm|−mo

mo
+ nx

|nnn|
|nnn|−no

no
= 0

ly
|lll|
|lll|−lo

lo
+ my

|mmm|
|mmm|−mo

mo
+ ny

|nnn|
|nnn|−no

no
= 0

These 2 equations describe the equilibrium of the joint knot of 3 twines in a triangle which sides are UUU+VVV
2

and VVV (fig.5). These equations are in Newton.
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Figure 5: The 3 twines are in the triangle defined by UUU+VVV
2 and VVV .

1.4. Approximation of the equilibrium of the joint

The analytical solution of the 2 previous equations has not been found, therefore the following approxima-
tion has been made in order to simplify the equations. This approximation is acceptable as the stretched twine
lengths being close to the unstretched lengths.

mx

|mmm| ≈
mx

mo
my

|mmm| ≈
my

mo

With this approximation the 2 previous equilibrium equations are reduced to the following:
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m2
o
(
√

m2
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y−mo)+ (mx+ Ux+Vx
2 )

n2
o

(
√

(mx + Ux+Vx
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Which is the complete form of the following:

lx
l2o

(|lll| − lo) + mx

m2
o
(|mmm| −mo) + nx

n2
o
(|nnn| − no) = 0
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l2o

(|lll| − lo) + my

m2
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1.5. Newton-Raphson method

The previous approximation has not been sufficient to reach the analytical solution. The Newton-Raphson
method has been used to find a numerical solution.
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This method can be explained by the definition of the derivative of a function (F’):

F ′ = F (x+h)−F (x)
h

h→ 0

F’: derivative of the force (N/m).
F: force on the node (N).
x: position of the node (m).
h: displacement of the node (m).

If x is not the equilibrium position, the displacement h is searched to found the equilibrium. Following this
condition it can be written:

F (x + h) = 0

Which gives with the definition of the derivative:

h = F (x)
−F ′(x)

Obviously, h can be large and h→ 0 is not respected. Thus the iterative calculation is required:

hk+1 = F (xk)
−F ′(xk)

xk+1 = xk + hk+1

k is the number of the iteration.

Here:
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F ′ =
∣∣∣∣ D11 D12

D21 D22

∣∣∣∣ .
With the previous conditions the displacement (hhh) can be calculated:

hhh =

{
D22F1−D12F2

D22D11−D12D21
D22F2−D21F1

D22D11−D12D21
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From this displacement and with the iterative method previously described the equilibrium of the twines is
calculated.

1.6. Finite element method applied to hexagonal mesh netting

Once the equilibrium of the twines is calculated, the finite element method dedicated to the netting can be
implemented as described in [1].

2. Applications

2.1. gabion

Gabions are used in retention wall along roads or rivers. The following calculations (fig.6) were devoted to
the assessment of the volume reduction of the gabion resulting from the high reduction of its height.

Figure 6: Calculation of gabion for 5 and 15 percent of height reduction (from left to right).

2.2. cod-end

Cod-ends are the rearmost part of trawls, they need investigation to assess their ability to retain or release
fish. In this calculation the objective was to assess the cod-end shape variation between diamond meshes (fig.7
left) and hexagonal meshes (fig.7 right). This assessment is used to calculate the opening of meshes and there-
fore the escapement possibility of fish in relation to their size.
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Figure 7: Cod-ends with diamond (left) and hexagonal meshes (right). The vertical line is the fish catch limit.

3. Discussion

The development of a triangular element dedicated to netting made of hexagonal meshes required to calculate
the twine tension in the element. Unfortunately, the analytical solution of these tensions has not been found.
Therefore an approximation has been carried out on the orientation of the twine tension and finally a numerical
solution has been implemented based on the Newton-Raphson method.

The main advantage of such triangular element is that the discretisation of the whole netting is pretty easy.

Such development of numerical model devoted to hexagonal meshes could be used for the assessment of
structures made of hexagonal meshes such as trawls cod-end for the assessment of the fishing process.
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