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Abstract The hazards posed by infrequent major floods to communities along the Susquehanna River
and the ecological health of Chesapeake Bay remain largely unconstrained due to the short length of
streamgage records. Here we develop a history of high‐flow events on the Susquehanna River during the late
Holocene from flood deposits contained in MD99‐2209, a sediment core recovered in 26 m of water from
Chesapeake Bay near Annapolis, Maryland, United States. We identify coarse‐grained deposits left by
Hurricane Agnes (1972) and the Great Flood of 1936, as well as during three intervals that predate
instrumental flood records (~1800–1500, 1300–1100, and 400–0 CE). Comparison to sedimentary proxy data
(pollen and ostracode Mg/Ca ratios) from the same core site indicates that prehistoric flooding on the
Susquehanna often accompanied cooler‐than‐usual winter/spring temperatures near Chesapeake
Bay—typical of negative phases of the North Atlantic Oscillation and conditions thought to foster hurricane
landfalls along the East Coast.

Plain Language Summary Despite the vulnerability of many mid‐Atlantic cities to
flooding, including Washington D.C., few long‐term records exist to assess the risks posed by extreme,
infrequent, storm events. Here we document recent and prehistoric floods on the Susquehanna River, which
has the largest watershed on the U.S. Eastern Seaboard, using sediment cores collected from Chesapeake
Bay. Our analysis finds that much of the Susquehanna's observed centennial‐millennial scale flood
variability may be driven by the frequency of hurricane landfalls along the U.S. East Coast.

1. Introduction

On 21 and 22 June 1972, more than 25 cm (10 in.) of rain fell across areas of southeastern Pennsylvania as
Hurricane Agnes came ashore (Bailey et al., 1975; Figure 1). Two days later, the Susquehanna River near
Harrisburg, Pennsylvania, swelled to a record ~5 m (16 ft) above flood stage (Bailey et al., 1975).
Floodwaters deposited an estimated ~30 × 106 m3 of sediment downstream in the Chesapeake Bay
(Zabawa & Schubel, 1974), smothering aquatic vegetation and degrading fisheries (Andersen et al., 1973).
Damage fromAgnes, mostly in Pennsylvania, exceeded $3 billion (approximately $19 billion in 2018 dollars)
making it the costliest hurricane in U.S. history at the time (Bailey et al., 1975). Since 1972, three other
cyclones—Eloise (1975), Ivan (2004), and Lee (2011; Figure 1d)—have pushed the Susquehanna above
major flood stage (USGS, 2018) with similar, though less severe, downstream effects.

Tropical cyclones, or extratropical cyclones interacting with a front, are the primary and secondary
drivers of extreme rainfall along the U.S. East Coast (Kunkel et al., 2012). Daily U.S. rain‐gage data from
1936 to 1996 indicate tropical cyclone rainfall exceeding 10 cm (~4 in.) occurs at timespans of less than
20 years along much of the Eastern Seaboard and Gulf Coast (Hart & Evans, 2001). Villarini et al.
(2014) found peak discharge during tropical cyclone passage often surpassed the 10‐year flood peak at
U.S. Geological Survey (USGS) gage stations within 500 km of each storm's track. Tropical cyclone flood-
ing on East Coast rivers occurred more frequently (~70%) when the May–June North Atlantic Oscillation
(NAO) index, most often described by the normalized monthly sea level pressure difference between
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Portugal and Iceland (e.g., Jones et al., 1997), was negative (Villarini et al., 2014). Tropical systems that
have transitioned, or are undergoing transition, into extratropical storms—like Hurricane Agnes (1972)
—have brought some of the heaviest rainfall to the Northeastern United States, a process also weakly,
negatively, correlated, with the NAO (Hart & Evans, 2001).

Storm deposits have been used to link prehistoric North Atlantic hurricane activity to the NAO (Denommee
et al., 2014, etc.) as well as other forcings such as the El Niño‐Southern Oscillation, changes in local sea sur-
face temperature (SST), and the Atlantic Meridional Overturning Circulation (e.g., Brandon et al., 2013;
Donnelly & Woodruff, 2007; Toomey et al., 2017). However, the population of intense North Atlantic hurri-
canes that cause coastal flooding may not be the same as the storms that produce intense rainfall and high
river flows. Only a handful of geologic proxy reconstructions of high flows currently exist for Eastern North
American river systems (Munoz et al., 2018; Oliva et al., 2016, etc.); but estuaries, which capture terrestrial
sediment shed during floods, likely record these past events. For instance, shallow sediment cores recovered

Figure 1. Geologic setting. (a) Eastern United States rainfall during hurricane Agnes (14–25 June 1972; PSD‐NOAA: U.S. Unified Precipitation data
[https://www.esrl.noaa.gov/psd/]). Dashed line follows storm track. Susquehanna watershed outlined in red. “H” gives location of Harrisburg, Pennsylvania.
(b) Suspended solid concentration and (c) salinity profiles along the main stem of Chesapeake Bay on 26 June 1972 following hurricane Agnes—both panels
adapted from Schubel (1974) and reprinted with permission. Distance (x axis) is expressed in kilometers from Havre de Grace, Maryland, the mouth of the
Susquehanna River. Location of RD98/MD99‐2209 approximate. (d) Sediment plume following Tropical Storm Lee (2011). Satellite (NASA [https://earthobser-
vatory.nasa.gov/images/52169/sediment-clouds-the-chesapeake-bay]) image from 13 September 2011. Mouth of the Potomac River and its outlet into the open
North Atlantic given by aqua highlighted “P” and “A,” respectively. Stars: Washington (DC), Annapolis (A), and Richmond (R).
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from Northern Chesapeake Bay after Hurricane Agnes (1972; Zabawa & Schubel, 1974) and Tropical Storm
Lee (2011; Palinkas et al., 2014) contained deposits centimeters thick.

Here we identify sedimentary deposits left by Hurricane Agnes, as well as other large floods in a set of piston
cores collected near Annapolis, Maryland, in order to address two main questions:

1. Do Chesapeake Bay sediments record extreme, prehistoric floods of the Susquehanna River?
2. Is there a relationship between the frequency of high flows and the NAO and/or North Atlantic SSTs?

2. Geologic Context
2.1. Study Site

The Susquehanna watershed (71,250 km2) encompasses a large portion of the northern Appalachian
Mountains where it extends across parts of three U.S. states (Maryland, New York, and Pennsylvania) and
supplies ~1,100 m3/s of fresh water, on average, to the Chesapeake Bay estuary (Schubel & Pritchard,
1986). In most years, the highest monthly discharges occur in March or April during the spring freshet, often
exceeding 10,000m3/s. Annually, the Susquehanna delivers ~2 × 106 t of sediment to Chesapeake Bay (Gross
et al., 1978; Officer et al., 1984). Much of this material is, however, trapped within 60–80 km of the river's
mouth (Eaton et al., 1980); little is transported south of the Potomac River (Figure 1d) or to the open
North Atlantic, ~180 and 300 km from the bay head, respectively. Thick deposits of estuarine sediments
(Colman et al., 1992), often laminated (Ryan, 1953), have accumulated in Northern Chesapeake Bay since
sea level inundation ~8 Kyr BP (Cronin et al., 2007), especially in the deep (>30 m below sea level) main
channel that runs along the Bay's eastern margin. These deposits were targeted by Calypso core MD99‐
2209 (38° 53.18′ N, 76° 23.68′ W) and collected during June 1999 by the R/V Marion Dufresne (IMAGES V
Cruise) in 26 m of water (Halka et al., 2001) near Annapolis, Maryland, ~85 km from the Susquehanna's
Mouth. The core was subsequently split into 1.5‐m‐long sections and archived at the USGS in Woods
Hole, Massachusetts, and University of Rhode Island. The RD98 series kasten (K1,2) and piston (P1,2) cores,
recovered at the same approximate location in November 1998 (Baucom et al., 2001) and MD03‐2661 (e.g.,
Cronin et al., 2010) collected ~300 m east of our site in 2003, are also discussed in the text below.

2.2. MD99‐2209 Sedimentology and Stratigraphy

Amixture of siliciclastic minerals, salts, organic matter, andmarine fauna (ostracodes, benthic foraminifera,
diatoms, and mollusks) composes the sediment of MD99‐2209. X‐ray diffraction analysis of a sample from
285–290 cm identified quartz, feldspar, and clay (illite) as the dominant mineral constituents, consistent
with previous analysis of Chesapeake Bay sediments (Powers, 1954; Ryan, 1953). Gypsum is also present
in small quantities, similar to cores collected from the deep main channel collected near the mouth of the
Patuxent River reported by Cann and Cronin (2004). Within the coarse‐silt fraction (32–63 μm), ~90 and
8% of the mineral material is quartz and feldspar, respectively. Organic content is generally low (1–3%) with
δ13C ranging from−22 to−24 (‰ PDB) in RD98 (Baucom et al., 2001). High C/N ratios (up to 15), compared
to a background of about 8, occur between ~50 and 175 cm (RD98; Baucom et al., 2001) mirroring
Pennsylvania anthracite production (Milici & Campbell, 1997). Two very large (~1 cm3) charcoal pieces were
found at 179 and 191 cm in MD99‐2209.

Based on shipboard descriptions (Baucom et al., 2001) and our more recent observations of the core, the late
Holocene section of MD99‐2209 can be divided into three main stratigraphic units (Figure 2, right). (1)
Sediment from the surface down to a sharp contact at 280 cm is laminated silt and clay with lower density
than the sediments below. (2) Mostly uniform, moremassive, clayey silts are found from ~280–730 cm depth.
(3) Sand increases beginning at 730 cm, particularly through a time‐condensed section from 810–830 cm that
separates the late and mid‐Holocene. Its origin, attributed to a number of possible processes by Halka et al.
(2001; e.g., winnowing by tidal currents and changes in site geometry) is beyond the scope of this manu-
script, which will focus solely on the late Holocene section (above 7.5‐m core depth).

3. Methods

Standard wet sieving techniques were used to separate the >32‐μm fraction from bulk sediment sampled
downcore at 1‐cm intervals. Each sample was then dry‐sieved at >63 μm to isolate the silt size fraction from
(1) relic fine/medium‐grained sands (well‐sorted) potentially transported from shallow water areas offshore
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Kent Island to the east (e.g. stations CB47/48 in Ryan, 1953) and (2) large gypsum crystals that may have
formed in situ (e.g., Cann & Cronin, 2004). Grain‐size variability was also estimated from relative
zirconium and rubidium abundances (e.g., Davies et al., 2015) measured at ~1‐mm intervals on
u‐channels using an Itrax X‐ray florescence core scanner at the Woods Hole Oceanographic Institution.
Rubidium, in general, adsorbs to the fine fraction, while zircon has been previously identified in the
coarser sands of Chesapeake Bay sediments (Ryan, 1953). The log‐normalized Zr/Rb ratio of a discrete,
powdered, bulk sample taken from 285–290 cm in MD99‐2209 was ~0.7 compared to 3.0 for the coarse‐silt
fraction alone. Downcore XRF log (Rb/Zr) measurements are complimentary to sieve‐size data, allowing
for better resolution of very thin (millimeter‐scale) coarse‐grained layers found in the finely laminated
upper ~280 cm of MD99‐2209.

Lead‐210 (Figure 2a), radiocarbon, and fossil pollen (Figure 2c) were used to construct an age‐depth model
for MD99‐2209. Ragweed (Ambrosia) pollen percentages were calculated at ~2‐cm intervals from the top of
MD99‐2209 to a depth of 350 cm using standard palynological methods (e.g., Willard et al., 2003). Consistent
with the existing literature, we suggest (1) an initial rise in ragweed pollen and magnetic susceptibility at
~280 cm corresponds with expansion of colonial agriculture around ~1780 CE in upper Chesapeake Bay
(Brush, 1984) and mill dam construction in the Susquehanna watershed (Walter & Merritts, 2008), while
(2) a later increase in sedimentation rate followed postwar urbanization (ca. 1960) of Chesapeake Bay, pre-
viously identified in Pocomoke Sound (Cronin, 2004). Prior to a dramatic decline of submerged aquatic vege-
tation in Northern Chesapeake Bay starting around 1960 (Orth & Moore, 1984), it is also possible more
sediment was being captured nearshore and therefore not reaching our site in the deep main channel.

Total 210Pb activity was measured in MD99‐2209 using alpha spectroscopy and converted to age in three
steps: (1) supported 210Pb, estimated separately, from gamma counted 226Ra activity (~1.7 ± 0.2 dpm/g),
was subtracted from the total 210Pb at each level. (2) A random draw was then taken from a normal distribu-
tion with the same mean and error of each of the resulting excess 210Pb values. (3) A constant initial concen-
tration model (Appleby & Oldfield, 1978, 1983) was used to convert these values to age with initial 210Pb
activity back‐calculated from the ca. 1960 A.D. urbanization horizon. This approach accounts for potential
loss of the sediment‐water interface during piston coring and recovery. Repeated 10,000 times (Figure 2b)
in Matlab (MathWorks®), we placed bounds on the age of each 210Pb measurement and its uncertainty aris-
ing from gamma ray attenuation and machine counting errors.

Figure 2. Age model and stratigraphy of MD99‐2209. (a) Excess 210Pb activity during historic deposition (magnification of 210Pb chronology in (c)). Gray shading
(black line) shows the one‐sigma range (mean) of 10,000 modeled 210Pb profiles used to calculate the (b) dark and light gray histograms (graphical sedimentation
rate estimates) for the upper and lower slopes, respectively. (c) OxCal v4.3 (Ramsey, 2008) age model incorporating 210Pb, 14C, and land clearance (Ambrosia)
horizons. Downcore stratigraphy (Baucom et al., 2000), sediment color of dry crushed samples, (d) density (dark gray line), and magnetic susceptibility (shaded
brown; King & Heil, 2000).
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Shell material fromMD99‐2209 and RD98 was radiocarbon dated (Figure 2c) at the National Ocean Sciences
Mass Spectrometry facility in Woods Hole, Massachusetts, and previously reported by Colman et al. (2002).
Each date was calibrated using the Marine13 reference curve (Reimer et al., 2013). We assumed no ΔR offset
consistent with Cronin et al. (2005) and probability distributions for two 14C age at 274 and 296 cm that over-
lap with the ~1780 CE colonial land clearance horizon at 280 cm. 14C ages at 455 cm in MD99‐2209 and
457 cm in RD98, both dating to 1,150 14C years (uncalibrated; Colman et al., 2002), indicate minimal offset
between the two piston cores. For both, we calculated an age model using the Bayesian software program
OxCal v4.3 (Ramsey, 2008) that incorporated the 210Pb, 14C, and pollen data described above.

The resulting chronology was used to interpolate grain size (percent coarse silt and XRF data) time series for
MD99‐2209 that could be compared to (1) discharge observations (Figures 3a and 3b) for the Susquehanna
River at Harrisburg, Pennsylvania, (station: 0157050) available from the USGS National Water Information
System (http://waterdata.usgs.gov/nwis), as well as the previously published (2) NAO reconstruction of
Trouet et al. (2009; Figure 4b), (3) oxygen isotope data from Buckeye Creek Cave (West Virginia; Hardt et al.,
2010; Figure 4b) and (4) percent pine pollen (Willard et al., 2003; Figure 4b) and (5) ostracode Mg/Ca data
(Cronin et al., 2003, 2010) (Figure 4c) from RD98, MD99‐2209, and MD03‐2661.

4. Results and Discussion

Delivery of coarse silt to MD99‐2209 is likely driven by salinity gradients and constrained by the geometry of
upper Chesapeake Bay. In stratified estuaries, trapping of silt‐sized material is enhanced near the landward
edge of the incoming, saltier ocean water due to a decrease in turbulence (Geyer, 1993). During high
Susquehanna flow conditions of the spring freshet, the Northern Chesapeake Bay salt wedge reaches as
far North as Tolchester, MD (~45 km from the river's mouth; Schubel, 1974). Water sampling conducted
after Hurricane Agnes (Figure 1c), however, showed the freshwater front displaced into much deeper, and
typically saltier, waters found near Kent Island (Schubel, 1974; Schubel & Pritchard, 1986), nearly 80 km
south of the river's mouth at Havre de Grace, Maryland. Suspended solids (Figure 1b) measurements suggest
seaward advection of silt‐laden flood‐waters following Hurricane Agnes (1972) transported muddy sedi-
ments near our core site that are typically captured further up‐estuary. A coarse‐grained layer found near
60 cm in MD99‐2209 dates to ~1970 (Figure 3c) and likely was deposited during this event. Relatively little
coarse silt is available in shallow waters along the Eastern Shore near our site (Ryan, 1953) for transport by
other mechanisms such as large storm surge or wave events (e.g. Hurricane Connie—1955).

Our grain‐size time series, shown in Figure 3c, indicates that shallowly buried coarse layers in MD99‐2209
likely reflect deposition following Hurricane Agnes (June 1972) as well as the Great Flood of March 1936
—the two largest historic flood events on the Susquehanna River at Harrisburg, Pennsylvania. The largest
grain‐size peak in MD99‐2209 deposited during the last hundred years occurs around ~1970, appears largely
structureless in radiographs of RD98 (Baucom et al., 2001), and has low 210Pb activity relative to adjacent
depths, consistent with deposits in Chesapeake Bay previously attributed to Hurricane Agnes (Hirschberg
& Schubel, 1979; Nie et al., 2001). A deeper coarse layer (2σ age ≈ 1933–1945) was likely deposited during
the Great Flood of 1936. Both layers overlay intervals of minimal coarse‐grained deposition likely corre-
sponding to severe Pennsylvania droughts, during the early 1930s (Palmer Drought Severity Index < −6)
and mid 1960s (Palmer Drought Severity Index < −4; NCDC, 2018) providing confidence in our age model.

Other major Susquehanna River floods recorded at this site may include Hurricane Eloise (1975) as well as
three late spring (May/June) storms from 1889, 1894, and 1946, representing the ninth, third, fourth, and
tenth largest historic events, respectively. Peak monthly rainfall at Harrisburg typically occurs in late spring
(Koninklijk Nederlands Meteorologisch Instituut Earth Explorer; http://climexp.knmi.nl/), potentially,
driving up soil moisture and creating favorable conditions for runoff during storms (e.g., Sturdevant‐Rees
et al., 2001). High rainfall preceding Hurricane Agnes is thought to have partially contributed to extreme
water levels on the Conestoga River, a tributary of the lower Susquehanna River (Moss & Kochel, 1978).
Historic accounts also link a May 1771 flood that exceeded hurricane Agnes, at least on the James River near
Richmond, VA (~175 km SW), to an early season tropical cyclone (Blanton et al., 2009).

Altogether with MD99‐2209′s (1) sheltered position relative to open‐ocean teleseismic tsunamis, (2) low
potential for locally triggered mass wasting, and (3) surveys showing substantial sediment deposition in
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Northern Chesapeake Bay following Hurricane Agnes (1972; Zabawa & Schubel, 1974) and Tropical Storm
Lee (2011; Palinkas et al., 2014), we interpret downcore coarse‐grained deposits in MD99‐2209 (Figure 4d)
from ~1800–1500, 1300–1100, and 400–0 CE as likely to be river‐derived and often related to intense
storm rainfall.

Delivery of large amounts of upland fluvial material to Northern Chesapeake Bay by recent and precolo-
nial floods may have promoted low oxygen conditions. A north‐south transect of cores extending from the
RD98 core site to the Potomac River shows lower δ13C values between ~1750–1400 and 1200–900 and

Figure 3. Comparison of instrumental streamgage data and proxy reconstruction of flood frequency. (a) Monthly mean
Susquehanna River discharge (Q) at Harrisburg, Pennsylvania (USGS Station: 0157050; USGS, 2018), calculated from
1890–2017 CE observations. (b) USGS peak annual discharge at Harrisburg—intermittent data collected prior to 1890.
(c) Coarse‐grained deposition at MD99‐2209 core‐site. Black shading percent coarse‐silt data, while gray shading gives
XRF log (Zr/Rb) values. Large historic discharge peaks (b) and their inferred deposits (c) are numbered by year or labeled
with a letter in the case of tropical storms Eloise “E,” Ivan “I,” and Lee “L.”
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500–200 CE (Bratton et al., 2003), indicating increased input of
terrestrial organic carbon to Chesapeake Bay likely driven, in part, by
increased Susquehanna River flooding. Its oxidation may have
contributed to low bottom water oxygen conditions as indicated by high
levels of leachable rhenium. Elevated levels of Re around 58.5 cm in
RD98 (Baucom et al., 2001) likely followed fluvial deposition by
Hurricane Agnes and serves as a modern analog for similar peaks found
from ~1,800–1,400, 900–600, and 400–100 yr BP in MD99‐2209 (Bratton
et al., 2000). Postcolonial anoxia of Chesapeake Bay has largely been
attributed to upstream land use change (e.g., Cooper & Brush, 1991),
but large flood events on the Susquehanna River, like Tropical Storm
Lee (2011), are thought to have contributed to further O2 depletion
(Testa & Kemp, 2014).

Our record is consistent with a potential link between flood frequency and
winter temperatures in the Eastern United States through the NAO
(Figure 4). Flood deposits in MD99‐2209 correspond with intervals of
lower pine pollen percentage in the same core, previously interpreted to
reflect intrusion of polar air across Eastern North America (Willard
et al., 2005; Figures 4b and 4d). Colder winter conditions in the mid‐
Atlantic could also explain intervals of lighter calcite δ18O precipitation
in a speleothem from nearby Buckeye Creek Cave, WV (Hardt et al.,
2010). Increased cold event frequency over the continental United States
is often indicative of negative phases of the NAO (Thompson & Wallace,
2001), and both records above bear similarities to the 1,000‐year long
NAO reconstruction of Trouet et al. (2009; Figure 4b). While the winter
moisture budget (evaporation minus precipitation) over much of
Eastern North America changes little between NAO phases (Hurrell,
1995), persistent weakness of the western end of the subtropical ridge—
implied by more negative NAO conditions—is consistent with enhanced
hurricane tracking toward the East Coast (e.g., Kossin et al., 2010).
Increased hurricane rainfall may therefore explain, in part, intervals of
increased flood frequency on the Susquehanna during the late Holocene
as well as nearby rivers such as the Little Tennessee River, North
Carolina‐Tennessee (L. Wang & Leigh, 2012), and Greenbrier River,
West Virginia (Aldred, 2010).

Negative NAO conditions may also foster stronger tropical cyclone gen-
esis, overall, in the Main Development Region (~10–20° N, 20–85° W;
Figure 4a). The negative phase of the NAO is often associated with colder
than usual winter SSTs off the East Coast but anomalously warm condi-
tions in the tropical North Atlantic. X. Wang et al. (2017) suggest that
warm winter (January‐March) SST anomalies in the tropical North
Atlantic are related to increased tropical cyclone activity in the Main
Development Region the following summer. We find more frequent
deposition from large floods when Chesapeake Bay SSTs, based on
Mg/Ca ostracodes measurements (Figure 4c), were colder than normal
(Cronin et al., 2003, 2010). For example, of the grain‐size peaks coarser
than the inferred 1936 flood deposit (32–63‐μm fraction), about two thirds
occur when MD99‐2209 Mg/Ca SST estimates (Figure 4c) were below
their long‐termmean. The large magnitude of these Chesapeake Bay tem-
perature excursions relative to the more stable SST conditions that likely
prevailed at low latitudes (e.g., Black et al., 2007) further supports the role
of regional SST gradients in driving North Atlantic hurricane activity
(Camargo et al., 2013).

Figure 4. Comparison of MD99‐2209 grain size to nearby North Atlantic
Oscillation (NAO) and SST sensitive proxies. (a) Map of North Atlantic
showing winter (JFM) ΔSST for years when Main Development Region
(MDR) is anomalously warm compared to the long‐term mean (adapted
from X. Wang et al., 2017). (b) Dashed line indicates timing of post‐
European land clearance, based on ragweed pollen (Figure 2c). NAO
reconstruction (Trouet et al., 2009; yellow)—axis reversed—overlain by
calcite δ18O record of Buckeye Creek Cave, West Virginia, speleothem
(Hardt et al., 2010; black line) and pre‐European settlement (only) pine
percent data from MD99‐2209 (Willard et al., 2003) shown by blue/red
shading, interpreted as having cooler or warmer relative conditions. (c) Mg/
Ca derived (5‐pt Gaussian filtered) Spring SST reconstruction from MD99‐
2209 and RD98 (Cronin et al., 2003) shown in red/blue. Mg/Ca temperature
data (gray line) from companion core MD03‐2661 (Cronin et al., 2010) was
graphically correlated to MD99‐2209. (d) Percent coarse‐silt from MD99‐
2009 (dark gray shaded). Black line shows 100‐yr filtered percent coarse‐silt
data. Light gray shading shows XRF log (Zr/Rb) data. SST = sea surface
temperature; LIA = Little Ice Age; MCA = Medieval Climate Anomaly.
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5. Conclusions

We reconstructed major floods from the Susquehanna River during the last two millennia from sedimentary
records collected in Northern Chesapeake Bay. Shallowly buried coarse‐grained deposits, dated using 210Pb,
were laid‐down during Hurricane Agnes (1972), the Great Flood of March 1936, and other large historic
floods. Similar event layers that predate instrumented flow measurements occur downcore, with increased
frequency between ~1800–1500, 1300–1100, and 400–0 CE. These intervals correspond with colder winter
conditions near Chesapeake Bay that were likely caused by intrusions of Arctic air during negative phases
of the NAO. Weakening of the western subtropical ridge, typical of negative NAO conditions, as well as war-
mer than usual, relative, SSTs in the Main Development Region could have led to increased hurricane
related flooding on the Susquehanna and, possibly, along other Eastern rivers.
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