
 

 
 

PDG-DOP-DCB-RDT-HO 
 
 
Zakoua GUEDE 
Michel OLAGNON 
Hélène PINEAU  (ACTIMAR – Brest) 
 
Juin 2009 – R06 HO 09 
(Rapport final) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Validation of the Iterative 
Component Addition (ICA) 
formulas for the damage 
assessment of multimodal  
 loading spectra 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 

Validation of the Iterative Component Addition 
(ICA) formulas for the damage assessment of 
multimodal loading spectra 

 

 

 

 

 

 

 

 

 

  novembre 2009 



 

 

 

 

 

Distribution 

Company Addressees  

TOTAL DGEP/TDO/TEC/GEO Mrs V. Quiniou 

 

 

 

 

Revision 

Rev Dates authors Checked by Issue  

0 

 Z. Guédé  Zakoua.Guede@ifremer.fr  

M. Olagnon Michel.Olagnon@ifremer.fr 

H. Pineau  pineau@actimar.fr  

M. Olagnon Final report

 
 
 

 

Validation of the Iterative Component Addition (ICA) formulas novembre 2009 

mailto:Zakoua.Guede@ifremer.fr
mailto:Michel.Olagnon@ifremer.fr
mailto:pineau@actimar.fr


Validation of the Iterative Component Addition (ICA) formulas

for the damage assessment of multimodal loading spectra
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ABSTRACT

The purpose of this study is to validate the use of the so-called Iterative Component Addition (ICA)
formulas for the assessment of fatigue damage of marine structures subjected to complex (multimodal)
wave loading conditions, as prevail in West Africa areas where the sea states are usually described as
combinations of three wave systems (e.g. main swell, secondary swell and wind sea). In this context,
operators specifications require to consider a very large set of fatigue loading cases, which lead to exces-
sive computation times if the conventional procedure is used for fatigue assessment. The use of the ICA
formulas is expected to simplify the evaluation of the damage and to allow a drastic reduction of compu-
tation time, keeping a slight level of conservatism. The present work intends to validate those formulas
on an industrial application. One is especially interested in the accuracy of the ICA-based approach for
fatigue damage assessment, the ease of use of this approach and the computation times it involves.

The scope of the study is limited for simplicity purposes to cases where the structural dynamic response
is linear. Its actual industrial application deals with the assessment of the fatigue damage induced by
the vertical bending moment of an FPSO hull girder subjected to wave loading in a West Africa area.
In this report, we define the occurrence probabilities of all the fatigue loading cases to be applied as
required by the operator specifications. Then, to validate the use of the ICA formula, the fatigue damage
is estimated according to two main approaches. The first one, which serves as a reference solution, uses a
conventional method and computes the damages of the sea states from the metocean database only. The
other one uses ICA formulas and compute the damages of all possible sea states defined by the operator
specifications. For this last approach, a full application of ICA formulas based on a partition of wave
systems response spectra is also carried out and some analytical formulas for the damage of unimodal
spectra are set up. Between both approaches, some intermediate computations are made to estimate the
individual effects of the approximations introduced.

The occurrence probabilities of the fatigue loading cases derived from the metocean specifications
exhibit some significant discrepancies from the statistics of the metocean database. Namely, they provide
a lower significant height for the sea states with only a main swell and a larger one for sea states with
the three wave systems. As to the application of ICA formulas, it is shown to provide accurate results.
We can note that the ICA results are close to the reference solution and that most of the conservatism
comes from the discretization defined for the statistical analysis. Moreover, the implementation of the
ICA-based approach is simple on the actual industrial application. With appropriate change of program-
ming language and optimization of the procedure, dramatic improvements have been obtained in the
computation time, with nearly 2 million combinations of sea states processed in less than one minute.

Two main difficulties were encountered in this study. The first one concerns the two-slopes S-N curve,
as a combined spectrum may have cycles amplitudes that are larger than the stress threshold of the S-N
curve while its individual components do not. That was solved by providing a method to estimate two-
slope damage from the two single-slope ones. The second difficulty stems from the discrepancies observed
between the statistics on the metocean database and the sea states probabilistic model derived from
the metocean specifications, which raises some questions on the construction of fully relevant metocean
specifications. Though some progress was made, that second difficulty is not yet satisfactorily solved.

However, this study appears as a mighty step in the development of a global framework for fatigue
damage assessment under multimodal loading conditions with the ICA formulas.
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NOMENCLATURE

Variables

t time in seconds
ω frequency in rad/s
HS significant waveheight

Tp peak period of the wave spectrum
ωp peak frequency of the wave spectrum
θp peak direction of the wave spectrum
Sw(ω) wave power spectral density

SBM (ω) structural response power spectral density

λk spectral moment of order k

m or k slope parameter of the S-N curve1

log a S-N curve parameter1

Sc Threshold of the S-N curve

N number of peaks or number of rainflow cycles 2

d or D fatigue damage 2

σ standard deviation
χ skewness
κ kurtosis

Abbreviation

MS: Main Swell ; SS: Secondary Swell ; WS: Wind Sea
RAO Response Amplitude Operator
VWBM Vertical Wave Bending Moment
PDF Probability Density Function
CDF Cumulative Density Functin
jPDF Joint Probability Density Function
ICA Iterative Component Addition

1For 2 slopes subscript 1 for low-cycles fatigue regime and subscript 2 for high-cycles fatigue regime.
2It can have a second subscript that refers to the signal under consideration.
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1 Introduction

Fine descriptions of sea state climate, introducing partitions of the sea states into several wave systems
components, that have become the rule for climate in some areas lead to quite complex fatigue damage
assessment. In particular, this is the case for the West Africa areas where sea states are usually described
as combinations of up to three wave systems (e.g. main swell, secondary swell and wind sea). In this
context, the set of fatigue loading cases to be dealt with for fatigue analysis must cover all possible
combinations of the wave system components, which constitute a very large set (e.g. with 106 to 109

elements). Thus, a full damage computation by selecting all the combinations that may have a significant
effect, simulating them and the corresponding stress time histories and counting their cycles is quite
unpractical. However, it would be computationaly acceptable and even efficient if one were able to
compute easily the damage induced by a sea state made of several wave systems components in terms
of the damages due to its components taken separately. That way, full damage computation would be
needed only for each of the wave systems components, the amount of which is much lower than the
number of the sea states to be considered (102 to 103).

To estimate the damage due to a sea state with several wave systems, one can make use of analytical
formulas, which were set up for the evaluation of fatigue under loads with multimodal spectral densities
(i.e. spectra with several peaks). Those such formulas consider a multimodal spectrum as the sum of
unimodal spectra (i.e. spectra with one peak), corresponding respectively to each peak of the multimodal
spectrum under consideration, and express the damage of the multimodal spectrum in terms of the damage
of those individual unimodal spectra and of their respective spectral parameters. However, most of those
formulas ([5], [7]) are dedicated to bi-modal spectra only and for which each mode is narrow-band,
whereas, in practice loads spectra exhibit more than two modes and not necessarily narrow-band. In
addition, they may be overly conservative when the spectral peaks are not widely separate in frequency.

In 2007, the authors have conducted some studies to set up formulas for the estimation, in a conserva-
tive manner, of the fatigue damage induced by a multimodal spectrum in terms of the damages of each of
its components taken independently. The proposed formulas called Iterative Component Addition (ICA)
were shown to meet the main expectations of engineering design, e.g. simple fatigue damage calculation
with low computation time and reasonable conservatism [14]. Moreover, those formulas can be iteratively
applied when more than two components need to be combined, as is the case in practice.

In addition, two-slopes S-N curves are often required. The ICA formulas may accept a two slope S-N
curve with some increase in computational complexity. Still, we have been able to develop additional
formulas, see Appendix A, that allow to approximate quite satisfactorily the damage corresponding to a
two slope S-N curve from the damages corresponding to each of the slopes.

The issue here is to validate the use of ICA formulas on a realistic fatigue design application.
Since the formulas work by combining structural response spectra corresponding to the wave systems

spectra present in the sea state, one has to assume a linear relation between the wave components and
their respective load effects to ensure that any combination of wave systems in a given sea state induces
an equivalent combination on the response spectra. It may be noted at this point that some sorts of
non-linearities could still be taken into account, namely those that affect in a simple way (for instance,
by an amplification factor depending only on the significant wave heights of the combined wave systems)
the response spectral components, but that this was not attempted in the present study.

Thus, the scope of the study is limited to structural responses represented by a linear dynamic system
(i.e. with RAOs). The retained industrial application is based on an actual FPSO design at a West
Africa location. Wave loads are computed from the set of metocean data provided by the operator.
The structural response considered is the Vertical Wave Bending Moment (VWBM) at the midship
of an FPSO hull girder and is assumed to be linear, and thus fully defined by the Response Operator
Amplitudes (RAO) that were provided by Bureau Veritas. The fatigue design requirements are based on
the Bureau Veritas guidelines [2] and a fatigue design life of 100 years is considered.

To validate the use of ICA formulas, the fatigue damage on the actual structure is evaluated according
to two lines of approach. The first one is based on the metocean database and serves as a reference
solution, while the second one uses the ICA formulas in connection with a global climate description such
as the metocean specifications provided by the operator. Between the two approaches, some intermediate
computations are carried out especially to estimate the effects of various approximations such as the
discretization made for the statistical analysis, and the conservatism level of ICA formulas on the actual
sea states. Additionally, one has to estimate the occurrence probabilities of all the operational sea states
to compute the fatigue damage from the metocean specifications. A probabilistic model is also defined

4



and discussed for this purpose, and further developments are suggested.
The present report is organised as follows: the second section describes the scope of the study,

the different approaches are introduced and their respective issues discussed; the third section presents
the industrial application dealt with; the fourth section shows a complete statistical analysis of the
metocean data so as to provide occurrence probabilities of the fatigue wave loading cases from the
metocean specifications; the fifth section is dedicated to the fatigue damage assessment according to
various approaches; the sixth section summarizes the procedure that is eventually proposed to deal with
the computational performance issues; a last section discusses the obtained results and concludes the
study.
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2 Scope of the study

The purpose of the global study is to validate a methodology for robust and cost-effective evaluation of
fatigue damage for the design of marine structures, in the case of multiple loading systems (for instance,
wind sea, several swells and even responses at natural frequencies). It is as such a development of some
questions raised in the “Joint Probabilities & Response Based Design” project [10].

In the previous stages of the study, we compared the performance of combination methods making use
of the standard deviation, zero-crossing frequency, spectral bandwidth and induced rainflow damage of
each component taken in isolation. The present phase deals with a practical application case, in order to
identify and solve the operational problems that a designer is faced with to apply specifications describing
the wave climate on the location of interest in terms of wave systems rather than sea states.

Figure 1: The standard method for design fatigue computation.

When environment is described by sea states and their occurrence probabilities, fatigue damage esti-
mation for the foreseen life of the structure can be performed as described in Figure 1, where the complex
computations of response and stresses in the structural details need only to be carried out for a reduced
number of sea states, usually less than a thousand.

Unfortunately, those sea states descriptions are not sufficiently refined for regions where they are
made of several well-distinct wave systems where sea states with the same global HS , Tp and θm may
have dramatically diverse effects on the structural response and thus fatigue.

An effort has been undertaken in the recent years to describe such sea states, frequent in the West
Africa areas for instance, as combinations of several wave systems. Software packages such as SPOP [8]
have been developed to extract the wave systems information from the hindcast or measured wave spectra,
and thus allow modeling and reconstruction of multimodal spectral shapes. It allows accurate description
of the structural responses as the combinations (often simply the sums under linear assumption) of the
responses, taken and computed individually, to the identified systems of the sea state.

However, the diversity of the sea states and of the responses increases in proportion to the accuracy
of their representations. Fatigue computations need to take into account each of the possible loading and
response cases that the structure is likely to experience over its planned lifespan, and those computations
are resource-demanding because of the complexity of the structures and of the rainflow cycle-counting
method that is consensually accepted as the reference one. Thus, when the wave climate is described as
statistics of wave systems, one could apply the conventional method to the sea state database consisting
of all possible combinations of wave systems, but one would then be faced with untractable computational
resources demand. For instance, assuming at most three types of simultaneous wave systems are to be
considered (main swell, secondary swell, wind sea), the number of possible combinations is then typically
the cube of the number of discretization classes for a given wave system. This discretization is comparable
to that of the sea states in the conventional procedure, and thus the order of magnitude of the number of
complex computations is raised to between millions and a billion, which is somewhat unpractical (Fig.2).
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Figure 2: The reference method for wave systems climate description.

In the earlier stages of this study, we introduced the ICA method that we believe has a larger do-
main of validity than the previously existing ones, with the aim to postpone the combination stage to
the “individual wave system’s” damages, keeping thus the number of complex computations to figures
comparable with those in the original method, as shown by figure 3. It should however be noted that
joint probabilities still need to be accurately estimated for all possible combinations.

Figure 3: Reduction of computation time by use of the ICA method.

The ICA method was tested in academic cases in those previous stages of the study. In the present
stage, we apply it an actual case (though with a simplified response model defined by RAOs rather
than fully non-linear) to further validate that procedure. The first validation uses a reference fatigue
computation carried out on the actual measured sea states, and a calculation by combination of the
individual systems damages (see Fig. 4).
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Figure 4: Practical validation of the ICA method.

The main difficulties encountered at this stage came from the construction of the joint probabilities to
be used to weight the systems combinations. Most of the observed differences in the comparison could be
tracked to the discretization used for the parameters of the systems, to the application of the exclusion
criteria between systems defined in the metocean specifications, and to the assumptions of independence
between those systems. Apart from those database description specific problems, satisfactory validation
was obtained for the ICA method itself as detailed in the following.

Other difficulties came from the double slope S-N curve formulas, differing for ranges beyond and
within a threshold, that are recommended by classification societies, and that are not well suited to
combination. The main problem is that there may well be no actual cycle range beyond the threshold
in each of the components to be combined, but some may appear in the combination, and thus the
information on the damage created by those cycles cannot be obtained directly from the damages of the
components. The development of a workaround had to be carried out.

In addition, the use of simulations to derive the rainflow damage of the original components was still
a time-consuming step.

The next step is described in Figure 5. It consists in identifying modes on the response spectra rather
than systems in the loading waves ones. Simulations are thus avoided, and the ICA method is used with
”purer” peaks than for the responses to individual wave systems.
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Figure 5: Faster use of the ICA method.

A final goal is to be able to construct a ”response systems database”, as shown on Figure 6, directly
from the observed wave systems and the structure’s RAOs.

Figure 6: Further improvement in the use of the ICA method.

The various approaches used to compute the fatigue damage in the actual study are listed in table 1
with their respective issues.

Finally, note that, in connection but separate from this study, some work has been carried out on
the application of the ICA formulas to assess the damage due to load spectra the main bodies of which
are considered isolately from their tail yielding such a spectrum with two components or pseudo-modes.
That specific study is described in appendix F.
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Fatigue damage assessment from actual metocean database

Description Issue

1
Time-domain simulation based damage assessment

- from the metocean database Reference solution
- from the partition of the response spectra database Effect of the partition

2
ICA-based damage assessment

- from the sea states in the metocean database Conservatism level of ICA
- from statistical analysis on the metocean data Effect of discretization and ICA

Fatigue damage assessment from metocean climate prediction

Description Issue

3
ICA with the damages of the wave systems components

applied on climate prediction under assumptions (H1)a

and (H2)b
Validation of ICA

4
ICA with the damages of the response systems components

applied on climate prediction under assumptions (H1)a

and (H2)b
Validation of fully analytical
damage assessment based on
ICA

a (H1) : overall independence of wave systems components
b (H2) : independence of wave systems components within a given combination type

Table 1: Approaches for fatigue damage assessment and their respectives issues.
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3 Description of the industrial application

The retained industrial application is based on an actual FPSO hull girder design at a West Africa
location. The wave loads are computed from the set of metocean data provided by the operator. The
structural response considered is the Vertical Wave Bending Moment (VWBM) at the midship of the
FPSO hull girder and is assumed to be linear, and thus fully defined by the Response Operator Amplitudes
(RAO) that were provided by Bureau Veritas. The fatigue design requirements are based on the Bureau
Veritas guidelines [2]. For the sake of simplicity, a fatigue design life of 100 years is considered in this
application.

3.1 Wave loading

For West Africa location, new methods have been set up to describe the metocean climate with more
accuracy [8]. In this actual study, the metocean climate data consists of 17672 records of the individual
wave systems directional spectral parameters. Those data are sorted by recording dates. Systems having
the same date belong to one single sea state. There are at most three wave system components in any
sea state, identified as either main swell, secondary swell or wind sea.

It is assumed that any wave system is completely described by the directional wave spectrum:

Sw(ω, θ) = S(ω) · D(θ)

where S(ω) is the wave energy spectrum and D(θ) is the direction distribution. The suggested model for
S(ω) is a Wallops spectrum:

S(ω) =

(
4l+1

4 ω4
p

)

Γ(l)

HS

ω4l+1
exp

[

−4l + 1

4

(
ω

ωp

)−4
]

where HS and ωp are respectively the significant height and the peak frequency. The parameter l of the
Wallops spectrum model is given in term of ωp by a polynomial approximation [15]:

l(ωp) = 0.00205 ·
(

2π

ωp

)3

− 0.00290 ·
(

2π

ωp

)2

+ 0.12665 ·
(

2π

ωp

)

+ 0.22932

Note that in that approximation, l(ωp) can be sometimes lower than one, which makes no sense in practice
as the fourth spectral moment is then infinite. In that case, we decided to set the value of l(ωp) to one
(Pierson-Moskovitz spectrum). A typical shape of the Wallops spectrum is shown in Figure 7.
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Figure 7: Wallops spectrum model

The suggested model for the direction distribution is a Wrapped-Normal function, the equation of
which is:
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D(ω) =
1√

2πσsw

k=5∑

k=−5

exp

[

−1

2

(
θ − θ − 2kπ

σsw

)2
]

θ, the mean wave direction is set to θp the peak direction. σsw is the standard deviation and gives a
measure of the spreading. However, in the actual study, the directional spreading is neglegted, and the
wave spectrum is supposed to be unidirectional in its peak direction (i.e. Sw(ω) = S(ω) · δθp

). This
approximation does not affect the relevance of the analysis results for the issues considered here.

3.2 Mechanical modelling

The present study focuses on the fatigue at a detail in a FPSO deck around midship due to the Vertical

Wave Bending Moment. The nominal stress σn at deck is obtained by: σn = MB/SM , where MB is
the vertical wave bending moment and SM is the section modulus at deck and is set to the value 110m3

according to Bureau Veritas requirements [2].
The corresponding Response Amplitude Operator (RAO), provided by Bureau Veritas, is a function

of both incidence direction and frequency. It is given for 25 incidence angles from 0 to 360 and 53
frequencies from 0 to 2 rad/s. Then, that RAO is linearly interpolated to agree with the actual wave
loading direction and frequency sampling (Figure 8). From the linearity assumption, the power spectral
density of the VWBM is given by:

SBM (ω) =

∫

θ

|RAO(ω, θ)|2 · Sw(ω, θ)dθ, in fact, SBM (ω) = |RAO(ω, θp)|2 · Sw(ω) (1)

ω cos(θ)
ω sin(θ)

R
A

O
(ω

,θ
)

Figure 8: Directional RAO

Note that, in the actual study, the direction convention for the RAO does not meet that of the
wave. The RAO is defined with incidence direction ”from”, counterclockwise by reference to the back
centerline of the ship, while the wave direction convention is stated as: ”from”, clockwise by reference to
the geographic north. To convert the wave incidence angle according to the RAO incidence convention,
the following relation is used:

θr = 360◦ − θw + 22.5◦ (2)

denoting θr, the RAO incidence, and θw the wave incidence direction. The wave incidence angles con-
vention and the FPSO position is shown on Figure 9.
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Figure 9: Vessel coordinate system and RAO incidence angles convention

3.3 Fatigue design requirements

A two slopes S-N curve is used for fatigue assessment. It has the following general expression:

N =

{

K1∆σ−m1 if N ≤ 107 (i.e. ∆σ ≥ Sc)

K2∆σ−m2 if N > 107 (i.e. ∆σ < Sc)

where ∆σ is the rainflow cycle range and N the number of cycles. K1, K2, m1, m2 and Sc are character-
istics parameters. The values used for the S-N curve parameters are shown in table 2. They correspond
to basic DEn B S-N curves from Bureau Veritas guideline [2].

K1 m1 K2 m2 Sc SCF
5.8021012 3 4.0361016 5 83.40 MPa 4.0

Table 2: DEn B S-N curve [2]

Note that the stress concentration factor SCF is not realistic, it is intentionally exagerated to make
the life of the structure close to the design lifetime.
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4 Metocean climate prediction

The long-term fatigue damage assessment requires the knowledge of all the possible fatigue loading cases
that are likely to occur over the design lifetime. However, the available metocean data cover a much
shorter period of only almost three years. Therefore, a metocean climate on the design lifetime needs
to be predicted. In the actual study, that prediction uses the statistical properties of the wave systems
derived from the metocean data in connection with some convenient hypotheses on the way those wave
systems combine with each other.

4.1 Preliminary processing of the metocean data: Partition & Assemblage

Those metocean data correspond to 8040 sea states, which represents, assuming that a stationary sea
state lasts for 3 hours, a period of 2 years 9 months and 15 days. Before making any statistical analysis
on the data, two operations are carried out:

• a partition (classification) of the sea states,

• and an assemblage (merging), in any sea state, of those components which are sufficiently close.

4.1.1 Partition

The sea states are partitionned into, at most, three wave systems, identified either as main swell, secondary
swell or wind sea. That partition is based on the following rules:

• To distinguish wind sea from swells, a threshold of 7.5s is normally set for the peak periods. However,
when the components are either all above or all below the threshold, the wind sea component is
always the one with the lowest peak period.

• When there are two simultaneous swells, the secondary swell is the one with the highest geographic
angle. If the two geographic angles are equal, the secondary swell is the one with the lowest
significant wave height.

The partition of the sea states is achieved with a program provided by the operator.

4.1.2 Assemblage

It is specified that 2 components i and j of a given sea state such that:

1

1.2
<

Tp,i

Tp,j
< 1.2 and |θp,i − θp,j | < 45◦ (3)

must be assembled. The new component has new parameters HS , Tp and θ, which have to be computed.
From the relations: λ0 = λ0,i + λ0,j and HS = 4

√
λ0, we get:

HS =
√

H2
S,i + H2

S,j (4)

To compute Tp, it is assumed that it is in a constant ratio to Tz:

Tp ≈ Tz =

√

λ0

λ2
=

√

λ0,i + λ0,i

λ2,i + λ2,i
(5)

Reporting in the previous equation (E.q.(5)) the expression of Tp,i and Tp,j in terms of their respective
spectral moments, we get:

Tp =
HS · Tp,i · Tp,j

√

H2
S,i · T 2

p,j + H2
S,j · T 2

p,i

(6)
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Figure 10: Direction of the assembled system.

To estimate the direction of the assembled systems, components are represented by energy vectors,
Ei = H2

S,i[cos2 θi sin2 θi]
t and Ej = H2

S,j [cos2 θj sin2 θj ]
t (Figure 10). Then, the direction of the assem-

bled systems is such that of the sum vector E = Ei +Ej . Refering the coordinates with respect to vector
Ei, we can write:

tan2 θ =
H2

S,j sin2 (θj − θi)

H2
S,i + H2

S,j cos2 (θj − θi)
(7)

θ = arctan




HS,j sin (θj − θi)

√

H2
S,i + H2

S,j cos2 (θj − θi)



+ θi (8)

4.1.3 Results of the metocean data partition & assemblage

The proportions of the main swell, secondary swell and wind sea in all the sea states are shown in table
3, and the proportions of their combinations that occur in the set of actual sea states are given in table
4.

after partition after assemblage
Number Frequency [%] Number Frequency [%]

main swell 8038 99.97 8037 99.96
secondary swell 5464 67.96 5289 65.78

wind sea 4169 51.85 4088 50.85

Table 3: Proportions of the components.

after partition after assemblage
Number Frequency [%] Number Frequency [%]

MS only 1158 14.40 1212 15.07
MS + SS 2713 33.74 2740 34.08
MS + WS 1416 17.61 1536 19.10

MS + SS+ WS 2751 34.22 2549 31.70
no MS (i.e. WS only) 2 0.03 3 0.05

Total 8040 100 8040 100

Table 4: Proportions of the combinations.
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The results show that a main swell component is almost always present in the sea states, as well after
partition as after assemblage. There is no major change in the distribution of the combination types after
the assemblage except the fact that the number of sea states with three components has been reduced
while it has increased in the other categories. Finally, one can consider that only four significant types
of combinations occur in the metocean data:

• only main swell (15%);

• main and secondary swell without wind sea (34%);

• main swell and wind sea without secondary swell (19%);

• all three components are present (32%).

4.2 Statistical analysis of the metocean data

To perform a statistical analysis of the metocean data, the environmental parameters (e.g. HS , Tp, θ)
must be discretized. As one will see in the sequel, that discretization will have a significant effect on the
damage assessment. From that discretization, the statistical analysis provides :

• some statistical properties of the environmental parametres of the sea states in the metocean
database ;

• the joint distribution of the environmental parameters for any given wave system.

The joint distribution of the wave system parameters is necessary to compute the occurrence proba-
bilities of the combinations of wave systems components that are predicted by the metocean climate.

4.2.1 Discretization

Since unrealistic combinations are excluded, one has to pay attention, in the choice of the bins locations,
that the exlusion of a given combination based on the values of the bins is equivalent to the exclusion of a
combination of any elements of the corresponding discretization intervals. This equivalence is particularly
difficult to achieve with the peak period parameter Tp for which the exclusion criteria is expressed in
terms of a ratio (see Eq. (3)). For example, let us consider a discretization of Tp with an interval length
of 1s. A combination containing at least two components, which peak periods are 11s and 10s, meet
the assemblage criterion (11/10 = 1.1 < 1.2). However, a combination of two components, which peak
periods are 11.4s and 9.4s, do not meet the assemblage criterion (11.4/9.4 = 1.21 > 1.2), although those
peak periods belong to the previous discretization intervals. To avoid a discrepancy between the exclusion
of class intervals combinations and that of their respective elements, we chose to discretise log Tp instead
of Tp. The histogram bins are given in table 5.

Parameter Bins interval Disc. path length Number
HS [0.25m ; 3.25m] 0.5m 7

log(Tp) [log3 ; log22.5] log(1.2)/2 23
θ [0◦ ; 348.75◦] 22.5◦ 16

Table 5: Histogram bins of the environmental parameters

4.2.2 Statistical properties of sea states from the metocean database

For the various combination categories, some statistical properties of the global environmental parameters
are computed from the metocean database (Table 6). Those global parameters are obtained from the
assemblage equations (4), (6) and (8) for a sea state, which is a combination of wave systems. For a
parameter X (e.g. HS , Tp, θ), the following statistical characteristics are computed :

• X the mean value, σX the standard deviation, χX the skewness and κX the kurtosis ;

• X1/3 (resp. X1/10) the mean of the values of the parameter X for the third (resp. the tenth) of the
sea states with the larger HS .
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MS only MS+SS MS+WS MS+SS+WS

HS [m] 1.59 1.40 1.25 1.22
σHS

[m] 0.48 0.40 0.32 0.32
χHS

[m3] 0.95 1.01 1.16 1.19
κHS

[m4] 3.65 4.35 5.81 5.15
HS,1/3 [m] 2.14 1.85 1.60 1.58
HS,1/10 [m] 2.63 2.23 1.90 1.91

Tp [s] 12.23 11.21 9.06 9.36
σTp

[s] 2.00 1.51 1.63 1.82
χTp

[s3] 0.15 0.45 0.23 0.14
κTp

[s4] 2.39 3.03 2.71 2.61
Tp,1/3 [s] 14.48 12.90 10.90 11.38
Tp,1/10 [s] 15.73 14.15 12.06 12.62

θ 208.26 202.08 210.50 206.09
σθ 8.84 7.05 10.47 8.91
χθ 0.38 0.24 1.16 0.55
κθ 2.79 4.05 8.89 3.32

θ1/3 218.10 209.66 222.00 216.20
θ1/10 225.23 215.39 229.71 223.30

Table 6: Statistical properties of environmental parameters from the metocean database.

The Table 6 shows that the average of the significant wave height is largest for sea states with only
a main swell, followed by those with both swells, which means HS is larger than that of a main swell +
a wind sea. The combination of the three wave systems has the lowest mean HS . Note also that both
combinations ”MS+WS” and ”MS+SS+WS” have close statistical properties for the parameters HS and
Tp. The results show also that θ, θ1/3 and θ1/10 are in the southwest sector, which means that the sea
states with the larger HS come from this sector.

In addition, the occurrence frequencies of the sea states can be derived by a basic empirical statistical
analysis on the metocean data. First all the values of the environmental parameters that appear in the
database are dircetized by replacement with the value of the closest bin. Then one has to count the
number of times a sea state is repeated in the database. Finally, the occurrence frequency of any sea
state is the number of times it is repeated divided by the size of the database.

312 triplets of environmental parameters (HS , Tp, θ) defining each observed wave system component,
appear in the sea state data (i.e. any sea state is the combination of at most three elements of this
set of 312 triplets). Counting the number of repeated sea states, it is found that Nc = 3877 different
combinations do actually occur. Their respective frequencies of occurrence are computed (Figure 11).
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Figure 11: Probability of occurrence of any observed combination.
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4.2.3 Joint distribution of (HS,Tp,θ) for a given wave system

The joint distribution of the environmental parameters is estimated according to the following formula:

f(HS , Tp, θ) = fHS ,Tp
(HS , Tp|θ) · fθ(θ) (9)

where fHS ,Tp
(HS , Tp|θ) is the conditional joint probability density function of HS and Tp given the direc-

tion θ, and fθ(θ) is the probability density function of the direction. Those distributions are estimated
empirically with the discretization of the intervals of the observed values of the environmental parameters
(see table 5). Hence, fθ(θ) is approximated by an histogram of θ, while fHS ,Tp

(HS , Tp|θ) is estimated as
the directional scatter-diagrams of HS − Tp. The probability density function involved in the expression
of the joint distribution are given by:

fθ(θc) =
kθ

nθ · ∆θ

fHS ,Tp
(HS,c, Tp,c|θc) =

kHS−Tp

nHS−Tp
(θc) · ∆HS · ∆Tp

where kHS−Tp
is the directional scatter-diagram given the direction θ and kθ is the direction histogram;

nθ is the size of the set of the actual wave sytem in the database and nHS−Tp
(θc) is the number of

elements in that set with the direction θc. The joint distribution of spectral parameter for the three types
of wave systems (e.g. main swell, secondary swell and wind sea) are depicted in appendix E.

4.3 Metocean climate prediction

The prediction of the metocean climate uses the available metocean data in connection with some as-
sumptions on the way the wave systems components combine with each other.

4.3.1 Hypotheses

Two distinct assumptions are considered:

(H1) ≡ independence assumption of the wave systems components whatever the type of combination is:
It is assumed that all the wave system components can combine with any other wave system
components.

(H2) ≡ independence assumption of the wave systems components observed in a given combination kind:
In this case the independence assumption applies only for the observed wave systems components
belonging to the type of combination under consideration, with different probabilities for each type
of combination.

One imposes that sea states and their respective occurrence probabilities, that are a result of each
assumption must meet some characteristics of the metocean database. Thus,

• both metocean climate predictions must show the combination categories in the same proportions
as those observed in the metocean database (Table 4).

• the wave systems combinations that do not meet the partition and assemblage criteria must be
excluded, since the preliminary processing performed on the metocean data has ruled out those
kind of combinations.

• the metocean climate predications must not yield unrealistic wave systems components combina-
tions. An unrealistic combination is one :

– with a wind sea of higher peak period than that of one of the swells;

– with two swells such that the secondary swell has the lowest geographic angle ;

– with two swells having the same geographic angle but such that the secondary swell has the
highest significant height ;
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4.3.2 Method for the assessment of the combinations occurrence probabilities

The construction of the new probabilistic model is based on the following principle: the occurrence
probabilities of all the possible combinations of wave system components are given by the ones derived
from an independence assumption (i.e. estimated as the product of the respective frequencies of their
wave systems components) truncated to the set of realistic combinations (i.e. removing combinations
that meet the exclusion criteria).

The probability of occurrence of any kind of combination is set equal to its frequency of occurrence
in the metocean data (see table 4). Now let us explain how to construct the probability of occurrence of
any combination of wave systems components.

Main swell only: When a sea state is composed of only one main swell, any MS component may
occur. The occurrence probabilities of any sea state of this kind read:

Pr(MS = i|MS only) = f
(MS)
H,T,θ (HS,i, Tp,i, θw,i) · ∆HS · ∆Tp · ∆θ

The conditional probability Pr(MS = i|MS only) must be multiplied by the probability of occurrence
of a sea state with main swell only.

Combination of two systems (e.g. MS+SS or MS+WS): Let us consider that we have to recombine
sea states that contain one main swell and one secondary swell. The case of MS+WS is similar, simply
replacing SS by WS.

Assuming that a sea state contains two swells, any combination of main swell and secondary swell
components may occur, unless it is unrealistic. The occurrence probability of a combination that involves
MS = i and SS = j is:

Pr(MS = i, SS = j) = Pr(SS = j|MS = i) · Pr(MS = i) (10)

In fact, some MS component can not be combined with some SS component because of the exclusion
criteria. The conditional probability Pr(SS = j|MS = i) is regarded as a truncature of the probability
under independence assumption to the set of possible combinations. Thus, given a MS component i, the
probability that any SS component j is combined with MS=i when it is possible, is given by:

Pr(SS = j|MS = i) =
Pr(SS = j)
∑

︸︷︷︸

SS possible with MS=i

Pr(SS)

Reporting the expressions of those probabilities in terms of the PDF, we have:

Pr(SS = j,MS = i) =
Pr(MS = i) · Pr(SS = j)
∑

SS possible Pr(SS)
(11)

where

Pr(MS = i) = f
(MS)
H,T,θ (HS,i, Tp,i, θi) · ∆HS · ∆Tp · ∆θ

Pr(SS = j) = f
(MS)
H,T,θ (HS,j , Tp,j , θj) · ∆HS · ∆Tp · ∆θ

Note that the obtained probability must be multiplied by the occurrence probability of a sea state with
two swells.

Main swell + Secondary swell + Wind sea: For this case, the same reasoning as for the combi-
nation of two wave systems is applied, considering that the combination MS+SS+WS is a combination
of the wave systems (MS+SS) and WS. The probability of occurrence is obtained replacing in Eq.(11)
”MS=i”, by ”(MS=i,SS=j)” and ”SS=j” by ”WS=k”.
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4.3.3 Results & Discussion

The numbers of possible sea states predicted by both assumptions (H1) and (H2) are given in Table 7.
That number is much larger under (H1).

cpnt. type MS only MS + SS MS + WS MS + SS + WS Total
nb. cpnts. under (H1) 169 13899 24852 1862087 1901007
nb. cpnts. under (H2) 70 7590 8204 773821 789616

Table 7: Numbers of combinations from the metocean climate description.

The statistical properties which were computed from the metocean data (Table 6) are also evaluated
from the metocean climate prediction under both assumptions (H1) and (H2) (see Table 8).

Under (H1), the sea states which are combination of the three wave systems take the largest values
for HS , HS,1/3 and HS,1/10. The sea states with only a main swell take the smallest values of those
characteristics. Between both extreme, the combination ”MS+SS” take larger values for the same char-
acteristics than the combination ”MS+WS”. It means the sea states with the larger HS frequently occur
in combination category ”MS+SS+WS”. Note also that the statistical characteristics for parameter HS

and Tp in combination categories ”MS+WS” and ”MS+SS+WS”, which were those of the metocean data,
are quite different under assumption (H1), especially for HS,1/3, HS,1/10, Tp,1/3 and Tp,1/10. Concerning
the global directions, their averages are in the southwest sector as well as the directions of the sea states
with larger HS .

However, under (H2), one observes that the order of importance of the average significant heights is
reversed compared to the previous assumption, which means that the sea states with only a main swell
take more frequently the largest HS values. Still, the discrepancy between HS,1/3, HS,1/10, Tp,1/3 and
Tp,1/10 in combination categories ”MS+WS” and ”MS+SS+WS” is much smaller than under (H1), and
the global directions averages and the directions of the sea states with larger HS are also found in the
southwest sector.

The observed discrepancies between the statistics from the metocean database and from the metocean
description with (H1) is due to the fact that the assumption (H1) allows all the main swell components
observed in the database to occur alone or combined with the other wave systems.

Under the assumption (H2), the mean values of HS in the various combination types follow the same
order as those from the metocean data. However, HS is larger for ”MS only” and ”MS+WS”, and lower
for ”MS+SS” and ”MS+SS+WS”.

Note that, for all the combination types and whatever the metocean description is, the sea states with
the larger HS have very close peak periods and directions.

From these results, the independance assumption is not satisfactory in version (H1) nor in version
(H2), even if the version (H2) appears close to the observed metocean data. A more satisfactory metocean
climate prediction could be based on statistics of events (systems coming from a single storm, and arriving
to the site over a period of several hours to several days with a specific time-evolution pattern) rather
than on the metocean data.
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under assumption (H1) under assumption (H2)
MS only MS+SS MS+WS MS+SS+WS

HS [m] 0.99 1.27 1.20 1.43
σHS

[m] 0.49 0.50 0.46 0.47
χHS

[m3] 0.97 0.71 0.96 0.74
κHS

[m4] 4.65 3.96 4.88 4.13
HS,1/3 [m] 1.25 1.77 1.46 1.92
HS,1/10 [m] 1.75 2.15 1.90 2.28

Tp [s] 11.08 11.72 8.69 9.45
σTp

[s] 2.49 1.94 2.21 2.06
χTp

[s3] 0.68 0.33 0.52 0.26
κTp

[s4] 3.40 3.03 3.06 2.80
Tp,1/3 [s] 11.26 11.78 10.01 9.08
Tp,1/10 [s] 13.52 11.85 11.78 13.55

θ 205.80 205.96 205.76 205.92
σθ 9.14 9.10 9.07 9.03
χθ 1.62 1.64 1.62 1.63
κθ 7.93 7.97 7.90 7.95

θ1/3 225 202.63 224.80 202.5
θ1/10 225 225 224.84 202.5

MS only MS+SS MS+WS MS+SS+WS

HS [m] 1.64 1.32 1.27 1.15
σHS

[m] 0.50 0.44 0.36 0.35
χHS

[m3] 0.85 0.51 0.64 0.44
κHS

[m4] 3.52 3.51 4.57 4.14
HS,1/3 [m] 2.25 1.77 1.46 1.48
HS,1/10 [m] 2.75 2.15 1.90 1.79

Tp [s] 12.24 11.19 9.12 8.98
σTp

[s] 2.02 1.81 1.87 2.13
χTp

[s3] 0.24 0.67 0.26 0.31
κTp

[s4] 2.63 3.32 2.81 2.85
Tp,1/3 [s] 12.34 11.56 9.68 10.09
Tp,1/10 [s] 12.34 12.37 10.26 9.90

θ 207.35 203.01 209.81 205.95
σθ 9.47 5.95 11.54 8.82
χθ 1.42 0.51 1.39 1.44
κθ 3.53 14.83 6.29 5.57

θ1/3 202.5 202.77 224.80 202.57
θ1/10 202.5 202.82 202.35 202.77

Table 8: Statistical properties of of environmental parameters from the metocean climate prediction.
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5 Fatigue damage assessment

The fatigue damage is now estimated according to the various approaches shown in table 1.

5.1 Damage assessment from metocean database

In this section,

• the fatigue damage from the metocean data is computed by a time-domain simulation method ;

• the conservatism level of ICA formulas and the effects of the discretization of environmental pa-
rameters are estimated over the metocean data.

At this stage, it is important to note that the ICA formulas (appendix A) assume that the components
damages, from which combined damage is computed, are obtained with a single slope S-N curve. There-
fore, ICA formulas can not be directly applied to a damage obtained from a two slopes S-N curve, as it is
the case in the actual application. Thus, some work have been done to derive analytical formulas which
allow to compute the double slope rainflow damage, in a slightly conservative manner, by combining the
single slope damages. Those formulas, identified by (a), (b), (c) and (d), in the order of their respective
conservatism level, are presented in appendix C.

5.1.1 Fatigue damage from metocean data

Method

The fatigue damage is computed from the 8040 sea states that are observed in the metocean database.
Hence, it is implicitely assumed that all the sea states which can occur during the entire life of the structure
belong to the metocean database and that their respective frequencies of occurrence are the same as those
that they have in the database. Then, the fatigue damage over the design lifetime is estimated according to
the following method based on time-domain simulations. First, the power spectral density of the response
of each sea state from the database is computed with the actual RAO under the linear assumption using
equations (1) & (2). Then, a number ng of time series is generated for each of those response spectra.
That number ng is chosen such that the total number of time series generated covers exactly the design
lifetime. Hence, for a design lifetime of 100 years, one chose ng = 36, which gives a total number of time
series equal to Nt = 36 · 8040 = 289440. The damages due to those time series are computed by counting
the cycles by the Rainflow method and by cumulating the elementary damages produced by each cycle
according to Miner’s rule [11]. Finally, the time series damages dk are simply summed to get the total
damage Dt.

Dt =

Nt∑

k=1

dk

The result obtained is considered as the reference solution, since it is based on the metocean database
and is provided by an acknowledged method for fatigue damage assessment.

Results & Discussion

The results of the analysis are given in tables 9 & 10. Table 9 provides, for the different categories
of combinations which have been identified in the metocean database, the following fatigue damages and
their ratios to the reference solution:

• Dt, the total fatigue damage ;

• DH3,1/3 (resp. DH3,1/10) the damage produced by the sea states with significant wave heights in
the highest third (resp. the highest tenth) of the wave heights and their respective proportion in
the total damage.

That table shows that the sea states with the third highest significant wave height produce arround
90% of the damage in each category of combination. On the other hand, the sea states with the tenth
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Sea sates Freq. Occ. Dt DHS ,1/3 DHS ,1/10

Value Ratio ·/Dt Value Ratio ·/Dt

MS only 15.07% 0.2863 0.2557 89.31% 0.1492 52.11%
MS+SS 34.08% 0.2542 0.2314 91.04% 0.1618 63.66%
MS+WS 19.01% 0.0604 0.0567 93.89% 0.0438 72.55%

MS+SS+WS 31.70% 0.0748 0.0692 92.57% 0.0547 73.17%
All 100% 0.6757 0.6358 94.09% 0.4772 70.62%

Table 9: Fatigue damages from the metocean database - Reference solution.

highest significant wave height give 52% to 73% of the damage in each combination category and 70%
of the total damage. Hence, a relatively small number of sea states causes a large amount of the total
damage. One can also notice, that the damage due to the sea states with only a main swell (15% of the
sea states) corresponds to 40% of the total damage, and the damage from the swells (e.g. MS only &
MS+SS), which have 40% of occurrence frequency, produces 80% of the total damage. However, note
that, that result depends on the particular response under consideration. In fact, that response is driven
by swell. One could come to a different conclusion with another structural response, if it were driven by
wind sea for instance.

5.1.2 Conservatisme level of ICA formulas and Discretization effects

Method

At this stage, it is also interesting to estimate from that reference solution the conservatism level
of the ICA formulas and the effect of the discretization of the environmental parameters. Concerning
the conservatism level of the ICA formulas, one has to compute with the ICA formulas the expected
damage due to sea states that are partitionned into several wave systems in terms of the damages of their
respective wave systems components. Note that damage of a given wave system component is computed
here by a time-domain simulation method averaging 100 runs. That number was chosen sufficiently large
for an accurate estimation. After calculating the individual damages of all the wave systems identified
in the metocean database, the damages of all the sea states with several wave systems are computed by
ICA formulas. Then, the total damage on the design lifetime is obtained by scaling the fatigue damage
over the database duration by the factor ng.

To assess the effect of the discretization of environmental parameters, the total damage is computed
using ICA formulas in connection with the sea states statistics derived from the metocean database (see
section 4.2.2). Let us recall that the statistical analysis performed on the metocean database allowed to
identify 312 wave systems components and Nc = 3877 combinations of those components. Thus, only
the damages due to the 312 wave systems components are computed by the time-domain simulation
method. From those damages, the damages of the 3877 combinations identified are estimated using the
ICA formulas. To get the expected damage over the database duration, the damages of the combinations
are weighted by their respective occurrence probabilities (Figure 11) and summed. As previously, the
total damage on the design lifetime is obtained by scaling the fatigue damage over the database duration
by the factor ng.

Results & Discussion

The conservatism level of ICA formulas over the sea states of the database that contain more than
one wave system is depicted on figure 12.
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Figure 12: Conservatism level of the two ICA formulas on the sea states database.

Table 10 shows, for the different categories of combinations which have been identified in the metocean
database, the following fatigue damages:

• Dt, the total fatigue damage from the reference solution ;

• DICA1
& DICA2

, the damages computed by the ICA formulas on the metocean database and their
respective ratios to Dt ;

• Ddisc
ICA1

& Ddisc
ICA2

, the damages computed by the ICA formulas in connection with the sea states
discretised statistics and the respective ratios of those damages to Dt ;

Moreover, table 10 gives D1, the damage obtained when the sea states are not partitionned and DNB

the damage computed by a narrow band approximation on the response spectra.
The ICA formulas have a relatively small level of conservatism. One has around 2% to 4% conservatism

level for the ICA formula in first approximation (e.g. ICA1) in each combination category, while the
conservatism level for the ICA formula in second approximation (e.g. ICA2) varies from 2% to 5%. When
those formulas are used in connection with the sea states statistics that involve a discretization of the
environmental parameters, the conservatism increases up to a level between 10% and 14% for ICA1 and
between 10% and 15% for ICA2. Both previous results show that the choice of the discretization bins bring
in a large proportion the conservatism of fatigue damage assessment using ICA formula in connection
with the sea states statistics. In fact, the bins values were chosen in the middle of the discretization
intervals. However, the scatter of the environmental parameters in the discretization intervals are not
necesseraly symetric in terms of the middle of the interval. One can expect a reduction of the conservatism
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Sea states Freq. Occ. Dt DICA1
DICA2

Ddisc
ICA1

Ddisc
ICA2

D1 DNB

Value Ratio ·/Dt Value Ratio ·/Dt Value Ratio ·/Dt Value Ratio ·/Dt Value Ratio ·/Dt Value Ratio ·/Dt

MS only 15.07% 0.2863 0.2863 100% 0.2863 100% 0.3197 111.67% 0.3197 111.67% 0.2863 100% 0.2980 104.09%
MS+SS 34.08% 0.2542 0.2622 103.14% 0.2630 103.47% 0.2727 107.28% 0.2736 107.64% 0.2110 83.02% 0.2663 104.76%
MS+WS 19.01% 0.0604 0.0626 103.57% 0.0627 103.77% 0.0677 112.04% 0.0678 112.27% 0.0190 31.40% 0.0636 105.26%

MS+SS+WS 31.70% 0.0748 0.0775 103.60% 0.0784 104.79% 0.0849 113.48% 0.0859 114.89% 0.0449 59.97% 0.0790 105.66%
All 100% 0.6757 0.6885 101.9% 0.6904 102.17% 0.7450 110.25% 0.7471 110.56% 0.5607 84.46% 0.7069 104.62%

Table 10: Fatigue damages from the metocean database with the approximation methods.

Ref. Solution ICA1 ICA2 ICAdisc
1 ICAdisc

2 T1 NB
148 145 145 134 134 178 141

Table 11: Fatigue lifetime from the metocean database with the approximation methods [in years].
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level if instead of the middle of discretization intervals, the bins were chosen as the median value of the
parameters in those discretization intervals. Nevertheless, one should pay attention in any choice of the
bins so that they agree with the exclusion criteria.

Unlike what could be expected, the damage is lower when the sea state are not partitionned. In fact,
the RAO depends on the enviromental parameters, therefore, the response spectrum from the environ-
mental parameters of a sea state with several wave systems components can be significantly different from
the sum of the response spectra from the environmental parameters of its individual components taken
separately. In the actual application, the response spectra from the global environmental parameters
appear to be less damaging.

Finally, note that the narrow band approximation of the damage is conservative to a level around
5% which is quite small. This shows that the response spectra have a small frequency bandwidth.
The conservatism level when no partition is made on the sea states as well as that of the narrow-band
approximation are displayed on figure 13.
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Figure 13: Conservatism level of both no partition and Narrow-Band approximations.

5.2 Damage assessment from the metocean climate description

To assess the total fatigue damage on the design lifetime from a given metocean climate description, the
damage produced by all the possible sea states must be computed. Since those sea states are combinations
of wave systems with quite different frequency bands, the use of the ICA formulas allows by construction
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a significant computational efficiency. The fatigue damage is computed according to two approaches
based on ICA formulas :

• ICA-based damage assessment from the wave systems components ;

• ICA-based damage assessment from the response systems components, given by partition of the
response spectra to each of the wave systems components.

5.2.1 ICA-based damage assessment from wave systems components damages

Method

In a first approach, ICA formulas are used to compute the damage due to the response of any
combination of wave systems components in terms of the damage of those components taken separately.
Thus, the mean fatigue damage of the wave systems components are computed first. In the actual
application, those damages are computed by the well acknowledged time-domain simulation method.
Note that only 312 wave systems components can occur. For each of those components 100 time series
are generated from their respective response spectra. One assumed that 100 is large enough to obtain
accurate estimates of the mean value of the damage. It could be reduced or increased after a proper
analysis of the scatter on the damages samples.

Once those component damages are known, the ICA formulas provide the damages due to each of
the possible sea states predicted by the metocean climate description. Then, those damages are weighted
by the probabilities of occurrence of their respective sea states and summed to get the expected damage
scaled to the design lifetime.

Results & Discussion

The results for this approach are given in tables 12 and 13.

Sea states Freq. Occ. Dt DICA1
DICA2

Value Ratio ·/Dt Value Ratio ·/Dt

MS only 15.07% 0.2863 0.07 24.45% 0.07 24.45%
MS+SS 34.08% 0.2542 0.2525 99.33% 0.2543 100%
MS+WS 19.01% 0.0604 0.0894 148% 0.0895 148.1%

MS+SS+WS 31.70% 0.0748 0.2309 309% 0.2331 312%
All 100% 0.6757 0.6428 95.13% 0.6469 95.74%

Table 12: ICA-based damages from the wave systems components under assumption (H1)

Sea states Freq. Occ. Dt DICA1
DICA2

Value Ratio ·/Dt Value Ratio ·/Dt

MS only 15.07% 0.2863 0.3192 111.50% 0.3192 111.50%
MS+SS 34.08% 0.2542 0.2134 83.93% 0.2143 84.31%
MS+WS 19.01% 0.0604 0.0675 111.72% 0.0676 111.90%

MS+SS+WS 31.70% 0.0748 0.0647 86.50% 0.0653 87.33%
All 100% 0.6757 0.6647 98.38% 0.6664 98.63%

Table 13: ICA-based damages from the wave systems components under assumption (H2)

The damages provided in each combination category by the ICA-based method reveal especially the
effect of the assumptions made on the metocean climate.

Under assumption (H1), one observes that while the damages produced by MS+SS or MS+WS remain
stable compared to their respective values obtained from the metocean data, the damages caused by MS
only and MS+SS+WS are significantly different. In fact, those last damages are almost exchanged.
The damage of MS only decreases strongly to a value close to the magnitude of the reference solution
for MS+SS+WS, while the damage of MS+SS+WS increases to a value close to the reference solution
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for MS only. This can be explained by the fact that since it is assumed, according to the metocean
specifications, that all the main swells observed can be equally combined with other components, the
overall sea state significant heights observed for the category MS only in the metocean database are
much lower. Therefore, the actual damage produced in this category is lower. On the other hand,
from the metocean specifications, a main swell observed alone in the metocean data can also occur in
any combination of the three wave systems, which tends to increase the mean significant wave height
in that combination category, and hence, makes the associated damage larger. However by chance, the
total damage although slightly lower, is still of the same order of magnitude as the reference solution.
Finally, note that when one computes the proportions produced by each combination category in the total
damage, one obtains 10% for MS only, 37% for MS+SS, 13% for MS+WS and 40% for MS+SS+WS,
which agrees with their observed proportions in the lifetime.

Under assumption (H2), the proportions of the damage for the various combination categories with
respect to the total damage agree with those of the reference solution. However, the damage is still larger
for ”MS only” and ”MS+WS”, while it is lower in the other combination categories. Here also, by chance,
the total damage although slightly lower, is still of the same order of magnitude as the reference solution.

5.2.2 ICA-based damage assessment from response systems components damages

In the previous approach, it is implicitely assumed that the response spectrum to any wave system
component (which has a unimodal spectrum) is unimodal, which is not necessarily true. Some of those
response spectra to single systems exhibit in the actual application more than one peak (Fig 14). In
general, the response spectrum to a unimodal sea state may also be a combination of several response
systems, for example the quasi-static response to the wave system itself combined with a low-frequency
mooring or some resonant response. Hence, in order to make a full use of the ICA approximations, it
is more appropriate to apply them, rather than to the damages due to the individual wave systems, to
those of the individual response systems. That approach requires to identify all the response systems
that can appear in any response spectrum. It is quite obvious, under a linear dynamic assumption, that
those response systems are completely given by a partition of the response spectra to the wave systems
components.
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Figure 14: Multimodal response spectrum to a main swell component.

Method

One can define a global procedure for the fatigue damage assessment from the response systems
components, as follows. First, let us assume that the metocean climate has been defined and all the
possible sea states and their respective probabilities of occurrence are known. To compute the fatigue
damage over the lifetime using ICA formulas:
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1. one makes a partition of the response spectra to the individual wave systems identified in the
metocean database statistic.

2. each obtained response system component is linked to the wave system component it is derived
from.

3. The fatigue damage due to each response system spectrum is computed. This may be done by a
time-domain simulation method or more efficiently by a spectral formula.

4. For any possible combination of wave systems components, the corresponding combination of res-
ponse systems components is obtained using the link set up between response systems and wave
systems.

5. Then, one recursively applies the ICA formulas to estimate the damages of all the multimodal
response spectra. Note that, ICA is applied with single slope damages, then the formulas for
double slope damage provide the damage for the double slope S-N curve under consideration.

6. One has to weight those damages with the probabilities of occurrence of the sea states they corre-
spond to and sum them to obtain the expected damage per sea state duration.

7. Finally, that damage is scaled up to the foreseen lifetime to get the total fatigue damage.

Note that the partition method allows to describe the response system spectra with some known
spectral shape models (e.g. Triangle, Jonswap...). And for those spectral shapes some parametric formulas
for the damage have been deduced from fitting time-domain simulation results in the range of variation
of the parameters. Thus, the damage of the response system is directly computed with those parametric
formulas (appendix B), which can further accelerate the computations.

In the point 4 of the general procedure for damage assessment, some response system components can
overlap or be very close when they are combined (e.g. when their respective peak frequencies are close
enough). Therefore, before applying the ICA formula, the overlaps are identified and assembled into one
component. The damage of that resulting component can be accurately computed with the combined
spectrum approximation, which expresses as:

D = Ns

[(
Dh

Nh

) 2
m

+

(
Dl

Nl

) 2
m

]m
2

(12)

Results & Discussion

The results of the damages from the partition of the sea states in the metocean database are shown
in table 14. The partitions were made with triangle spectral shapes. That partition underestimates
the damages, but it was chosen for its simplicity to illustrate the framework for damage assessment from
response systems. One could expect a more accurate approximation with another model, namely Wallops
spectral shape, but that one is not yet implemented in the partition software.

Sea states Freq. Occ. Dt D∗
t

Value Ratio ·/Dt

MS only 15.07% 0.2863 0.2684 93.75%
MS+SS 34.08% 0.2542 0.2263 89.02%
MS+WS 19.01% 0.0604 0.0548 90.73%

MS+SS+WS 31.70% 0.0748 0.0613 81.95%
All 100% 0.6757 0.6108 90.40%

∗: on partition with triangle model

Table 14: damage of the partition with triangle model of the response spectra from the metocean database

The results of the ICA-based damage assessment with the response systems are given in the tables 15,
16, 17 and 18. The conclusions concerning the effects of the assumptions made on the metocean climate
predictions are the same as those of the previous approach. It is important to note here that these results
show that the fully analytical approach, using the ICA formulas and the formulas for the damage from
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double slopes S-N curve, performs correctly. That approach provides reasonably conservative values of
damages. The approximation (a) of the double slope damage is slightly unconservative but still acceptable,
and from approximation (b), which is reasonably conservative (conservatisme level between 8% and 17%),
the other approximations provide more conservative results.
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Sea states Freq. Occ. D∗
t (a) (b) (c) (d)

Value Ratio ·/D∗
t Value Ratio ·/D∗

t Value Ratio ·/D∗
t Value Ratio ·/D∗

t

MS only 15.07% 0.2684 0.0697 25.96% 0.0808 30.11% 0.0873 32.51% 0.0984 36.66%
MS+SS 34.08% 0.2263 0.2123 93.83% 0.2483 109.73% 0.2708 119.68% 0.3068 135.59%
MS+WS 19.01% 0.0548 0.0866 158.12% 0.1005 183.42% 0.1087 198.27% 0.1225 223.58%

MS+SS+WS 31.70% 0.0613 0.1991 324.78% 0.2330 380.06% 0.2544 415.08% 0.2883 470.36%
All 100% 0.6108 0.5677 92.95% 0.6626 108.49% 0.7212 118.08% 0.8161 133.61%

Table 15: ICA1-based fatigue damages from metocean climate prediction under (H1)

Sea states Freq. Occ. D∗
t (a) (b) (c) (d)

Value Ratio ·/D∗
t Value Ratio ·/D∗

t Value Ratio ·/D∗
t Value Ratio ·/D∗

t

MS only 15.07% 0.2684 0.0697 25.96% 0.0808 30.11% 0.0873 32.51% 0.0984 36.66%
MS+SS 34.08% 0.2263 0.2147 94.89% 0.2510 110.90% 0.2742 121.15% 0.3104 137.17%
MS+WS 19.01% 0.0548 0.0869 158.62% 0.1008 183.97% 0.1090 198.96% 0.1229 224.31%

MS+SS+WS 31.70% 0.0613 0.2018 329.15% 0.2359 384.90% 0.2582 421.20% 0.2924 476.95%
All 100% 0.6108 0.5731 93.83% 0.6685 109.45% 0.7287 119.30% 0.8241 134.92%

Table 16: ICA2-based fatigue damages from metocean climate prediction under (H1)

∗: on partition with triangle model
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Sea states Freq. Occ. D∗
t (a) (b) (c) (d)

Value Ratio ·/D∗
t Value Ratio ·/D∗

t Value Ratio ·/D∗
t Value Ratio ·/D∗

t

MS only 15.07% 0.2684 0.3121 116.27% 0.3615 134.70% 0.3828 142.64% 0.4323 161.07%
MS+SS 34.08% 0.2263 0.1825 80.65% 0.2170 95.91% 0.2416 106.75% 0.2761 122.01%
MS+WS 19.01% 0.0548 0.0624 113.78% 0.0721 131.52% 0.0820 149.65% 0.0917 167.39%

MS+SS+WS 31.70% 0.0613 0.0552 90.03% 0.0638 104.15% 0.0729 118.95% 0.0816 133.07%
All 100% 0.6108 0.6121 100.22% 0.7145 116.98% 0.7793 127.59% 0.8817 144.35%

Table 17: ICA1-based fatigue damages from metocean climate prediction under (H2)

Sea states Freq. Occ. D∗
t (a) (b) (c) (d)

Value Ratio ·/D∗
t Value Ratio ·/D∗

t Value Ratio ·/D∗
t Value Ratio ·/D∗

t

MS only 15.07% 0.2684 0.3121 116.27% 0.3615 134.70% 0.3828 142.64% 0.4323 161.07%
MS+SS 34.08% 0.2263 0.1838 81.23% 0.2185 96.56% 0.2435 107.59% 0.2782 122.91%
MS+WS 19.01% 0.0548 0.0626 114.19% 0.0723 131.97% 0.0823 150.25% 0.0921 168.04%

MS+SS+WS 31.70% 0.0613 0.0559 91.17% 0.0646 105.40% 0.0740 120.64% 0.0827 134.88%
All 100% 0.6108 0.6144 100.58% 0.7170 117.38% 0.7826 128.13% 0.8852 144.93%

Table 18: ICA2-based fatigue damages from metocean climate prediction under (H2)

∗: on partition with triangle model
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6 Summary: Proposed procedure and practical performance

Most of the studies reported in the previous sections have first been carried out with the concern of
validating a procedure through its results, and putting aside computational performance issues until one
could be confident with the method itself. Indeed, many problems were encountered and solved before a
general procedure could be chosen. We present hereafter the procedure that was eventually retained.

After that choice, optimization of the procedure became much easier, and was carried out using a
number of algorithms and methods that are also presented. It is noteworthy that the largest gains were
in fact obtained when converting the computer programs from Matlab to a procedural language more
suited to scalar calculations, here Fortran 95. We now believe that the fatigue design in a multiple wave
systems loading climate can be carried out without any obvious computational performance penalty
when compared to the conventional ”narrow-band single system sea state” approach. In the final version,
312 wave components are identified to span the database. They can be combined in 1,901,009 ways
to provide realistic sea states. The response to each of those 312 wave components is then computed
using the directional RAOs and represented with one, two or three of 441 distinct unimodal “response
components”. The corresponding computational effort is comparable to considering 312 sea states in a
conventional unimodal sea state fatigue study. In an actual study, many of those sea states would even
be neglected as they are known not to contribute to the structure’s fatigue.

Calculation and combination of up to nine (3 wave systems × 3 peaks for each response) damages into
each of the 1,901,009 possible sea states and summation with the appropriate occurrence probabilities of
those possible sea states now requires less than 15 seconds on a powerful PC.

6.1 Procedure

1. Wave spectra partition and discretization

2. Determination of the wave systems combinations probabilities of occurrence

3. Calculation of the responses to the wave systems

4. Responses partition and discretization

5. Calculation of the damages and other characteristics of the response systems

6. Combination within each possible sea state (i.e. each wave systems combination)

7. Summation with the probabilities of occurrence

The two first steps of the above procedure are preliminary to the fatigue design, they correspond
to characterizing the wave climate of the region of interest with a high level of details with respect to
the energy distribution over the direction and frequency ranges, and to joint probabilities of occurrence.
They are probably now the most difficult steps given that measurements and hindcasts were often not
made with such a refined description in mind. It was not in the scope of the present study to improve
them, but they should be the highest priority topic to consider for further research.

The third step, calculation of the responses to individual wave systems, does not significantly differ
from current engineering practice.

The fourth one is more unusual, and may still require some improvements. For instance, partitioning
software packages were developed for directional wave spectra, using conventional parametric models for
unimodal wave spectra that may not be very well suited to scalar stress spectra. We would also like
to draw attention to the fact that high-frequency tail behaviour is much more secondary for responses
than for wave spectra, and can be easily dealt with, for instance using the separation method studied in
Appendix F.

Using the unimodal formulas of Appendix B, the fifth step is rather straightforward. In the case of
a two slope S-N curve, see Appendix C, the characteristics of the response to a given wave system need
to comprehend the first seconds of the autocorrelation function to compute ρ and φ to use the formulas
that we suggest. Since autocorrelation functions add up when spectra are added, that is also a simple
point to deal with.

Iterative application of the ICA combination formulas at step six may imply a large number of
individual response systems. Some of them may exhibit a good deal of frequency overlapping and little
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difference in the peak frequency. We thus suggest to run them through preliminary merging with the

combined spectrum method (for damage, D = (D
2/k
1 + D

2/k
2 )k/2) when the peak frequencies differ by

less than 10 or 20%. The remaining systems will then be separated enough to apply the ICA formulas
at their best range of operation. In case of a two slope S-N curve, the corresponding damage should be
approximated for each possible sea state at this stage rather than on the accumulated damage over the
structure lifespan, since the assumptions that we use include stationarity.

6.2 Performance

A number of performance issues were encountered along the study. The main ones are evaluation of the
F (k, α, β, ηs) functions, especially in the context of two slope S-N curves, and avoidance of simulations
or other lengthy calculations for each combination of systems.

6.2.1 Fast evaluation of F functions

To speed up evaluation of the F (k, α, β, ηs) functions that are directly linked to the kth-order statistical
moments of a Rice(ηs) distribution raised to some power, the first point is to get rid of the separation into
two domains induced by two slope S-N curves. The method described in Appendix C allows to remove
the dependency of F on the threshold between the two slopes, and thus for each of the k values of the
S-N curves slopes given in the specifications (one or two slopes, plus the value 1 for computation of the
reduction factor ka), F only depends on a restricted function Fr(β, ηs) multiplied by a simple expression
of α. Since Fr is well behaved over the unit square in (β, ηs), we suggest furthermore to tabulate it on a
grid of, say, step 0.01 and then to evaluate it via linear interpolation between the closest grid values.

6.2.2 Avoidance of lengthy calculations for each combination

Combination parameters can be evaluated from spectral moments. Since spectral moments add up in the
combination, they need only be computed for the response components, thus in small numbers. Similarly,
autocorrelation functions add up in the combination, so their first few seconds can be calculated for each
response component and stored, then a simple ratio of added terms provides the autocorrelation at T02

2
to obtain ρ and φ.
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7 Conclusion

In this study, our main purpose was to validate the use of the ICA formulas that were introduced earlier
on an industrial design application. The retained application concerned the hull girder of an FPSO in a
West Africa location subjected to a linear dynamic response due to wave bending moment. The results
of the study reveal that ICA formulas provide reasonnably conservative results and that most of the
conservatism comes from the discretization choices. Those formulas were also simply implemented with
an eventual high performance in that real application.

During this analysis some problems were highlighted. They concern firstly the adaptation of the
various features introduced to the use of double-slopes S-N curves. A satisfactory solution was eventually
found. The other underlined difficulty was raised by the definition of a probabilistic model for the
operational sea states according to the metocean specifications. The model with full independence of
wave systems yields statistical properties highly different from those of the metocean database. The
model with independence within each type of combination provides significant improvement, but is still
not fully satisfactory. Further research is needed on that point. In addition, partition software needs to
be adapted to deal with response systems rather than wave systems in a swift operational manner.

Nevertheless, that study and the good behaviour it revealed for the ICA formula allows to consider
that a global framework for fatigue design of offshore structure subjected to multimodal loading spectra
is now available to design engineers.
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A Iterative Component Addition formulas

The Iterative Component Addition formulas is a set of two analytical formulas which allow to compute
the fatigue damage due to a multimodal loading (i.e. with a multimodal spectrum) in terms of the
damages of its components taken separately. Initially meant to deal with bimodal loading spectra, those
formulas may be iteratively applied to loading spectra with more than two peaks. Those formula have
been proposed by Olagnon & Guédé (2008) [14].

A.1 Damage of bi-modal loading spectra

Let us consider a random signal x(t) with a bi-modal power spectral density W (ω). That signal is
assumed to represent the stress field or an equivalent stress at a critical point in the mechanical structure
under studywhere fatigue damage needs to be estimated. The bi-modal power spectral density is regarded
as the sum of two unimodal spectra, denoted Wh(ω) for the one with the highest peak frequency and
Wl(ω) that with the lowest peak frequency. We will need the assumption that the low frequency signal is
narrow-band, we will however not impose any assumption on the bandwidth of the high freqency signal.
The spectra Wh(ω) and Wl(ω) correspond to the random signals xh(t) and xl(t) respectively and we
have:

W (ω) = Wh(ω) + Wl(ω)

x(t) = xh(t) + xl(t)

The two Iterative Component Addition formulas, denoted ICA1 & ICA2, aim at estimating the
rainflow fatigue damage of the signal x(t) from the damages of its high and low frequencies components.
They are based on a partition of the set of local extrema (i.e. turning points) of the global signal x(t)
(see figure 15). Those turning points can be partitionned into two separate subsets A and B:

• subset B: set of maxima and minima of local extrema between two successive up- to down-zero-
crossings and down- to up- respectively of the low-frequency signal xl(t). Negative maxima and
positive minima are forced to zero, which is a conservative move.

• subset A: set of all the remaining turning points.

The subset B produces the largest rainflow ranges, while the subset A is responsible for the smallest
ones. From the mathematical formulation of the rainflow counting [18], both subsets are shown to be
stable by rainflow counting. The mathematical formulation of the rainflow counting is schematically
explained on the figure 16. Thus, the damage of the global signal x(t) is the simple sum of the damages
of the subsets A and B taken separately:

D = DA + DB (13)

The damages DA and DB will be then expressed respectively in terms of the high-frequency component
damage Dh and the low-frequency component damage Dl. For that, let us introduce the following
notations :

βl =
Nl

Ns
βh =

Nh

Ns

η =
λs,2

√
λs,0λs,4

ηh =
λh,2

√
λh,0λh,4

α =

√

λh,0

λs,0

η and ηh are the irregularity factors of the signal x(t) and xh(t) respectively.
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low−freq. signal

sum signal

subset A

subset B

Figure 15: Partition of the set of turning points.

Figure 16: Mathematical formulation of Rainflow counting.

A.1.1 Damage associated to subset A
The damage of subset A reads:

DA =
NA
K

∫ ∞

0

Sm
A p(SA)dSA

Now, let us express DA in terms of Dh, the damage of the high-frequency component. The number
of rainflow cycles in subset A, NA, can be expressed in terms of the number of rainflow cycles in the
high-frequency component by:

NA = Ns − Nl =
Ns − Nl

Ns

Ns

Nh
Nh =

1 − βl

βh
Nh (14)

A range SA is reduced compared to Sh, the corresponding range of the high-frequency component, due
to the addition of the low frequency component. It may even disappear if the slope of the low-frequency
component is large at that location. Let kA = (SA/Sh), then SA is approximated by kA · Sh. Having
noted that the mean value of the rainflow ranges of the global signal can be written from the means in
subsets A and B as:

S =
NASA + NlSB

Ns
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the parameter kA is given by:

kA =
SA

Sh

= 1 − βl

1 − βl

SB − Sh

S
(15)

In the previous equation, only SB is unknown, the remaining variables can be computed. To ensure a
conservative estimate a lower bound of SB must be used. An approxiamtion of SB will be given in the
next section.

Finally, the rainflow ranges in subset A, scaled by kA, are assumed to have the same distribution as
those of the high-frequency component which leads to the equality p(SA)dSA = p(Sh)dSh. Therefore, we
have:

DA =
NA
K

∫ ∞

0

Sm
A p(SA)dSA =

1 − βl

βh
km
A

Nh

K

∫ ∞

0

Sm
h p(Sh)dSh,

which yields the following relation :

DA =
1 − βl

βh
km
ADh (16)

A.1.2 Damage associated to subset B
The damage of subset B reads:

DB =
NB
K

∫ ∞

0

Sm
B p(SB)dSB

Now, the issue is to express the damages DB in terms of Dl, the low-frequency component damage.
Under the narrow-band assumption for low-frequency component, the damage associated to the low-
frequency component reads:

Dl =
Nl

K
(2
√

2λ0,l)
mΓ
(

1 +
m

2

)

which leads to:

Nl

K
=

Dl

(2
√

2λ0,l)mΓ
(
1 + m

2

)

Having noted that by definition NB = Nl, the expression of Nl/K can be substituted into DB and we
get:

DB =

∫∞
0

Sm
B p(SB)dSB

(2
√

2λ0,l)mΓ
(
1 + m

2

)Dl

To compute that damage, the distribution of SB needs to be known. Note that, by definition, SB
amplitude is twice the excursion of the largest extremum among the positive local maxima that are found
between two successive minima of the low-frequency signal xl(t). Keeping in mind that we are trying to
obtain a conservative estimate of the damage, two approximations are suggested for the distribution of
SB. Both approximations use the fact that the local maxima of a standard gaussian process follow a Rice
distribution [17], which is given by:

PDF. f(s) =
1√
2

[√

1 − η

π
e
− s2

2(1−η2) +
ηs√

2
e−

s2

2 erfc

(

− ηs
√

2(1 − η2)

)]

CDF. F(s) =
1

2

[

erfc

(

− s
√

2(1 − η2)

)

− ηe−
s2

2 erfc

(

− ηs
√

2(1 − η2)

)]

Approximation Y1(S): This approximation intends to be close to the real distribution of SB. It
assumes that the local extrema in subset B are independent (which is a conservative assumption) and
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the number of local maxima between two successive minima of the low-frequency signal is fixed to its
average value. The distribution of the positive local maxima of the global signal is:

Fp(S) =
F(S) −F(0)

F(∞) −F(0)
=

2F(S) + η − 1

η + 1

and the mean number of those maxima between two successive minima of xl(t) is:

np =
η + 1

2βl

Thus the first approximation reads:

Y1(S) = Fnp(S) and y1(S) =
dY1

dS
= npfFnp−1(S) (17)

Approximation Y2(S): This approximation is a definitely conservative option. It suggests that SB
are the largest possible local maxima of the global signal. Having noted that the mean number of local
maxima between two successive minima of the low-frequency signal is Ns/Nl = 1/βl, it is equivalent to
say that SB belong to the upper 1/βl-fractile of the distribution of the maxima of x(t). Thus, the second
approximation reads:

Y2(S) = 1 − 1

βl
(1 −F(S)) and y2(S) =

f(S)

βl
for S ≥ δ2

where δ2 = max

(

0,F−1

(

1 − Nl

Ns

))

= max
(
0,F−1 (1 − βl)

)

Now, let us denote:

Yi =

∫ ∞

0

Smyi(S)dS with i = 1, 2

we obtain finally:

DB =
Yi

√

2(1 − α2)
m

Γ
(
1 + m

2

)Dl (18)

At this stage, one can make use of the approximation of the distribution of SB to estimate SB needed
in the expression of kA in equation (15). A first attempt to approximate SB is to use the distribution
Y∗

1 (S), same as Y1(S) but not restricted to positive maxima, i.e. replacing np with 1
βl

, which is thought
to be close to the real distribution of SB. When with this approximation the factor kA is not in its
correct interval [0, 1], one can still use the distribution Y1(S) replacing in the expression of F and Fp,
the irregularity factor η, by the high-frequency component one ηh. This way we get a lower estimate for
SB. If again the factor kA is not in its correct interval [0, 1], this time one can replace η by zero. This
way, Y1(S) is computed with a gaussian peak distribution, leading to an even lower estimate. If none of
these solutions work, one has to set kA to 1.

A.2 Damage of loading spectra with more than two peaks

When a loading spectrum with more than two peaks is considered, the formula for bi-modal spectra is
applied iteratively starting from the spectrum component with the highest peak frequency. This explains
the name of these formulas as ”Iterative Component Addition”.

Let us consider a multimodal loading spectrum W with more than two components Wi, sorted in
ascending order of their peak period (i.e. in descending order of their peak frequency) :

W =

n∑

i=1

Wi, n > 2
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The damage of the bi-modal spectrum W1 + W2, is computed first with the formulas (16) & (18).
Then the next high-frequency component W3 is added to the previous spectrum. The resulting spectrum
W3 + (W1 + W2) is treated as a bi-modal one, with its high frequency component set to (W1 + W2), and
its damage is again computed with the formulas (16) & (18). In this case, the high-frequency damage
is the damage of (W1 + W2) computed previously. Note that, one can treat a multimodal spectrum
as a high-frequency component since no restriction is made on the band width of the high-frequency
component in the application of the formulas (16) & (18) ; only the low-frequency component is assumed
narow-banded. Thus, the previous procedure is repeated until one reaches the last component Wn.
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B Parametric Damage for Unimodal Spectra

B.1 Introduction

The purpose of the global study is to validate a methodology for robust and cost-effective evaluation of
fatigue damage for the design of marine structures, in the case of multiple loading systems (for instance,
wind sea, several swells and even responses at natural frequencies). It is as such a development of some
questions raised in the “Joint Probabilities & Response Based Design” project [16].

In the previous phases of the study, we compared the performance of combination methods based
on the standard deviation, zero-crossing frequency, spectral bandwidth and induced rainflow damage of
each component taken in isolation. In order to speed up computations, the rainflow damage induced by
a given component need not be computed by simulations, but can be derived from the parameters of a
spectral model fitted to that component.

Formulas such as the Wirsching and the Dirlik one allow to take into account spectral bandwidth.
However, if one considers parametric shape families for the spectra, a more straightforward way is to
make damage depend on the shape parameter of the family rather than on the spectral moments. We
provide here formulas for the Jonswap, Wallops, Triangle and power-tail families.

B.2 Spectral shapes

When dealing with sea state climate, an important point is to be able to provide reasonably accurate
and detailed models of the spectral energy contents of the wave field. That is necessary because dynamic
responses dominate the design process for most of the structures presently developed for oil and gas
production offshore, and those responses cannot be accurately computed from significant wave height
and dominant or zero-crossing period only.

It is nevertheless completely unpractical to try to extrapolate design conditions from the collection of
the spectra observed at a given location if the spectra are described as energy values on a fine frequency-
direction grid. The idea is thus to characterize spectra by a small number of parameters from which the
whole spectral shape can then be precisely reconstructed.
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Figure 17: A spectrum with 3 swell components and its conventional model as the sum of two Jonswap

Several studies, see for instance the review in the 2003 ISSC report [10], have shown the limitations
of conventional spectral shapes when it comes to swell.

Figure 17 shows how inadequate the Jonswap shape may be for a West Africa spectrum with several
swell components. On first examination, it appears clearly that a model for such a spectrum must be
able to take into account two, three peaks or more.

A pragmatic consequence is that each peak of the spectrum should be modeled separately, allowing
for a relatively large number of independent spectral peaks (for instance, three different swells and one
wind sea).

The impact of this partitioning of the spectra into several wave components can significantly improve
the accuracy of the computed responses (see for instance Quiniou-Ramus et al (2003) [16]). However, the
climate statistics and the choice of design sea states become much more complex. Still, a partitionning
of the spectrum into several individual wave systems allows to take into account the physical reality of
swell coming from different generating storms in various remote locations, and to study those separately.
That relies on the assumption that the individual responses to simultaneous wave systems are sufficiently
independent for the corresponding peaks in the response spectra to be dealt with separately also. When
that is not the case, one should definitely try to construct a “response systems climate” and apply similar
methods to it, rather than to the wave systems one.

In any case, a first step is to construct parametric models for individual wave (or response) systems
and a method that is suited to representing most if not all of the spectra at the location of interest
as the combination of those models. A second step is to allow to carry out climate statistics on those
parameters, so as to enable design analyses of structures with respect to fatigue. A last issue is to apply
statistical reconstruction methods to such parametric descriptions so as to obtain the joint probabilities
of occurrence together with the fatigue damage calculations.

Appendix A. of the Waves report of the 23rd ITTC [6] gives the most commonly used parametric
models for wave spectra. Assuming that the same families of spectra can be used for the responses, the
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rainflow damage intensity for such a spectrum and a S-N curve slope of k can be computed directly from
the narrow-band approximation:

DNB = C
1

Tz

(

2
√

2
Hs

4

)k

Γ

(

1 +
k

2

)

(19)

DNB = C

√

M2

M0

(

2
√

2
√

M0

)k

Γ

(

1 +
k

2

)

(20)

(21)

by using a reduction factor to take into account bandwidth. This reduction factor depends only on
the spectral shape, since the time and the amplitude scales are taken into account in the narrow-band
approximation, and thus only on the shape parameter of the model. Previous authors have suggested
formulas depending on the spectral moments.

Full description of the Wirsching and Dirlik formulas can be found, for instance, in Benasciutti &

Tovo [1].
Wirsching (or Wirsching-Light) formula states:

DWirsching = DNB(a(k) + (1 − a(k))(1 − ǫ)b(k) (22)

a(k) = 0.926 − 0.033k (23)

b(k) = 1.587k − 2.323 (24)

(25)

with ǫ the usual bandwidth parameter defined by:

ǫ =

√

1 − λ2
2

λ0λ4
(26)

Dirlik formula is:

DDirlik = DNB
ν24

ν02
(D1

(
Q√
2

)k
Γ(1 + k)

Γ(1 + k/2)
+ D2|R|k + D3) (27)

ν24 =

√

λ4

λ2
(28)

ν02 =

√

λ2

λ0
(29)

η =
√

1 − ǫ2 (30)

=
ν02

ν24
(31)

xm =
λ1

λ0

√

λ2

λ4
(32)

D1 =
2(xm − η2)

1 + η2
(33)

Q = 1.25D1 (34)

R =
η − xm − D2

1

1 − η − D1 + D2
1

(35)

D2 =
1 − η − D1 + D2

1)

1 − R
(36)

D3 = 1 − D1 − D2 (37)

(38)

Yet, when a spectral shape from a given parametric family is given, spectral moments seem an
unnecessary intermediate stage, sometimes difficult to estimate robustly, and it would be more convenient
to relate the factor to the family parameter itself (γ for the Jonswap family, λ for the Wallops, etc.).
Assuming k in the range 2 to 5, we determined empirical formulas for the damage reduction as a function
of the shape (bandwidth) parameter in those spectral families.
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B.3 Jonswap spectral shape

For conditions that are current in the North Sea, and more generally in medium or high latitudes, common
spectral models have been developed: the Pierson-Moskowitz one,

α
g2

(2π)5
f−5e

− 5
4

(
f

fp

)
−4

(39)

that is often found more convenient under the form recommended by the ISSC:

0.11087
H2

s

T 4
z

f−5e
−0.44336 f−4

T4
z (40)

and the one that was obtained by modifying it to represent the more narrow-banded sea-states of the
North Sea in the JONSWAP project after which it was named:

α
g2

(2π)5
f−5e

− 5
4

(
f

fp

)
−4

γ
exp



−

(

1−
f

fp

)2

2σ2





(41)

with σ set to 0.07 for the ascending part of the spectrum (f < fp) and 0.09 for the descending part
(f ≥ fp).

We suggest the empirical formula:

DJonswap(γ) = DNB(1 − max(0.0, 0.0103 ln(k)(5 − ln(γ)))) (42)

for the reduction factor of the Jonswap spectrum family in the γ range 1 to 15.
Based on the comparison with 2920 simulations of 3 hours sea states with T02 = 10 and Hs = 4.,

this formula provides mean biases and errors as displayed in table 19. It may be noted that typical
aleatory variability for that number of simulations is about 0.3%, and typical maximum difference over
the considered range of γ and k about 1.3%.

Formula bias (%) RMS Error (%) Max underest.(%) Max overest.(%)
This report 0.5 0.6 0.4 1.6
Wirsching -3.1 3.8 5.8 3.0
Dirlik (1) 3.3 3.4 - 5.5
Dirlik (2) 2.4 2.6 - 5.0

Table 19: Comparison of formulas to simulation over the range γ 1 to 15 and k 1 to 5

In the same table, we show the comparison with the Wirsching formula, and with the Dirlik formula
estimated in two manners: (1) with the fourth spectral moment computed from the spectral shape, and
(2) with the fourth spectral moment estimated from the observed irregularity factor in the simulations.

Given the cut-off frequency problems and the lack of numerical robustness in the calculation of the
fourth spectral moment λ4, its empirical value obtained from the number of local extrema and the number
of zero-crossings in the signal gives better results than the one calculated from the theoretical spectral
shape. Both cases of the Dirlik approximation are better than the Wirsching one. However, the proposed
formula is definitely superior to the Dirlik one, and simpler to compute.

B.4 Wallops spectral shape

In the original paper [4], the Wallops spectrum is defined as:

β
g2

f5
p

(
f

fp

)−q

e
− q

4

(
f

fp

)
−4

(43)

We will use here the form that appears in the Ochi-Hubble double peak spectrum:
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s

T 4
z

(
fp

f
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4
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fp
f
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(44)
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with 4λ + 1 = q.
We suggest the empirical formula for the damage reduction:

DWallops(λ) = DNB

(

1 − max

(

0,
5k + 2

300

λ
ln(k)

3

λ
4
3

))

(45)

in the λ range 0.8 to 8. It should be noted that for λ less than 1, the fourth spectral moment is not finite
and thus the Wirsching and Dirlik formulas cannot apply. Damage, as shown by Rychlik, can however
be finite with an infinite fourth spectral moment. The above formula is empirical and can still be used,
though caution is required since damage is highly dependent on the cut-off frequency, as shown in the
previous parts of this study.

Based on the same comparison with 2920 simulations of 3 hours sea states as previously, this formula
provides mean biases and errors displayed in table 20.

Formula bias (%) RMS Error (%) Max underest.(%) Max overest.(%)
This report, λ 0.8-8 0.0 0.3 1.7 2.9
This report, λ 1-8 0.0 0.3 0.7 0.7
Wirsching, λ 1-8 3.7 4.4 2.8 7.6
Dirlik (1), λ 1-8 -0.2 0.8 1.0 8.6
Dirlik (2), λ 1-8 -0.2 0.6 1.0 4.3

Table 20: Comparison of formulas to simulation over the range λ 0.8 to 8 and k 1 to 5

Again, the proposed formula is better than the Wirsching or Dirlik ones, and simple to compute.

B.5 Triangle Spectral shape

Swell peaks are much narrower than the wind sea peaks that may be observed in the North Sea. In
average, they will be all the more narrow as the swell generation occurs very remotely. Modeling such
narrow peaks by a Jonswap shape implies to have γ take much higher values than those in the commonly
used range of 1 to 7. Very high values of γ for swell are somewhat in contradiction with the construction
of the Jonswap shape, where that parameter is used to reflect the non-saturation of a fetch-limited wind
sea whereas swell corresponds to the part of energy that propagated onto the location of observation,
and they lead to a risk of unnoticed numerical accuracies in the practical computations. Similarly, high
values of λ in the Wallops model narrow the peak, but do not cut-off the tail of the spectrum.

Because the propagation is not supposed to provide energy outside of a finite frequency interval, and
in order to keep the complexity of the fitting and reconstruction processes within reasonable limits, a
triangle shape was proposed, and deviced in a way recalled in Appendix D of the report on Phase II.

For the sake of simplicity, the triangle was chosen within the triangular family of triangles extending
from µ−1

µ fp to µ
µ−1fp and parameterized by the value µ:

S(f) = 2µ(µ−1)
2µ−1

H2
s

16fp

(

µ f
fp

− (µ − 1)
)

µ−1
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S(f) = 2µ(µ−1)
2µ−1

H2
s

16fp

(

µ − (µ − 1) f
fp

)

fp < f < µ
µ−1fp

S(f) = 0 elsewhere

Spectral moments are given by:
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H2
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p
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Qp = 2
M2

0

∫∞
0

fS2(f)df

= 4µ−2
3

The reduction from narrow-band damage can be computed using the empirical formula:

DTriangle(µ) = DNB(1 − max(0, (0.0116k − 0.0085) ∗ (1 − ln(ln(µ))))) (47)

Based on the same comparison with 2920 simulations of 3 hours sea states as previously, this formula
provides mean biases and errors displayed in table 21.

Formula bias (%) RMS Error (%) Max underest.(%) Max overest.(%)
This report 0.0 0.4 1.3 1.8
Wirsching -1.4 1.9 4.7 2.5
Dirlik (1) 0.2 0.4 2.6 1.6
Dirlik (2) 0.2 0.9 3.3 1.3

Table 21: Comparison of formulas to simulation over the range µ 1.5 to 15 and k 1 to 5

On the opposite from what is observed for a Jonswap or Wallops spectrum, for a triangle shape where
there is no cut-off frequency problem and where the spectral moments can be calculated in closed-form,
the theoretical value gives better results than the estimated one. Again, the proposed formula is better
than the Wirsching or Dirlik ones, and simpler to compute.

B.6 Power or Log-Triangle Spectral shape

An attractive idea is to model separately the main body and the tail of the spectrum. The tail of the
spectrum decreasing with power p can then be represented by a triangle in log coordinates:

S(f) = 0 f < fp

S(f) =
H2

s

16fp
(p − 1)

(
f
fp

)−p

f >= fp

Spectral moments are given by:

mi =
H2

s

16
f i

p

p − 1

p − i − 1
(48)

and thus
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s

16
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16 fp
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16 f2
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m4 =
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16 f4
p

p−1
p−5

Qp = 2
M2

0

∫∞
0

fS2(f)df

= p − 1

The reduction from narrow-band damage can be computed using the empirical formula:

DPower(p) = DNB(1 − e−0.032(0,6p−10k+105)) (49)

Based on the same comparison with 2920 simulations of 3 hours sea states as previously, this formula
provides mean biases and errors displayed in table 22. It may be noted that the Wirsching and Dirlik for-
mulas are affected by the non-robustness of spectral moments estimation, especially for slowly decreasing
spectral tails.
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Formula bias (%) RMS Error (%) Max underest.(%) Max overest.(%)
This report 0.0 0.4 0.6 1.4
Wirsching 1.9 2.6 2.9 6.4
Dirlik (1) -2.1 2.9 13.4 6.4
Dirlik (2) -4.6 6.3 14.5 2.8

Table 22: Comparison of formulas to simulation over the range p 5.1 to 10 and k 1 to 5

Summary

The formulas are summarised hereafter for 1 < k ≤ 5:
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σ = 0.07 for f < fp

σ = 0.09 for f ≥ fp D(γ) = DNB(1 − max(0, 0.0103 ln(k)(5 − ln(γ)))) 1 ≤ γ ≤ 15
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C Parametric Damage for Double slope S-N curve

C.1 Introduction

The Palmgren-Miner hypothesis together with a linear Wöhler S-N curve of slope −k imply that each

cycle of range S in the loading history creates some elementary fatigue damage Sk

K in the structural detail
of interest, and that failure occurs when accumulated damage is about 1.

The rules of Classification Societies often require to consider a double-slope S-N curve, i.e.

dk1k2
(S) = 1

KS
k2−k1
0

Sk2 , S ≤ S0

= 1
K Sk1 , S ≥ S0

s = S
2σ

s0 = S0

2σ
dk1k2

(s) = 1

Ks
k2−k1
0

(2σ)k1sk2 , s ≤ s0

= 1
K (2σ)k1sk1 , s ≥ s0

With respect to a single slope S-N curve where the cumulated damage is just the kth moment of the
statistical distribution of ranges, the double-slope definition introduces significant additional complexity
due to the threshold value. For instance, the effect of multiplying the load signal by a constant value
C is a straightforward multiplication by Ck for a single slope damage, but much more complex in the
double-slope case where ranges are then moved from one side of the threshold to the other.

Gao and Moan ([3]) have been able to verify that combination formulas could still be used with
reasonable accuracy when the loading signal is the combination of two narrow-band Gaussian processes.
In practice, that assumption is more restrictive than one could expect. On one hand, many encountered
narrow-band signals are so narrow that the Gaussian assumption is no longer fully valid. The Rayleigh
distribution used for ranges in those cases shows a large excess of high amplitude cycles with respect to
reality, and the k1- and k2-order statistical moments of the actual distributions of the cycles are no longer
in the same proportions as for a Rayleigh.

On the other hand, one may need to combine components that are not all narrow-band, for instance
at the last stages when using the ICA method with more than two components, and the distribution of
the rainflow counted cycles of a broadband signal differs significantly from a Rayleigh, showing a large
excess of very small cycles.

We aim here at finding ways to estimate the double slope rainflow damage, in a slightly conservative
manner, by combining the single slope damages and we will assume that the loading signal is a gaussian
process with variance σ2.

We will mainly investigate the case where k1 = 3 and k2 = 5, but other values of these slopes can
be treated in a similar fashion. We consider that we know (from the ICA method for multimodal power
spectra, see Appendix A, from semi-empirical formulas such as Wirsching, Dirlik, or the ones proposed
in Appendix B for unimodal ones) how to compute the damage for a S-N curve with single slope k1 or
k2.

C.2 Double-slope damage computation

The damage density can be computed as:

D35 = ν24

Ks2
0
(2σ)5

∫ s0

0
s5p(s)ds + ν24

K (2σ)3
∫∞

s0
s3p(s)ds

= D5l + D3u
(50)

One may thus try to find best estimates for each of the terms. Conventionally, such estimates rely on
the narrow bandwidth approximation, and their quality and degree of conservatism or non-conservatism
cannot be garanteed for wide-band loading signals. However, as we will discuss further, the narrow-band
approximation is in all cases a sensible one for the largest ranges of a process, even when it is broad-band.
We thus prefer the following formula:

D35 = ν24

Ks2
0
(2σ)5

∫∞
0

s5p(s)ds − ν24

Ks2
0
(2σ)5

∫∞
s0

s5p(s)ds + ν24

K (2σ)3
∫∞

s0
s3p(s)ds

= D5 − D5u + D3u
(51)
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The above formula takes a negative D5u and a positive D3u correction to D5. It should be used when
slope 5 gives the major contribution to the damage. The negative correction term compensates for the
damage of the ranges above the threshold, that are counted with exponent 3 by the positive correction
term and should thus be removed from the count with exponent 5.

In order to be able to compute those corrections easily and conservatively, one can use a best approx-
imation for D5, an upper bound for D3u, and a best approximation or a lower bound for D5u. Those
corrections should be sought in the form of functions of D3 and D5 and of S0 and of the spectral param-
eters (moments). As stated in the introduction, D5 (and D3) can be estimated using the ICA or some
other method.

If a best approximation is used for D5u (or D3u = D3 − D3l), then the final result is likely but not
garanteed to be conservative, whereas if a lower bound is used, the result is definitely conservative but
may be overly so.

C.3 Approximations
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Figure 18: Power spectrum (left) and rainflow ranges density (right) of the loading signal used for
illustration

For the sake of illustration, we use in the following a spectrum made of a triangle at 13 seconds representing
the response to swell and a Jonswap with γ = 3 at 7.7 seconds representing that to wind sea, as shown
on figure 18. It can be seen that the ranges density is not globally close to a Rayleigh distribution, and
that is all the more true when further components (peaks) are added to the load power spectral density.

The incomplete Gamma functions can thus not be used directly to estimate the proportions of damage
coming from above and below the threshold as could be if the loading was narrow-banded.

C.3.1 Damage of largest ranges Dku

Rainflow-filtering with a threshold at the S-N curve angle point allows to extract the rainflow ranges above
that threshold. The essential point in this section is that considering the S0-rainflow-filtered process of
the turning points of the load history and assuming that S0 is sufficiently large, we can approximate it
by S0-rainflow-filtering the history obtained by the zero-crossing counting method. Though it may be
difficult to find an explicit expression for it, we can assume as in [9] that the remaining turning points are
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the turning points of a “phantom” gaussian process. Since the latter phantom process is narrow-band, we
can use a Rayleigh model for the distribution of its turning points whereas we could not for the original
one.

We then have
Dku

Dk
≈ Q

(
k

2
+ 1,

s2
0

2

)

(52)

where Q is the upper regularized Gamma function and D∗
k is the overall damage of the phantom zero-

crossing process.

C.3.2 Dku
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Figure 19: Cumulative distribution of largest rainflow ranges and Rayleigh approximation

For a narrow-band process, it is well-known that the min-max counting is unconservative with respect
to rainflow, i.e. that it provides a lower bound to the rainflow damage, whereas the doubled turning-
points amplitudes (excursions from the mean), or the narrow-band approximation counting is always
conservative with respect to rainflow, as shown by Rychlik (1993).

Considering zero-crossing cycles or waves with a narrow-band spectrum, the min-max amplitudes can
be derived from the doubled turning-points amplitudes using a reducing ratio ρ that depends on the
value r

(
T
2

)
of the normalized autocorrelation function at half the dominant (here, zero-crossing) period

[13, 12].

ρ =

√

1 − r
(

T
2

)

2

We know that r
(

T
2

)
is negative, so a definite lower bound for ρ is 1√

2
and then

Dku ≥ Q(k
2 + 1, t0)2

− k
2 Dk

Applying that ratio to the rainflow amplitudes instead of the doubled turning-points amplitudes
garantees also a lower bound to the rainflow damage. However, that lower bound may be too coarse, and
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thus provide results that are too conservative. For instance, for a unimodal shape, empirical relationships
are:

ρJonswap = 0.9 + 0.025Log(γ)
ρWallops = 0.9 + 0.050Log(λ)
ρTriangle = (Log(Log(1 + µ)))0.03

ρPowertail = (Log(Log(p)))0.096

and thus ρ > 0.9 as soon as γ > 1 (Jonswap), λ > 1 (Wallops), µ > 1.75 (Triangle) or p > 4.25
(Powertail).

A better approximation for ρ is obtained by computing the auto-correlation function by applying
inverse Fourier transform to the (combined in case of multimodal) spectrum. The auto-correlation func-
tion can also be computed directly on the time-signal when that signal is obtained by a time-domain
simulation.

It should however be noted that if the spectrum is very narrow, the process may no longer be gaussian
(it can be close to a noisy sinewave, for instance), and ρ will not provide a sufficient reduction to account
for the modelling bias. We thus advise to restrain ρ to a maximum value of 0.95 or not accept r

(
T
2

)
to

be lower than -0.8 so as to bypass this modelling difficulty.
Denoting Nu the number of ranges above S0, it can be seen on Figure 19 that the distribution

of the largest rainflow ranges is indeed between that of the doubled amplitudes and of the min-max
(crest-trough) ranges of the phantom process, which are Rayleigh distributed and in a number of N02

corresponding to the zero-crossing period of the process.
The bounding might loose its validity if the threshold is not sufficiently high and if the distribution of

ranges thus diverts too much from a Rayleigh. Yet, for practical applications, we would not expect that
threshold to be less than twice the standard deviation of the loading signal, i.e. the number of ranges
below the threshold not less than twice the number of ranges above it. As can be seen on figure 19,
damage is in the proportion 20%/80% for slopes 5 and 3 respectively when that threshold value is used.
From the above considerations about min-max, rainflow and doubled-peaks amplitudes, the following
bounding can be derived for sufficiently large ranges:

s

ρ
e−

1
2 (

s
ρ )

2

≤ p(s|s > s0) ≤ se−
1
2 s2

(53)
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Figure 20: Application of the formulas in 52 and 53 to the practical example with slopes 3 and 5

We can also derive an approximation for p(s|s > s0) by taking the mid-point of the arguments to the
exponential:

p(s|s > s0) ≈
s

φ
e−

1
2 (

s
φ )

2

(54)

with

1
φ2 = 1

2

(
1
ρ2 + 1

)

φ =

√
2−2r(T

2 )
3−r(T

2 )
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Thus,

Dku & Q
(

k
2 + 1,

s2
0

2ρ2

)

Dk

Dku ≈ Q
(

k
2 + 1,

s2
0

2φ2

)

Dk

Dku . Q
(

k
2 + 1,

s2
0

2

)

Dk

(55)

C.4 Estimates for total damage - Summary

Taking the above estimates and bounds into the equations, we obtain:

D35 ≈ D5P
(

7
2 , t0

φ2

)

+ D3Q
(

5
2 , t0

φ2

)

. D5P
(

7
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)

+ D3Q
(

5
2 , t0
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)

. D5P
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)

+ D3Q
(

5
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)
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5
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)

More generally:

Dk1k2
≈ Dk2

P
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2

)2
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(56)

where Q is the regularized upper Gamma function and P = 1−Q the regularized lower Gamma function.
ρ and φ were defined from the value r

(
T02

2

)
of the normalized autocorrelation function of the loading

signal at half the zero-crossing period:

ρ =

√
1−r(T02

2 )
2

φ =

√
2−2r(T02

2 )
3−r(T02

2 )
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Figure 21: Levels of conservatism of formulas in 56 in the practical example

The results are displayed on figure 21. We recommend to use formula (d) to ensure conservatism,
especially since the actual loading processes may divert somewhat from the Gaussian process model and
since high order moments are very sensitive to such differences.

C.5 Application to the full computation

Let us consider the FPSO case of the study. In that case, the field data consists of 8040 sea states, 6825 of
which are multimodal. The corresponding response spectra (Vertical Wave Bending Moment at midship)
have been modelled by combinations of triangles on one hand, and of Jonswap spectra on the other.
Triangles represent narrow-band components at all times, whereas Jonswap spectra are often wide-band
when they model the part of the response that corresponds to wind sea action.

For each sea state, the double slope and single slope damages have been computed by simulating 50
3-hour histories. Figure 22 compares the total damages summed up over the whole database obtained by
recombining the single slope damages in each sea state according to formulas in (56) to the total damage
computed directly with a double slope S-N curve. In the study, the SCF had to be exagerated to 4 in
order to make fatigue significant, resulting in a value of S0

σ of about 6 when considering a global σ for
the set of sea states actually contributing to fatigue.

The afore-mentioned limitation of r
(

T02

2

)
to -0.8 has been applied. If it were not, the triangle modeling

especially would lead to a great deal of conservatism, up to 5 times, because of the overestimation of the
large low frequency (swell response) amplitudes by a Rayleigh distribution.
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Cumulated 8040 Response Spectra
Each modelled as combined Triangles
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Figure 22: Application of formulas in (56) to the field data in a West Africa climate case (left: Triangles,
right: Jonswaps)

One might wonder if the formulas in 56 could be applied at the last stage of the computation only,
with an overall averaged value of r

(
T02

2

)
. From the tests that we made, we obtain very high levels of

conservatism, up to more than 5 for S0

σ between 4 and 6: the overall (non-stationary) process, even when

time-scaled with the local T02 so as to enable computation of r
(

T02

2

)
, is too far from the Gaussian process

assumption to be suited to the use of the formulas as such.

C.6 Conclusions

As can be seen on figure 22, it is possible to estimate a double slope S-N curve damage from the single
slope ones with reasonable conservatism using the value of the normalized autocorrelation function of the
loading signal at half the zero-crossing period and the regularized upper and lower Gamma functions.
This allows to use combination formulas such as the ICA one in a double slope S-N curve case just as if
the S-N curve had a single slope.
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D Response spectra partition

Each response spectrum is partitioned into several ”systems” fitted to Triangle or Jonswap spectral shape;
The partition involves the following steps:

1. Systems isolating : This first step consists in extracting the distinct components of the response
spectrum. The method used for this process is the watershed method which treats a 2D spectrum
like a reversed topography. The peaks in an upside-down directional spectrum are then found by
following the paths of strongest gradient leading to a same point. The Matlab routine watershed
is used. Since the response spectrum is a frequency (1D) spectrum, the preliminary step consists
in creating a fake 2D spectrum from the response spectrum. Next, watershed image segmentation
algorithm is applied to identify the systems composing the spectra.

2. Systems grouping : Because of the sensitivity of the extraction method, all the isolated spectral
components are not consistent wave systems and can be regarded as noise. Next stage of analysis
consists in gathering meaningless components into physically valid wave systems. The used method
states that two spectral components are merged if they satisfy two separate conditions about the
gaps between the peak frequencies and the peak frequency directions. The overlapping is taken
into account in the next steps of the analysis, by computing the cross-influence of the components.
Every extracted subset of the spectrum can then be considered as an isolated response system. The
3 peaks with the most energy are kept for the analysis.

3. Systems fitting : The aim of this stage is to give a description of every system constituting of a
response spectrum with a homogeneous set of variables. The spectrum shape is modelled either by
a Jonswap shape, either by a triangle shape, where the base is computed iteratively to minimize the
square error between the original frequency and the analytic directional distribution. An example
of triangle shape fit is given in Figure 23.

Figure 23: Girassol real spectra response (original and fit)
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E Joint distribution of spectral parameters
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Directional HS − Tp scatter diagrams for Main Swell
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Directional HS − Tp scatter diagrams for Secondary Swell
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Directional HS − Tp scatter diagrams for Wind sea
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F Effect of separating spectrum tail from body

F.1 Introduction

The purpose of the global study is to validate a methodology for robust and cost-effective evaluation of
fatigue damage for the design of marine structures, in the case of multiple loading systems (for instance,
wind sea, several swells and even responses at natural frequencies). It is as such a development of some
questions raised in the “Joint Probabilities & Response Based Design” project [16].

In the previous phases of the study, we compared the performance of combination methods based
on the standard deviation, zero-crossing frequency, spectral bandwidth and induced rainflow damage
of each component taken in isolation. The ICA method that we introduced accepts components with
main periods rather close to each other without significantly degrading the results. An idea suggested
by Michel Fran c]ois is then to deal with spectra with fat tails by separating as two components the
body of the spectrum, and the part of its tail where the structural RAO is imposing a higher slope onto
this spectrum. The spectrum is then made of a trucated Wallops or Jonswap spectrum, and of a Power
spectrum as defined in a previous report of this study.

We provide here the figures showing the performance of the ICA method in this procedure.
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F.2 Jonswap + tail spectral shape

The studied spectrum is defined as follows:

Sl(f) = α
g2

(2π)5
f−5e

− 5
4

(
f

fp

)
−4

γ
exp



−

(

1−
f

fp

)2

2σ2





, f ≤ f0

Sh(f) = β

(
f

f0

)−p

f ≥ f0

with σ set to 0.07 for the ascending part of the spectrum (f < fp) and 0.09 for the descending part
(f ≥ fp), and α, β such that Sl(f0) = Sh(f0) and Hs = 4

√
m0.

For the practical study, parameters were chosen as:

• Tp = 7s

• T0 = 2.5s

• Hs = 4m

• γ = 1, 2, 3

• p = 5, 6
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Figure 24: Comparison of the various methods for γ = 1 and p = 5
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Figure 25: Comparison of the various methods for γ = 1 and p = 6

73



j2_5

Simulation
Narrow-Band
Z1 + CS
Z1 + BE
Z2 + CS
Z2 + BE
Simple Summation
Dual Narrow Band
Combined Narrow Band

m
1.00 2.00 3.00 4.00 5.00

Damage

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 26: Comparison of the various methods for γ = 2 and p = 5
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Figure 27: Comparison of the various methods for γ = 2 and p = 6

75



j3_5

Simulation
Narrow-Band
Z1 + CS
Z1 + BE
Z2 + CS
Z2 + BE
Simple Summation
Dual Narrow Band
Combined Narrow Band

m
1.00 2.00 3.00 4.00 5.00

Damage

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 28: Comparison of the various methods for γ = 3 and p = 5
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Figure 29: Comparison of the various methods for γ = 3 and p = 6
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F.3 Wallops + tail spectral shape

We will use here the following spectrum:

Sl(f) = α
H2

s

T 4
z

(
fp

f

)4λ+1

e
− 4λ+1

4

(
fp
f

)4

, f ≤ f0

Sh(f) = β

(
f

f0

)−p

, f ≥ f0

with α, β such that Sl(f0) = Sh(f0) and Hs = 4
√

m0.
For the practical study, parameters were chosen as:

• Tp = 7s

• T0 = 2.5s

• Hs = 4m

• λ = 0.5, 0.75, 1.25, 1.75

• p = 5, 6
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Figure 30: Comparison of the various methods for λ = 0.5 and p = 5
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Figure 31: Comparison of the various methods for λ = 0.5 and p = 6
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Figure 32: Comparison of the various methods for λ = 0.75 and p = 5
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Figure 33: Comparison of the various methods for λ = 0.75 and p = 6
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Figure 34: Comparison of the various methods for λ = 1.25 and p = 5
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Figure 35: Comparison of the various methods for λ = 1.25 and p = 6
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Figure 36: Comparison of the various methods for λ = 1.75 and p = 5
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Figure 37: Comparison of the various methods for λ = 1.75 and p = 6
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F.4 Conclusion

It can be seen that although the combined spectrum approximation provides in all cases very good results
with little conservatism, the ICA method may also be applied with comparable levels of conservatism.
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