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ABSTRACT An inherent issue in high-throughput rRNA gene tag sequencing micro-
biome surveys is that they provide compositional data in relative abundances. This
often leads to spurious correlations, making the interpretation of relationships to
biogeochemical rates challenging. To overcome this issue, we quantitatively esti-
mated the abundance of microorganisms by spiking in known amounts of internal
DNA standards. Using a 3-year sample set of diverse microbial communities from the
Western Antarctica Peninsula, we demonstrated that the internal standard method
yielded community profiles and taxon cooccurrence patterns substantially different
from those derived using relative abundances. We found that the method provided
results consistent with the traditional CHEMTAX analysis of pigments and total bac-
terial counts by flow cytometry. Using the internal standard method, we also
showed that chloroplast 16S rRNA gene data in microbial surveys can be used to es-
timate abundances of certain eukaryotic phototrophs such as cryptophytes and dia-
toms. In Phaeocystis, scatter in the 16S/18S rRNA gene ratio may be explained by
physiological adaptation to environmental conditions. We conclude that the internal
standard method, when applied to rRNA gene microbial community profiling, is
quantitative and that its application will substantially improve our understanding of
microbial ecosystems.

IMPORTANCE High-throughput-sequencing-based marine microbiome profiling is
rapidly expanding and changing how we study the oceans. Although powerful, the
technique is not fully quantitative; it provides taxon counts only in relative abun-
dances. In order to address this issue, we present a method to quantitatively esti-
mate microbial abundances per unit volume of seawater filtered by spiking known
amounts of internal DNA standards into each sample. We validated this method by
comparing the calculated abundances to other independent estimates, including
chemical markers (pigments) and total bacterial cell counts by flow cytometry. The
internal standard approach allows us to quantitatively estimate and compare marine
microbial community profiles, with important implications for linking environmental
microbiomes to quantitative processes such as metabolic and biogeochemical rates.

KEYWORDS amplicon sequencing, community profiling, internal standard, marine
microbiome

Since the first application of Roche 454 pyrosequencing to marine 16S rRNA gene
amplicon samples (1), high-throughput sequencing of environmental PCR-amplified

marker genes has transformed the study of marine microbiomes. It has been at the core
of multiple recent programs varying in scale and breadth, including the International
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Census of Marine Microbes (2), TARA expeditions (3, 4), the Malaspina 2010 Expedition
(5), Ocean Sampling Day (6) and the Long Term Ecological Research (LTER) sites (Palmer,
HOT, Tahiti, and other sites). These studies and other programs have revealed unprec-
edented microbial diversity and biogeographic patterns and have advanced our un-
derstanding of marine microbial ecology (7) and biogeochemistry (4, 8).

An important limitation of the rRNA gene tag-based DNA sequencing approach is
that it provides only compositional data, i.e., taxonomical profiles in relative propor-
tions. While useful, compositional data are incomplete. As an example, should species
A be equally abundant in two samples, its relative abundance in the first sample will be
double that in the second sample if the total cell concentration is twice as high in the
second sample. More broadly, compositional data can lead to various statistical issues,
mainly due to two geometric features (9). First, the distance between two points has no
absolute scale (e.g., counts of 1 and 2 have the same information as counts of 100 and
200) (10), and thus, the counts from different samples could have different uncertain-
ties, making it difficult to identify statistically significant differences by standard
tests (11). Second, compositional data are constrained by the “sum of 1,” and its
projection in space is restricted to a simplex for which common statistical analyses
based on Euclidean space may not be applicable (12–15). For example, it has long
been realized that correlation analyses on compositional data can yield spurious
correlations (16). This problem is particularly severe when communities have
dominant taxa (14), as is commonly observed in some environmental samples (1,
17). These issues hinder cross-study comparisons of the rapidly expanding com-
munal rRNA gene data sets. Various transformation (e.g., centered log-ratio trans-
formation) and specialized data analysis routines have been developed to over-
come these issues (e.g., programs such as DESeq2 consider the weighting of each
taxon [18, 19]). However, such routines make it difficult to interpret the underlying
biological and ecological mechanisms.

To palliate the artifacts associated with relative microbiome profiling (RMP), two
approaches have recently been developed for quantitative microbiome profiling (QMP).
The first approach is to normalize the 16S rRNA gene operational taxonomic unit (OTU)
counts to total bacterial counts estimated by flow cytometry (FCM) (20, 21). The second
approach, internal standard normalization (ISN), consists of spiking known concentra-
tions of internal standards (DNA or cells) into samples before DNA extraction (22). This
approach was adapted from the use of internal RNA standards in metatranscriptomics
(23). ISN has recently been applied to study prokaryotic community composition in soils
(24) and in the human gastrointestinal tract (25). In this study, as a proof of concept, we
estimated the QMP of oceanic prokaryotes and eukaryotic plankton sampled from the
Western Antarctica Peninsula (WAP) (Fig. 1A) using 16S and 18S rRNA gene amplicon

FIG 1 (A) Sampling location at the WAP across the gradients of coast to open ocean (y axis) and open water to ice edge (x axis). (B) Relative abundances of
18S rRNA gene from a test run with a 5:1-diluted internal standard using representative samples from the open ocean and the coast. Coastal 2A and 2B are
duplicate samples from the same location. The internal standard 18S rRNA gene reads (in red) are a small portion of the total reads and are proportional to
the dilution factor.
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sequencing combined with internal DNA standards. The large environmental gradients
(e.g., coast versus open-ocean and open-water ice-covered regions) at the WAP lead to
diverse and highly variable microbial communities (8, 26), thereby providing an ideal
stage to test the ISN. Below, we present the ISN method as applied to marine samples.
In order to validate the method, we (i) assessed the precision of ISN by spiking in
various amounts of standards, (ii) compared phytoplankton abundances based on ISN
to those based on estimates obtained with CHEMTAX, a program to calculate phyto-
plankton abundances based on pigment analyses (27), and (iii) compared total bacterial
counts estimated by the 16S rRNA gene ISN to direct measurements by cell-counting
flow cytometry. As an example of the numerous applications of this new approach, we
demonstrated how the QMP and the relation of phytoplankton chloroplast 16S to
genomic 18S rRNA gene abundances may provide insight into plankton ecology and
photophysiology.

RESULTS AND DISCUSSION
Brief description of the method. A thorough description of the method is pre-

sented in Materials and Methods. Briefly, known amounts of genomic DNA (gDNA) from
organisms not expected to be present in the natural seawater samples, i.e., Schizosac-
charomyces pombe for 18S rRNA genes and Thermus thermophilus for 16S rRNA genes,
were added to each sample before DNA extraction. The abundance of OTUi (in 16S or
18S rRNA gene copies per ml seawater) in sample j was calculated as

Ai,j �
Ri,j � Cs

Rs,j � Vj

where Ri,j is the number of reads of OTUi in sample j, Rs,j is the number of 16S or 18S
rRNA gene standard reads sequenced in sample j, Cs is the total number of 16S or 18S
rRNA gene copies spiked into each sample, and Vj is the filtered seawater volume in
milliliters. For double-stranded DNA, assuming that the average weight of a base pair
is 650 daltons (650 g per mol), Cs can be calculated as

Cs �
gDNA amount �ng� � 6.022 � 1023 �copies mol�1� � rrns

length of gDNA �bp� � 1 � 109 � n g g�1� � 650 �g mol�1 bp�1�
where rrns is the 16S or 18S rRNA gene copy number per cell. In our study, the spiked
16S rRNA gene standard was 14.85 ng of T. thermophilus gDNA, with rrn � 2 and
genome size � 2.13 Mb (28); thus, Cs � 1.29 � 107 rRNA gene copies per sample. For
the 18S rRNA gene standard S. pombe, the rrn could vary from 100 to 120 copies per
cell (29). For our 18S rRNA gene calculation, we used a median number rrn � 110,
which may introduce up to a 10% bias. However, this bias should be the same across
all the samples and thus should not influence the comparison between samples. With
16.1 ng of spiked 18S rRNA standard per sample and the genome size of 13.8 Mb (29),
Cs � 1.19 � 108 copies per sample. With a known number of rRNA gene copy number
per cell rrni for OTUi (e.g., 1 copy per cell for SAR11), the cell abundance in sample j (in
cells milliliter�1) can be calculated as Ai,j/rrni. We note that this is only possible when
the rrni is known and assuming a single genome per cell.

Validation of the method. To validate the method, 56 samples were collected at
the WAP on three Palmer LTER annual cruises (years 2012, 2013, and 2015) (Fig. 1A).
Internal standard recoveries averaged 0.8% (0.2% to 2.9%) of total prokaryotic 16S rRNA
gene reads and 2.4% (0.7% to 5.7%) of total eukaryotic 18S rRNA gene reads, well within
the range appropriate for detection (i.e., �0.1%) without overwhelming the environ-
mental reads. Based on ISN, the abundance of rRNA genes between stations varied by
16- and 27-fold for eukaryotes and prokaryotes, respectively (Fig. 2). Using rrn from the
rrnDB database (30), we converted OTU2 (SAR11) and OTU5 (Polaribacter) rRNA gene
counts to cell abundances (see Fig. S1 in the supplemental material). The average cell
abundance of the SAR11 OTU in our samples was 2.0 � 105 cells ml�1, in line with
SAR11 estimates reported by other studies in the Southern Ocean (31–33). As described
below, we assessed the precision of the ISN by spiking in two different amounts of
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internal standards. We also corroborated our results with abundance estimates using
two independent methods, CHEMTAX pigment analyses for the 18S rRNA gene and
FCM for the 16S rRNA gene abundances.

(i) Precision of ISN. In a test sequencing run to optimize the standard amount, we
added the eukaryotic internal standards at two different concentrations (16.1 and 3.22
ng) into representative samples (see details in Materials and Methods). The response
was proportional to the spiked-in level (Fig. 1B), with a maximum deviation estimated
at 25% (average, 18%) across the various communities sampled at the coastal and
open-ocean sites. For comparison, the traditional quantitative PCR (qPCR) methods can
yield errors as large as the signal (34), with typical coefficients of variation (CVs) ranging
from 15% to 50% (35, 36). This comparison should be interpreted with caution because
the precision of qPCR has been verified over a wider range of concentrations (i.e., 7 to
9 orders of magnitude) (37, 38) than for most internal standard studies (39). To test the
reproducibility of the sequencing technique, we also barcoded and sequenced a
coastal sample in duplicates (Coastal 2A and 2B), and the resulting community profiles
are highly similar (Fig. 1B). The CV for estimated taxon abundance was 2.8% on average
and 12.3% at maximum (see Table S1 in the supplemental material), with higher
uncertainties for rarer taxa.

(ii) Method comparison. (a) Phytoplankton 18S rRNA gene ISN versus CHEMTAX
abundance. We compared the phytoplankton QMP estimated by ISN with the tradi-
tional CHEMTAX analysis of high-performance liquid chromatography (HPLC) pigment
profiles (26, 40) for three phytoplankton groups commonly observed at the WAP, i.e.,
cryptophytes, diatoms, and Phaeocystis. The cryptophyte abundances calculated by
using the 18S rRNA gene and CHEMTAX were highly correlated (Pearson’s r2 � 0.98,
P � 0.0001) (Fig. 3A). Significant correlations were also observed for diatoms (r2 � 0.42,
P � 0.0001) (Fig. 3C) and Phaeocystis (r2 � 0.57, P � 0.0001) (Fig. 3E), although the
relationships were weaker. Because alloxanthin is present only in cryptophytes, their
CHEMTAX estimates are likely more robust than the ones for diatoms and Phaeocystis.
In addition, alloxanthin was the most abundant pigment in our sample set, with an
average concentration of 0.61 �g/liter. In comparison, the other accessory pigments

FIG 2 A 3-year data set of WAP community OTU counts (97% similarity) in RMP (upper panels) and QMP in rRNA gene copies milliliter�1 (lower panels) for
eukaryotes (A) and prokaryotes (B). The bar plots present QMP and RMP, with the top 20 OTUs associated with their taxonomic identifications (down to the
finest identified level in the SILVA 128 database) and all other OTUs combined into one bin labeled “others” in gray. Stations are ranked in ascending total 16S
or 18S rRNA gene counts. Environmental variables are plotted at the bottom: grid station or the approximate distance to shore (kilometers) in red, chlorophyll
a concentration (milligrams meter�3) in green, and primary production (milligrams meter�3 day�1) or bacterial production (leucine incorporation [picomoles
liter�1 hour�1]) in blue. QMP captures significant variations across samples and is correlated with environmental variables.
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were substantially less abundant (19=-butanoyloxyfucoxanthin, 0.01 �g/liter; chloro-
phyll c2 [Chl c2], 0.18 �g/liter; chlorophyll c3, 0.02 �g/liter; chlorophyll b, 0.01 �g/liter;
fucoxanthin, 0.13 �g/liter; and hexanoyloxyfucoxanthin, 0.13 �g/liter). Low concentra-
tions of accessory pigments could introduce errors in CHEMTAX estimates of diatoms
and Phaeocystis. Using RMP, a significant but weaker correlation was observed for
cryptophytes (r2 � 0.51, P � 0.001) (Fig. 3B). No significant correlation between RMP
and CHEMTAX estimates was observed for diatoms (Fig. 3D) and Phaeocystis
(Fig. 3F).

(b) Bacterial 16S rRNA gene ISN versus FCM bacterial abundance. The total prokaryotic
16S rRNA gene abundances were significantly correlated with the bacterial FCM counts,
albeit with a small correlation coefficient (Pearson’s r2 � 0.19, P � 0.001; or r2 � 0.20,
P � 0.001 after log transformation) (Fig. 4A). In general, rRNA gene copy numbers were
much higher than the FCM cell counts. A variety of factors may explain this. First, for the
four points circled in gray in Fig. 4B, the FCM estimates of �2.0 � 106 cells ml�1 were
anomalously high compared to the corresponding leucine incorporation rates or Chl a
concentrations. Second, while bacteria associated with particles were efficiently cap-
tured by DNA sequencing, they may have been missed by FCM counts if the vortex step
did not break down the particle-bacterium associations. In polar and coastal regions, a
significant proportion of bacteria could be attached to particles (41). Corroborating this
hypothesis, we found that samples where ISN predicted a higher abundance of bacteria
than FCM tended to have a higher percentage of particle-associated OTUs (Fig. 4A).
Finally, the difference in rrn for different OTUs could also explain the discrepancy
between the ISN and FCM bacterial abundances. For example, the rrns in SAR11 and
Marinomonas sp. strain MWYL1 are 1 and 8, respectively (30). Populations with larger
rrn should have higher 16S rRNA gene/FCM count ratios. In addition, the fact that
multiple genomes may exist within a single cell (42) could also contribute to the
discrepancy. To estimate cell abundances, the top 20 classified OTU QMPs were divided

FIG 3 Abundances of cryptophytes (A and B), diatoms (C and D), and Phaeocystis (E and F) estimated by
18S rRNA gene QMP (left panels) and RMP (right panels) compared to abundances estimated by
CHEMTAX-HPLC pigment analyses. For significant correlations (P � 0.05), Pearson’s r2 values for original
data and log10-transformed data (in parentheses) are shown at the bottom of the plot.
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by their rrn estimated by rrnDB (30), and the resulting OTU cell abundances were
summed for each sample. Taxa previously identified as particle-associated bacteria
through size-fractionated filtration (41) were then excluded. After discarding the four
potential outliers and correcting for rrn and particle association effects, cell abundances
estimated by rRNA gene and FCM counts displayed a substantially higher correlation
coefficient (r2 � 0.61, P � 0.001; or r2 � 0.44, P � 0.001 after log transformation) and
were close to the 1:1 line (Fig. 4B).

We note that the rrn correction is important not only for ISN but also for the
normalization of FCM (see, e.g., reference 20). The absolute cell abundance of OTU x in

a particular sample should be calculated as
Cx ⁄rrnx

�i
n Ci ⁄rrni

� FCM, where Cx is the rRNA

gene counts for OTU x. Should rrnx be constant for a particular taxon, a change in the
numerator introduces a systematic bias when comparing relative changes in absolute
abundances between samples. However, because �i

n Cx ⁄rrnx��i
n Cx, the denominator

may lead to uneven biases across samples. A simple example using two OTUs com-
monly found in the WAP is presented in Table S2 in the supplemental material. Without
taking into account the rrn, the estimates of absolute OTU abundances based on FCM
normalization could be off by 5-fold, and the estimated abundance variation between
two samples could be off by 3.6-fold in this particular example. Caution should
therefore be taken in applying the FCM normalization method without resolving the
community rrn profile.

One approach to estimating the rrn profile is to use the phylogenetic information
to predict the rrns of OTUs based on existing rrn databases, such as rrnDB (30, 43).
A recent human microbiome study corrected the 16S rRNA gene matrix using rrnDB
(21). However, substantial uncertainties associated with the rrn correction remain,
as (i) a significant portion of the OTUs are unclassified and (ii) the limited number
of known rrns from sequenced genomes likely does not reflect the natural variabil-
ity in rrn.

When applying the FCM normalization method to marine samples, the difference in
sampling volume for DNA and FCM should be considered. Cells for DNA analyses are
generally filtered from liters of seawater, while FCM samples are generally estimated
from less than 1 ml of seawater. In patchy environments, these two volumes may reflect
different communities.

Application: case study at the WAP. In our WAP case study, the estimated total
eukaryotic rRNA gene abundance was significantly correlated with environmental
variables, including the distance to shore (Pearson’s r � �0.6, P � 0.001; Spearman’s
� � �0.6, P � 0.001), Chl a concentration (r � 0.8, P � 0.001; � � 0.7, P � 0.001), and

FIG 4 Comparison of total bacterial abundances estimated by FCM and 16S rRNA gene QMP. (A) The size
of each data point represents the rrn effect, calculated as the averaged rrn of the top 20 classified OTUs
in each sample. The color coding represents the particle association effect, calculated as the cumulative
cell percentage (after rrn correction) of the top 10 most abundant particle-associated OTUs, identified as
the �3-�m fraction bacteria reported by Delmont et al. (41). An exhaustive survey of the particle-
associated OTUs is not feasible considering that significant portions of the prokaryotic OTUs are of
unknown physiology or are even unclassified in the current rRNA database (SILVA 128). (B) FCM versus
rrn and particle association effect-corrected 16S rRNA QMP in cells milliliter�1. The four points inside the
gray circle are likely outliers. After excluding these four points, data points are plotted on both linear and
log scales.
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primary production rate (r � 0.7, P � 0.001; � � 0.5, P � 0.001). Conversely, the esti-
mated total prokaryotic rRNA gene abundance was not significantly correlated with
distance to shore (r � �0.3, P � 0.05; � � �0.2, P � 0.1) but was significantly correlated
with Chl a (r � 0.6, P � 0.001; not significant by Spearman test [� � 0.3, P � 0.05]) and
significantly correlated with bacterial production measured by [3H]leucine incorpora-
tion (r � 0.7, P � 0.001; � � 0.6, P � 0.001). Looking at specific taxa, the abundance of
Polaribacter OTU5 increased significantly with increasing Chl a (r � 0.8, P � 0.001; � �

0.5, P � 0.001) (Fig. S1), which is consistent with the observations that Polaribacter
thrives during phytoplankton blooms (44, 45). The SAR11 OTU2 cell abundances did not
show a clear trend across Chl a gradients (r � �0.02, P � 0.9; � � �0.01, P � 0.9). This
could be a result of patterns at finer taxonomic scales, e.g., amplicon sequence variants
resolved down to the single-nucleotide level (46). The relative abundance of SAR11
OTU decreased with increasing Chl a (r � �0.5, P � 0.001; � � �0.5, P � 0.001), but this
could be a spurious correlation stemming from an increase in the total bacterial
abundance.

Community cooccurrence matrices based on Spearman’s correlation coefficients
(Fig. 5) showed that QMP and RMP matrices were significantly different (P � 0.001) by
the Jennrich test (47) and by the Steiger test (48). QMP resulted in more positive
correlations (270, versus 218 for RMP), mostly appearing within the prokaryotic com-
munities, and fewer negative correlations overall (124, versus 172 for RMP). Interest-
ingly, similar differences in cooccurrence patterns based on RMP and QMP have also
been observed in human gut microbiome studies using the FCM normalization method
(21).

(i) Quantitatively estimating eukaryotic phytoplankton abundances using
chloroplast 16S rRNA gene abundances. The QMPs of five eukaryotic phytoplankton
groups calculated from internal standard-normalized 18S rRNA gene abundances and
the corresponding chloroplast 16S rRNA gene counts were compared (Fig. 6). Strong
linear correlations using the type II least-square fit were observed between the chlo-
roplast 16S rRNA gene counts and genomic 18S rRNA gene counts for cryptophytes
(r2 � 0.87, P � 0.0001) and diatoms, including Fragilariopsis (r2 � 0.55, P � 0.0001),
Corethron (r2 � 0.72, P � 0.0001), and Proboscia (r2 � 0.40, P � 0.0001). A weak
correlation was observed for Phaeocystis using the type II least-square fit (r2 � 0.06,
P � 0.0001) but not with a Pearson coefficient (r2 � 0.06, P � 0.09). These results show
that eukaryotic autotroph abundances can be reliably estimated from their correspond-
ing chloroplast 16S rRNA gene abundances for the three phytoplankton groups exam-
ined, i.e., cryptophytes, diatoms, and Phaeocystis.

Chloroplast 16S rRNA genes can represent a large fraction of total community 16S
rRNA gene library reads, especially in productive oceanic regions where phototrophic
eukaryotes tend to dominate. For example, 52% of the total 16S rRNA gene reads were
annotated as chloroplasts at our study sites (averaged over all sampled stations). While
these chloroplast reads are generally discarded, they may provide valuable information
about the phototrophic eukaryote abundance without incurring the additional cost of
18S rRNA gene amplicon sequencing. Several recent studies inferred eukaryotic phy-
toplankton relative abundances from the chloroplast 16S rRNA gene reads (41, 49). The
method described here may allow for estimating the host phytoplankton abundances
from the ISN chloroplast sequences (Fig. 6).

(ii) 18S/16S rRNA gene ratios as a measure of phytoplankton ecophysiology.
ISN can also be used to quantify variability in the ratio of the chloroplast 16S rRNA gene
to the genomic 18S rRNA gene and thus to gain insight into phytoplankton ecophysi-
ology. Compared to diatoms and cryptophytes, laboratory data suggest that Phaeocys-
tis is well adapted to variability in light availability (50). This photoacclimation capacity
could result from a greater plasticity in pigments per chloroplast (51) or chloroplasts per
cell under different light regimes. The latter strategy could explain the variability in
chloroplast 16S versus genomic 18S rRNA gene reads in Phaeocystis observed in our
study. As shown in Fig. 6E, the ratios of Phaeocystis chloroplast 16S to genomic 18S
rRNA genes generally decreased from north to south. Phytoplankton physiology is
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influenced by sea ice dynamics at the WAP (52, 53). Considering that the ice generally
retreated from north to south, the southern communities closer to the ice edge might
have been more recently exposed to higher light levels. The northern communities, on
the other hand, had been in open water for a longer period of time, being exposed to
stronger wind-induced vertical mixing, and were therefore more likely to be light
limited. This may explain the higher chloroplast 16S/genomic 18S rRNA gene ratios in
the south. These geographic variations were consistent with changes in the relative
abundances of two Phaeocystis subclades (Fig. 6F) which may be adapted to different
light conditions. The correlation to mixed-layer depth was not as strong as that to the
geographic gradients (see Fig. S2 in the supplemental material). Overall, the chloroplast
16S/genomic 18S rRNA gene ratio could prove to be a valuable indicator of in situ algal
photophysiology adaptations when combined with laboratory experiments for further
validation.

Limitations of ISN. There are several limitations to ISN. The first issue is associated
with the extraction efficiency. Since the extraction efficiency is never 100%, the
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calculated rRNA gene abundance represents a lower bound on the true abundance.
This could partially be addressed by spiking in cells instead of genomic DNA, although
cell standards could also introduce biases due to (i) differences in extraction efficiency
between the standard cells and the natural cells and (ii) variability in the number of
genomes per cell (42). A second issue is the high uncertainty in rrn correction (54),
which is relevant only when converting rRNA gene copy numbers to cell numbers or when
combining groups with mixed rrn. For example, large eukaryotes, such as some dinofla-
gellates, could have high rrns (�1,000 copies per cell) (55), and thus their 18S rRNA gene
abundances could be orders of magnitude higher than their cell numbers. However, should
a specific OTU have a constant rrn, the relative changes in absolute abundances across
samples will still be captured because the copy numbers are proportional to the cell
density. As the rrn is more comparable at finer taxonomic levels (56), it is best to apply the
rrn normalization down to single genotypes. Defining OTUs at coarse taxonomic levels may
combine groups with differing rrns. In this case, the rRNA gene copy numbers are no longer
proportional to the true cell numbers, thus complicating the interpretation of the rRNA
gene counts. Finally, a third issue is that some eukaryotic species have high plasticity in rrn
(57). Variability in their 18S rRNA gene counts may not reflect variability in their cell
numbers. On the other hand, positive correlations of rrn versus cell biovolume have been

FIG 6 Comparison of phytoplankton abundances based on normalized genomic 18S and chloroplast 16S
rRNA genes for cryptophytes (A), Fragilariopsis (diatom) (B), Corethron (diatom) (C), and Proboscia
(diatom) (D) and for Phaeocystis in relationship to the north-south geographic gradient (color-coded by
Palmer LTER line number as an index for open water to ice edge gradient) (E) and Phaeocystis subclade
ratios calculated as ln(OTU138/OTU2) (F). OTU2 and OTU138 are the top two Phaeocystis OTUs, com-
prising 87.27% and 12.70% of the total Phaeocystis 18S rRNA gene counts, respectively. The slope and
intercept values are presented in Table S3 in the supplemental material.
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reported across different eukaryotic plankton taxon, including diatoms and dinoflagellates
(52, 54). If this relation is valid, groups with different rrns could be combined, and the rRNA
gene copy numbers could be used as an index for group-specific biomass. This is important
because biomass is often of more relevance to biogeochemical budgets (e.g., carbon and
nitrogen) than cell numbers.

PCR bias could skew the relative abundances of mixed-community members esti-
mated from the PCR products (58, 59). One main concern specific to our approach is the
biased PCR amplification caused by the varying template GC contents. Due to the triple
hydrogen bonds between G and G, templates with higher GC contents have higher
melting temperatures and are less efficiently amplified (59, 60). T. thermophilus, the 16S
rRNA internal standard used in our study, has a high GC content (69% for the whole
genome [61] and 65% for the amplified V4 region). A high GC content can cause
underestimation of the internal standard abundance and overestimation of the natural
community member abundance. A second concern is the amplification bias introduced
by the degenerate primers. DNA sequences with G/C at the degenerate position can be
overamplified compared to sequences with A/T. The deviation in PCR product due to
a single base difference at the priming site could be over 100% after 35 PCR cycles (58).
Various methods have been developed to reduce PCR biases: combining PCR replicates
(combined triplicates were used in this study), minimizing PCR cycle numbers and the
degeneracy of primers, and reconditioning PCR (62). On the other hand, despite the
significant PCR biases, intersample variability could still be precisely captured by PCR
method (58). A time series study reported that PCR primer selection affects the
estimated population abundances but not the community dynamic patterns (63).
Although the abundance estimates by PCR-based ISN may deviate from the absolute
cell numbers due to PCR bias and rrn issues, the estimated intersample variability is less
affected. Hence, this may not be as much of an issue for correlation analyses, e.g., time
series community dynamics, community cooccurrence, and correlations to environ-
mental variables.

Conclusions. Addition of internal standards to the amplicon rRNA gene sequencing
approach allowed us to quantitatively compare microbial communities across different
samples, as well as phytoplankton chloroplast 16S and genomic 18S rRNA gene
abundances. Conceptually, the ISN could provide information equivalent to qPCR
measurements targeting rRNA genes but with the advantage of examining a diverse
community in a single assay. In our case study at the WAP, significant correlations
observed in phytoplankton abundances based on 18S rRNA gene versus CHEMTAX
abundances and in total bacterial abundances based on 16S rRNA gene versus FCM
counts confirm that the ISN is quantitative. Our study also shows that chloroplast 16S
rRNA gene sequences could be used to estimate phytoplankton abundances and that
the ratio of chloroplast 16S to genomic 18S rRNA genes may be an insightful indicator
of phytoplankton in situ photophysiology. The ISN comes at a minimal cost of imple-
mentation and could be applied in conjunction with metagenomics (64). Overall, the
ISN allows for an improved statistical, and ultimately ecological, interpretation of the
rich and rapidly expanding marine microbiome data sets. More broadly, this approach
could be valuable to researchers interested in relating microbial ecology to quantitative
processes such as microbial interactions, metabolic rates, energy and material fluxes,
and eventually quantitative ecosystem modeling.

MATERIALS AND METHODS
DNA extraction with internal standard DNA addition. Samples for DNA extraction were collected

by seawater filtration (for details, see the supplemental material). Each filter with a recorded filtration
volume (4 liters for most samples) was split into two, with one half used for DNA extraction and the other
half stored for later RNA work. We note that this step could introduce errors due to an uneven cell
distribution on the filter. Just prior to DNA extraction, gDNAs from two organisms representing
eukaryotic and prokaryotic taxa not expected to be present in marine surface water samples were added
to the tube containing the sample filter and lysis buffer (see below for optimization of internal standard
addition). For the 18S rRNA gene internal standard, 50 �l of Schizosaccharomyces pombe gDNA (ATCC
[Manassas, VA, USA] 24843D-5) at 0.322 ng/�l was spiked into each sample. For the 16S rRNA gene
internal standard, 50 �l of Thermus thermophilus gDNA (ATCC 27634D-5) at 0.297 ng/�l was added to
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each sample. The internal standard working solutions were made in single-use aliquots to avoid DNA
being lost during freeze-thaw cycles. gDNA standard stock solutions and dilution concentrations were
measured using a Qubit 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). After spiking in
internal standards, DNA extraction was performed as described previously (8).

Optimizing the amount of internal standard added to a sample. In order to get enough standard
signal without overwhelming the environmental signal, we added the internal gDNA standards targeting
a final concentration of around 1% of the total 16S and 18S rRNA gene reads. The amount of the
prokaryotic genomic internal standard to spike in was based on the anticipated total extracted DNA mass
as estimated with trial samples (22). For example, if we expected 10 �g of total genomic DNA in the
sample, we added 100 ng of prokaryotic gDNA internal standard. Because the fraction of eukaryotic
gDNA in total community DNA and the eukaryotic rRNA gene copy numbers per unit weight of gDNA
are highly variable in different marine environments, a test sequencing run was conducted to optimize
the internal standard amount to be spiked in. Test libraries were constructed with representative samples
spiked with different amounts of internal eukaryotic genomic standard (16.1 ng or 3.22 ng) Schizosac-
charomyces pombe gDNA (Fig. 1B). The test amplicon libraries were subsequently sequenced using the
Illumina MiSeq platform (nano format) as a customized run at the Duke Institute for Genomic Sciences
and Policy (IGSP) with 300-bp single-coverage forward reads and 10-bp reverse reads to read the reverse
barcodes. The averaged read count per sample was 50,661 after demultiplexing (see Table S4 in the
supplemental material).

Amplicon library construction. 16S rRNA genes were amplified by PCR using V4 primer set 515F
(5=-GTGYCAGCMGCCGCGGTAA-3=) (65) and 805R (5=-GACTACNVGGGTATCTAAT-3=), modified from refer-
ences 66 and 67). 18S rRNA genes were amplified by PCR using V4 primer set EukF (5=-CCAGCASCYGC
GGTAATTCC-3=) (68) and EukR (5=-ACTTTCGTTCTTGAT-3=), modified from reference 68 as described in
reference 8, to increase coverage for haptophytes.

Dual-indexed fusion primers had 6-bp barcodes at each end, which were constructed using error-
proof Hamming codes (69). In order to improve the “low sequence diversity” issue of the rRNA amplicon
library, 0- to 5-bp heterogeneity spacers were added to each primer (70). PCRs were performed in
triplicates for each sample. 18S rRNA gene PCR and library pooling were performed as described
previously (8). 16S rRNA gene library construction was similar to that for 18S rRNA gene except that 2 U
of Platinum Taq DNA high-fidelity polymerase (Invitrogen) was added to each reaction mixture, and the
PCR annealing temperature was 60°C.

Amplicon libraries were sequenced at the Duke IGSP using the Illumina MiSeq 250PE platform for 16S
rRNA amplicons and the MiSeq 300PE platform for 18S rRNA amplicons. For each library, reads per
sample after multiplexing are reported in Table S4.

Bioinformatic analyses. For each library, paired-end reads were assembled using VSEARCH v2.3.4
(71) with quality scores of the merged bases calculated as described previously (72). Assembled reads
were further processed using USEARCH (73) and QIIME (74) as described previously (8). In brief, 16S or
18S rRNA gene reads were quality controlled, including quality filtering and chimera checking, and then
were trimmed for barcodes and primer sequences. Singletons were discarded. OTUs (97% similarity) were
then clustered using USEARCH, and the representative sequences were assigned taxonomy based on the
SILVA small-subunit (SSU) database 128 (76) using QIIME.

For the 16S rRNA gene library, sequences identified in SILVA as mitochondria were removed.
Sequences classified as chloroplasts were filtered out as a separate data set. In order to further identify
the phytoplankton host taxonomy from the chloroplast sequences, representative chloroplast sequences
were subjected to a BLAST search against the NCBI nucleotide collection database using BLAST� 2.6.0
(75). The top three hits for each sequence are reported in Table S5 in the supplemental material.

Accession number(s). Sequence data have been deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive database under accession numbers PRJNA508517 and
PRJNA508514.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.02634-18.
SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.01 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.02 MB.
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