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Abstract :   
 
The species–area relationship (SAR) constitutes one of the most general ecological patterns globally. A 
number of different SAR models have been proposed. Recent work has shown that no single model 
universally provides the best fit to empirical SAR datasets: multiple models may be of practical and theoretical 
interest. However, there are no software packages available that a) allow users to fit the full range of 
published SAR models, or b) provide functions to undertake a range of additional SAR‐related analyses. To 

address these needs, we have developed the R package ‘sars’ that provides a wide variety of SAR‐related 

functionality. The package provides functions to: a) fit 20 SAR models using non‐linear and linear regression, 

b) calculate multi‐model averaged curves using various information criteria, and c) generate confidence 
intervals using bootstrapping. Plotting functions allow users to depict and scrutinize the fits of individual 
models and multi‐model averaged curves. The package also provides additional SAR functionality, including 

functions to fit, plot and evaluate the random placement model using a species–sites abundance matrix, and 
to fit the general dynamic model of oceanic island biogeography. The ‘sars’ R package will aid future SAR 
research by providing a comprehensive set of simple to use tools that enable in‐depth exploration of SARs 

and SAR‐related patterns. The package has been designed to allow other researchers to add new functions 

and models in the future and thus the package represents a resource for future SAR work that can be built on 
and expanded by workers in the field. 
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BACKGROUND 

The species–area relationship (SAR) describes the near universally observed pattern 

whereby the number of species increases with the area sampled, and it has been 

described as one of ecology’s few laws (Rosenzweig 1995). The SAR is a fundamental 

component of numerous ecological and biogeographical theories, such as the 

equilibrium theory of island biogeography (MacArthur and Wilson 1967). In addition, 

SAR models have been widely used in applied ecology and conservation biogeography: 

for example, to predict the number of extinctions due to habitat loss (May et al. 1995). 

Numerous types of SAR have been described, and one primary dichotomy employed is 

the split of SARs into island SARs (ISARs), whereby each data point is an individual 

island or isolated sample, and species accumulation curves (SACs) that represent 

cumulative counts of increased species number with sampling area (Gray et al. 2004; 

see Scheiner 2003 for an alternative SAR typology). Whilst the remainder of the paper 

and the described R package are focused on ISARs, the models and the model fitting 

procedure can equally be applied to SACs (see Matthews et al. 2016a), although it 

should be noted that in SACs the data points are not independent of one another.  

 

Over 20 SAR models have been described in the literature (Dengler 2009, Tjørve 2009, 

Triantis et al. 2012). However, despite this wide range of models, the majority of SAR 

studies are still based exclusively on the power model (Arrhenius 1921), which if fitted 

in its non-linear (untransformed) form generally takes a convex form. Often, the log–log 

representation of the power model is used as it can be fitted using standard linear 

regression, and its parameters are more easily interpretable (Rosenzweig 1995). 

However, whilst the power model has been found to provide a reasonable fit to a wide 

range of datasets (Dengler 2009, Triantis et al. 2012, Matthews et al. 2016b), it is not 
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universally the best model, and a number of studies have reported other models to 

provide better fits to empirical data (e.g. Triantis et al. 2012, Benchimol and Peres 2013, 

Matthews et al. 2016b). The possibility of scale dependency of the form of the SAR has 

long been of interest, with, for example, a theoretical case being made for SARs at 

intermediate spatial scales being approximated by a power model, whilst at larger 

spatial scales the form of the SAR has been theorised to be sigmoidal (He and Legendre 

1996, Lomolino 2000). Additionally, it is only recently that the SAR for archipelagos as 

units of analysis and not just islands has started to be studied (e.g. Triantis et al. 2015), 

and thus we know little about the form of archipelago SARs. 

 

Due to the increased recognition of model uncertainty in SAR research, a number of 

recent studies have employed a multi-model inference approach (Burnham and 

Anderson 2002) in the analysis of SARs, whereby either (1) multiple SAR models are 

compared using various criteria (e.g. AIC) and a best model is chosen (e.g. Dengler 

2009, Benchimol and Peres 2013), or (2) multiple SAR models are fitted and a multi-

model averaged curve is calculated using, for example, AIC weights (e.g. Guilhaumon 

et al. 2008). We are not aware of any published software package that enables users to 

fit, and create multi-model averaged curves using more than eight SAR models. 

Considering currently available software, the BAT R package (Cardoso et al. 2014) 

provides functions to fit three SAR models (linear, power and logarithmic); however, 

this package is focused on general biodiversity assessment and thus does not provide 

any additional SAR functionality. The mmSAR R package (Guilhaumon et al. 2010) is 

focussed on SARs and while it allows users to fit eight SAR models using an 

information theoretic framework, it does not include several models that have been 
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found to provide the best fits to several empirical datasets (Triantis et al. 2012, 

Matthews et al. 2016b). 

 

To provide a set of tools to fill these gaps, we have developed the R package ‘sars’. The 

package provides functions to fit 20 SAR models using non-linear and linear regression, 

calculate multi-model averaged curves using various information criteria, and generate 

confidence intervals using bootstrapping. Novel features compared with mmSAR 

include (i) user-friendly functions  for plotting (the user can now plot weighted 

multimodel SAR curves along with the individual SAR model curves) and (ii) 

determining the observed shape of the model fit (i.e. linear, convex up, convex down or 

sigmoidal) and (iii) presence or not of an asymptote, and (iv) functions to fit, plot and 

evaluate Coleman’s (1981) random placement model using a species-site abundance 

matrix, and (v) to fit the general dynamic model (GDM) of island biogeography 

(Whittaker et al. 2008). In addition, the mmSAR package (which has been deprecated) 

no longer complies with recognised programming good practice (Wickham 2015), is not 

on CRAN (the main repository of R packages), and is not user friendly (e.g. it requires 

the user to load individual models prior to fitting). There was therefore a need to design 

a new package from scratch.  

 

 

METHODS AND FEATURES 

The ‘sars’ (species–area relationships) package has been programmed using standard S3 

methods and is available on CRAN (version 1.1.1; R Core Team 2017), with the 

development version on GitHub (txm676/sars), meaning researchers can easily add in 

their own models and functions and integrate these into the multi-model inference 
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framework. Thus, the package represents a resource for future SAR work that can be 

built on and expanded by workers in the field. 

 

 

Fitting individual SAR models and a set of SAR models 

The package provides functions to fit each of the 20 SAR models listed in Table 1 (see 

also Triantis et al. 2012). The ‘sar_models’ function can be used to bring up a list of the 

20 model names and Table 1 can be generated in the package using the 

‘display_sars_models’ function. With the exception of the linear model (which is fitted 

using standard linear regression), all models are fitted using non-linear regression and 

the model parameters are estimated by minimizing the residual sum of squares with an 

unconstrained Nelder-Mead optimization algorithm and the ‘optim’ R function (R Core 

Team 2017). The starting values for the parameter estimates are carefully chosen to 

avoid numerical problems and to speed up the convergence process. However, custom 

starting values can be provided for any of the 20 models using the ‘start’ argument in 

the model fit functions. 

 

Each individual model fit returns an object of class ‘sars’, which is a list of 22 elements 

containing relevant model fit information, such as the model parameter estimates, the 

fitted values, the residuals, model fit statistics (e.g. AIC, R
2
), the observed model shape 

(linear, convex or sigmoidal), whether or not the fit is asymptotic, and convergence 

information. The returned object can easily be plotted using the ‘plot.sars’ generic 

function; as this function is based on the base R plotting framework, the plot aesthetics 

can be edited using standard plotting arguments (see the ‘plot.sars’ documentation in the 

package). Summary and print generic functions are also provided for class ‘sars’; these 
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functions follow the output of the standard ‘lm’ function in the ‘stats’ R package (R 

Core Team 2017).  

 

Multiple SAR models can be fitted to the same dataset using the ‘sar_multi’ function 

and the resultant n model fit objects stored together as a ‘fit_collection’ object. This 

object is a list of class ‘sars’, where each of the n elements contains an individual SAR 

model fit. Using the ‘plot.sars’ generic function on a ‘fit_collection’ object generates a 

grid of the n individual model fit plots (Fig. 1). The output from all of the examples 

given in the paper can be found in the package vignette (available from CRAN and 

GitHub). 

 

#load an example dataset (Preston, 1962), fit the logarithmic SAR 

model, #return a model fit summary and plot the model fit. 

library(sars) 

data(galap) 

fit <- sar_loga(data = galap) 

summary(fit) 

##  

## Model: 

## Logarithmic 

##  

## Call:  

## S == c + z * log(A) 

##  

## Did the model converge: TRUE 

##  

## Residuals: 

##       0%      25%      50%      75%     100%  

## -164.000  -25.675   11.350   38.725  115.700  

##  

## Parameters: 

##      Estimate  Std. Error     t value    Pr(>|t|)        2.5%  

97.5% 

## c   0.2915341  34.5985767   0.0084262   0.9933958 -68.9056193 

69.489 

## z  30.2802630   8.3203931   3.6392827   0.0026812  13.6394768 

46.921 

##  

## R-squared: 0.49, Adjusted R-squared: 0.41 

## AIC: 141.78, AICc: 143.78, BIC: 144.1 

## Observed shape: convex up, Asymptote: FALSE 
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##  

##  

## Warning: The fitted values of the model contain negative values 

(i.e. negative species richness values) 

 

plot(fit) 

 

 

#Create a fit_collection object containing multiple SAR model fits, 

and #plot all fits. 

fitC <- sar_multi(data = galap, obj = c("power", "loga", "monod")) 

##  

##  Now attempting to fit the 3 SAR models:  

##  

## --  multi_sars --------------------------------------------------- 

multi-model SAR -- 

## > power : v 

## > loga  : v 

## > monod : v 

 

plot(fitC) #see Fig.1 

 

Model fit validation 

Model fits can be evaluated through tests of the normality and homoscedasticity of the 

residuals. Any of three tests can be selected to test the normality of the residuals: 1) the 

Lilliefors extension of the Kolmogorov normality test (the default; normaTest = 

“lillie”), 2) the Shapiro-Wilk test of normality (to be preferred when sample size is 

small; “shapiro”), and 3) the Kolmogorov-Smirnov test (“kolmo”). Alternatively, an 

option to omit a residuals normality test is provided (“none”). Three options are 

provided to check for the homogeneity of the residuals: 1) a correlation of the residuals 

with the model fitted values (the default; “cor.fitted”), 2) a correlation of the residuals 

with the area values (“cor.area”), or 3) no homogeneity test (“none”). If a test is selected 

and is significant at the 5% level a warning is provided in the model summary; 

alternatively, the full results of the three tests can be accessed in the model fit output. A 

third model validation check for negative predicted richness values (i.e. when at least 
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one of the fitted values is negative) is automatically undertaken and a warning is 

provided in the model summary if negative values are predicted. 

 

#load an example dataset, fit the linear SAR model whilst running 

residual #normality and homogeneity tests, and return the results of 

the residual #normality test 

data(galap) 

fit <- sar_linear(data = galap, normaTest = "lillie", homoTest = 

"cor.fitted") 

summary(fit) #a warning is provided indicating the normality test 

failed 

##  

## Model: 

## Linear model 

##  

## Call:  

## S == c + m*A 

##  

## Did the model converge: TRUE 

##  

## Residuals: 

##      0%     25%     50%     75%    100%  

## -107.90  -52.10  -24.15   31.75  218.00  

##  

## Parameters: 

##    Estimate Std. Error   t value  Pr(>|t|)     2.5 %   97.5 % 

## c 70.314003  25.743130  2.731370  0.016228 15.100481 125.5275 

## m  0.185382   0.072884  2.543504  0.023410  0.029060   0.3417 

##  

## R-squared: 0.32, Adjusted R-squared: 0.21 

## AIC: 146.36, AICc: 148.36, BIC: 148.68 

## Observed shape: linear, Asymptote: FALSE 

##  

##  

## Warning: The normality test selected indicated the model residuals 

are not normally distributed (i.e. P < 0.05) 

 

fit$normaTest 

## $test 

## [1] "lillie" 

##  

## [[2]] 

##  

##  Lilliefors (Kolmogorov-Smirnov) normality test 

##  

## data:  res 

## D = 0.2146, p-value = 0.04725 
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Observed model shape and identifying an asymptote  

Whilst each of the 20 models has a general shape (Tjørve 2009, Triantis et al. 2012; see 

Table 1), the actual observed shape of the model fit can be different, for some models, 

depending on the parameter estimates. This is important as the shape of the curve has 

significant implications for conservation applications and the testing of macroecological 

theory (Rosenzweig 1995, Guilhaumon et al. 2008, Triantis et al. 2012). In ‘sars’, the 

observed shape of a model fit is determined using the sequential algorithm outlined in 

Triantis et al. (2012). The shape is calculated using the model fit within the observed 

range of area values. Briefly, the algorithm works by first determining whether the fit is 

a straight line. Then, if the fit is classified as not being linear, the observed shape is 

classified as either convex or sigmoidal by analysis of the second derivative (with 

respect to area) of the model fit (the full algorithm is detailed in Triantis et al. 2012, p. 

220). There has also been considerable debate in the SAR literature as to whether or not 

the SAR is asymptotic (e.g. Williamson et al. 2001). In the ‘sars’ package, to determine 

whether a fit is asymptotic, for the relevant models the fitted model parameters are 

analysed to check whether the estimated asymptote is within the range of the sample 

data (Triantis et al. 2012).  

 

Multimodel SAR curve 

As well as fitting individual models, the package provides a function (‘sar_average’) to 

fit up to 20 models, compare the resultant fits using information criteria, and construct a 

multimodel-averaged SAR curve based on information criteria weight (see Burnham 

and Anderson 2002, Guilhaumon et al. 2008, 2010). The multimodel average curve is 

constructed as a linear combination of individual model fits by multiplying the 
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predicted richness values of each of the successfully fitted models by the model’s 

information criterion weight, and then summing the resultant values across all models 

(Burnham and Anderson 2002). Three information criteria are available in the package: 

AIC, AICc and BIC (see Burnham and Anderson 2002). Confidence intervals around the 

multimodel averaged curve can be calculated using a non-parametric bootstrap 

algorithm described in Guilhaumon et al. (2010). Briefly, each of the SAR models used 

in the ‘sar_average’ function is fitted to the data, and the fitted values and residuals 

stored. The residuals are then transformed using the approach in Davison and Hinkley 

(1997, p.259). For each bootstrap sample, an individual model fit is selected with the 

probability of selection being equal to that model’s information criterion weight. The 

transformed residuals from this fit are then sampled with replacement and added to the 

model’s fitted richness values. The ‘sar_average’ function is then used to fit all 

candidate SAR models to this bootstrapped set of response values, and the multimodel 

averaged fitted values stored. Percentile confidence intervals are then calculated using 

all bootstrapped fitted values, following Buckland et al. (1997). 

 

The ‘sar_average’ function can be used without specifying any models, in which case 

the package attempts to fit each of the 20 models in Table 1; alternatively, a vector of 

model names or a ‘fit_collection’ object (generated using the ‘sar_multi’ function) can 

be provided using the ‘obj’ argument. The three model validation tests listed above 

(normality and homogeneity of residuals, and negative predicted values) can be 

selected; if any model fails one or more of the tests during the fitting process it is 

removed from the resultant multimodel SAR curve. The output of the ‘sar_average’ 

function is a list of class ‘multi’ and class ‘sars’, with two elements. The first element 

(‘mmi’) contains the multi model inference (fitted values of the multimodel SAR 
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curve), and the second element (‘details’) contains a range of information regarding the 

fitting process, including the successfully fitted models, the models removed due to 

failing any of the validation tests, and the information criterion values, delta values and 

weights for the successfully fitted models. The returned object can easily be plotted 

using the ‘plot.multi’ generic function, and multiple plot options are available (using the 

‘type’ argument; see Fig. 2). The fits of all the successfully fitted models and the 

multimodel SAR curve (with or without confidence intervals) can be plotted together 

(‘type’ = “multi”), and a barplot of the information criterion weights of each model can 

also be produced (‘type’ = “bar”).  

 

#load an example dataset (Niering, 1963), run the ‘sar_average’ 

function #using a vector of model names and with no model validation 

tests, and #produce the plots in Figure 2 of the paper 

data(niering) 

#run the ‘sar_average’ function using a vector of model names 

fit <- sar_average(data = niering, obj =   

c("power","loga","koba","mmf","monod","negexpo","chapman",

"weibull3","asymp"), normaTest = "none", homoTest = 

"none", neg_check = FALSE, confInt = TRUE, ciN = 50)  

##  

##  Now attempting to fit the 9 SAR models:  

##  

## --  multi_sars --------------------------------------------------- 

multi-model SAR -- 

## > power    : v 

## > loga     : v 

## > koba     : v 

## > mmf      : v 

## > monod    : v 

## > negexpo  : v 

## > chapman  : Warning: could not compute parameters statistics 

## > weibull3 : v 

## > asymp    : x 

##  

## 1 models could not be fitted and have been excluded from the multi 

SAR 

##  

## All models passed the model validation checks 

##  

## 8 remaining models used to construct the multi SAR: 
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## Power, Logarithmic, Kobayashi, MMF, Monod, Negative exponential, 

Chapman Richards, Cumulative Weibull 3 par.  

## -------------------------------------------------------------------

------------------ 

##  

## Calculating sar_multi confidence intervals - this may take some 

time: 

 
par(mfrow = c(3,1)) 

#plot all model fits with the multimodel SAR curve 

plot(fit, ModTitle = "a) Multimodel SAR") 

 

#plot the multimodel SAR curve (with confidence intervals; see 

explanation #in the main text, above) on its own 

plot(fit, allCurves = FALSE, ModTitle = "c) Multimodel SAR with 

confidence intervals", confInt = TRUE) 

 

#Barplot of the information criterion weights of each model 

plot(fit, type = "bar", ModTitle = "b) Model weights", cex.lab = 1.3) 

 

Additional functions 

In addition to the main functions used to fit and compare the 20 SAR models, the ‘sars’ 

package provides additional functions for specific SAR-based analyses. First, a function 

is provided to fit the log–log version of the power model (a function that is often fitted 

in SAR studies; Rosenzweig 1995) and compare parameter values with those generated 

using the non-linear power model. The log–log version of the power model is not 

equivalent to its non-linear counterpart because of non-equivalence in the study of the 

variation in a variable and in its transformation (Gitay et al. 1991, He and Legendre 

1996), and bias of back-transformed results obtained on a logarithmic scale (Fattorini 

2007). Second, a function has been added that enables the fitting of Coleman's (1981) 

random placement model to a species/sites abundance matrix. According to this model, 

the number of species occurring on an island depends on the relative area of the island 

and the regional relative species abundances. The fit of the random placement model 
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can be determined through use of a diagnostic plot (which can be generated using the 

‘plot.coleman’ function) of island area (log transformed) against species richness, 

alongside the model’s predicted values (see Wang et al. 2010, Matthews et al. 2015). 

Following Wang et al. (2010), the model is rejected if more than a third of the observed 

data points fall beyond one standard deviation from the expected curve. Finally, a 

function is provided to fit the general dynamic model of island biogeography (Whittaker 

et al. 2008) using three different SAR models (linear, logarithmic and power).  

 

#load an example dataset, fit the log-log power model, return a model 

fit #summary and plot the model fit. When ‘compare’ == TRUE, the non-

linear #power model is also fitted and the resultant parameter values 

compared. #If any islands have zero species, a constant (‘con’) is 

added to all #species richness values. 

data(galap) 

fit <- lin_pow(dat = galap, compare = TRUE, con = 1) 

summary(fit) 

## Model = Log-log power 

##  

## Call: 

## lm(formula = S ~ A, data = log.data) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -1.3591 -0.7584  0.1177  0.6009  1.0739  

##  

## Coefficients: 

##      Estimate Std. Error t value Pr(>|t|)     

## LogC  3.01865    0.35442   8.517 6.56e-07 *** 

## z     0.33854    0.08523   3.972  0.00139 **  

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 0.7626 on 14 degrees of freedom 

## Multiple R-squared:  0.5298, Adjusted R-squared:  0.4962  

## F-statistic: 15.78 on 1 and 14 DF,  p-value: 0.001391 

##  

## Power (non-linear) parameters: 

##  c = 33.18  

##  z = 0.28 

 

plot(fit) 
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#load an example dataset, fit the random placement model and plot the 

#model fit and standard deviation. The ‘data’ argument requires a 

species-#site abundance matrix: rows are species and columns are 

sites. The area #argument requires a vector of site (island) area 

values. 

data(cole_sim) 

fit <- coleman(data = cole_sim[[1]], area = cole_sim[[2]]) 

plot(fit, ModTitle = "Hetfield") 

 

#load an example dataset, fit the GDM using the logarithmic SAR model, 

and #compare the GDM with three alternative (nested) models: area and 

time #(age of each island), area only, and intercept only. 

data(galap) 

galap$t <- rgamma(16, 5, scale = 2)#add a random time variable 

gdm(data = galap, model = "loga", mod_sel = TRUE) 

 

##  

##  GDM fit using the logarithmic SAR model  

##  

## GDM model summary: 

##  

## Nonlinear regression model 

##   model: SR ~ Int + A * log(Area) + Ti * Time + Ti2 * Time^2 

##    data: data 

##      Int        A       Ti      Ti2  

## -195.933   35.336   38.536   -1.876  

##  residual sum-of-squares: 73750 

##  

## Number of iterations to convergence: 1  

## Achieved convergence tolerance: 3.146e-08 

##  

## All model summaries: 

##  

##                 RSE      AIC Delta.AIC 

## A          74.44350 187.1908  0.000000 

## A + T      77.22723 189.1799  1.989046 

## GDM        78.39534 190.3796  3.188759 

## Intercept 100.32744 195.8435  8.652648 

 

CONCLUSIONS 

The SAR has been a cornerstone of ecological and biogeographical science for almost a 

century (Arrhenius 1921, MacArthur and Wilson 1967, Rosenzweig 1995) and its form 

and fit are still of great significance in both theoretical (Storch 2016) and applied 
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(Chisholm et al. 2018) contexts. The development of the ‘sars’ R package should aid 

future SAR research by providing a comprehensive set of tools that enable in-depth 

exploration of SARs and SAR-related patterns. In addition, the package has been 

designed in such a way as to allow other SAR researchers to add (e.g. via GitHub) new 

functions and models in the future to ensure the package is of lasting value. For 

example, future additions to the package could include the suite of countryside 

biogeography SAR models that have recently been published (Pereira et al. 2014), 

standard SAR functions not so far incorporated (see Dengler 2009, 2010, Tjørve 2009), 

or functions specifically intended for analysis of species accumulation curves 

(Matthews et al. 2016a) or endemics–area relationships. Finally, whilst the focus of this 

paper has been on classic SARs, there is no reason that the functionality in the ‘sars’ 

package cannot be used to analyse other diversity–area relationships (e.g. functional or 

phylogenetic diversity–area relationships, Whittaker et al. 2014, Mazel et al. 2015). 

Application of the full set of 20 models, in addition to the multimodel SAR framework, 

included in the ‘sars’ package to a wider range and type of data (e.g. trait and 

phylogenetic data) will likely be revealing and will help in improving our understanding 

of SARs, and diversity–area relationships more generally.  

 

 

DATA ACCESSIBILITY 

The most recent stable version of the package is freely available from CRAN 

(https://CRAN.R-project.org/package=sars), whilst the development version is hosted 

on GitHub (https://github.com/txm676/sars). Version 1.1.1 of the package, presented in 

this article, has been archived on the Zenodo research data repository (DOI: 

10.5281/zenodo.2573067). 
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FIGURE LEGENDS 

FIGURE 1 The fit (solid lines) of the linear and power SAR models to data of plant 

species richness (solid circles) on 16 Galapagos islands (Preston 1962; the largest island 

provided in the source paper has been excluded as it is almost six times larger than the 

second largest). The code to produce the plots is given as an example in the ‘Fitting 

individual SAR models and a set of SAR models’ section. The R
2 

values for the linear 

and power models are 0.32 and 0.49. 
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FIGURE 2 The different plots that can be generated from an object of class ‘multi’. a) 

the fit of eight SAR models alongside a multimodel SAR curve generated using AICc 

weights; b) the multimodel SAR curve plotted on its own with confidence intervals (the 

confidence intervals are generated using bootstrapping - see details in the main text); c) 

a barplot of the AICc weights of the different models (the model names on the x-axis 

match up with legend in (a)). The data are the number of plants species recorded on 32 

islands in the Kapingamarangi Atoll (Niering 1963; the shape of the SAR curves differs 

from those presented in the source paper as Niering used a semi-log plot). The code to 

produce the plots is given as an example in the ‘Multimodel SAR curve’ section. 
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TABLE LEGEND 

TABLE 1 The 20 SAR models available in the ‘sars’ R package. The name of the 

function to fit each of the models in the package is shown, as is the number of 

parameters of each model, the model equation, and the model shape. For the model 

equation, A = sample area, and d, c, z and f are free parameters. Each equation is 

calculating the number of species. The model shape is the general model shape, as in 

Triantis et al. (2012). As outlined in the main text, the observed shape can deviate from 

the general model shape in cases when fitting certain models. This table can be 

generated in the package using the ‘display_sars_models’ function. *In Triantis et al. 

(2012), this model was called the exponential model. 

 

Model Function name 
No. 

parameters 
Equation Model shape 

Asymptotic sar_asymp() 3 d - c*z^A Convex 

Beta-P sar_betap() 4 
d*(1-(1+(A/c)^z)^-

f) 
Sigmoid 

Chapman–

Richards 
sar_chapman() 3 

d * (1 - exp(-

z*A)^c) 
Sigmoid 

Logarithmic* sar_loga() 2 c+z*log(A) Convex 

Extended Power 1 sar_epm1() 3 c*A^(z*A^-d) Convex/Sigmoid 

Extended Power 2 sar_epm2() 3 c*A^(z-(d/A)) Sigmoid 

Gompertz sar_gompertz() 3 
d*exp(-exp(-z*(A-

c))) 
Sigmoid 

Kobayashi  sar_koba() 2 c*log(1 + A/z) Convex 

Linear sar_linear() 2 c + z*A Linear 

Logistic sar_heleg() 3 c/(f + A^(-z)) Sigmoid 

Monod sar_monod() 2 d/(1+c*A^(-1)) Convex 

Morgan–Mercer–

Flodin 
sar_mmf() 3 

d/(1+c*A^(-z)) 
Sigmoid 

Negative 

Exponential 
sar_negexpo() 2 

d*(1-exp(-z*A)) 
Convex 

Persistence 

Function 1 
sar_p1() 3 

c*A^z * exp(-d*A) 
Convex 

Persistence 

Function 2 
sar_p2() 3 

c*A^z * exp(-d/A) 
Sigmoid 

Power sar_power() 2 c*A^z Convex 

Power 

Rosenzweig 
sar_powerR() 3 

f + c*A^z 
Convex 

Rational sar_ratio() 3 (c + z*A)/(1+d*A) Convex 

Weibull-3 sar_weibull3() 3 d*(1 - exp(-c*A^z)) Sigmoid 

Weibull-4 sar_weibull4() 4 
d * (1 - exp(-

c*A^z))^f 
Sigmoid 

 


