
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
Journal of Marine Systems 
August 2019, Volume196, Pages 97-106  
https://doi.org/10.1016/j.jmarsys.2019.03.007 
https://archimer.ifremer.fr/doc/00487/59843/ 

Archimer 
https://archimer.ifremer.fr 

Multi-model remote sensing assessment of primary 
production in the subtropical gyres 

Regaudie-de-Gioux Aurore 1, *, Huete-Ortega M. 2, 3, Sobrino C. 3, López-Sandoval D.C. 4,  
González N. 5, Fernández-Carrera A. 3, Vidal M 6, Marañón E. 3, Cermeño P. 7, Latasa M. 8,  

Agustí S. 1, 4, Duarte C.M. 1, 4 

 
1 Mediterranean Institute for Advanced Studies (IMEDEA), Calle Miquel Marques 21, 07190 Esporles, 
Spain  
2 Oroboros Instruments, Schöpfstraße 8, 6020 Innsbruck, Austria  
3 Departamento de Ecología y Biología Animal, Universidade de Vigo, 36310 Vigo, Spain  
4 King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), 
Thuwal 23955-6900, Saudi Arabia  
5 Area de Biodiversidad y Conservación, ESCET, Universidad Rey Juan Carlos, Tulipán s/n., Móstoles 
28933, Madrid, Spain  
6 Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, 
Diagonal, 643, 08028 Barcelona, Spain  
7 Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, 
Spain  
8 Spanish Institute of Oceanography, Avda. Principe de Asturias 70bis, 33212 Gijón, Spain 

* Corresponding author : Aurore Regaudie-de-Gioux, email address : aregaudi@ifremer.fr  
 

Abstract :   
 
The subtropical gyres occupy about 70% of the ocean surface. While primary production (PP) within 
these oligotrophic regions is relatively low, their extension makes their total contribution to ocean 
productivity significant. Monitoring marine pelagic primary production across broad spatial scales, 
particularly across the subtropical gyre regions, is challenging but essential to evaluate the oceanic 
carbon budget. PP in the ocean can be derived from remote sensing however in situ depth-integrated 
PP (IPPis) measurements required for validation are scarce from the subtropical gyres. In this study, we 
collected >120 IPPis measurements from both northern and southern subtropical gyres that we 
compared to commonly used primary productivity models (the Vertically Generalized Production Model, 
VGPM and six variants; the Eppley-Square-Root model, ESQRT; the Howard–Yoder–Ryan model, 
HYR; the model of MARRA, MARRA; and the Carbon-based Production Model, CbPM) to predict 
remote PP (PPr) in the subtropical regions and explored possibilities for improving PP prediction. Our 
results showed that satellite-derived PP (IPPsat) estimates obtained from the VGPM1, MARRA and 
ESQRT provided closer values to the IPPis (i.e., the difference between the mean of the IPPsat and 
IPPis was closer to 0; |Bias| ~ 0.09). Model performance varied due to differences in satellite predictions 
of in situ parameters such as chlorophyll a (chl-a) concentration or the optimal assimilation efficiency of 
the productivity profile (PBopt) in the subtropical region. In general, model performance was better for 
areas showing higher IPPis, highlighting the challenge of PP prediction in the most oligotrophic areas 
(i.e. PP < 300 mg C m−2 d−1). The use of in situ chl-a data, and PBopt as a function of sea surface 
temperature (SST) and the mixed layer depth (MLD) from gliders and floats in PPr models would 

 

https://doi.org/10.1016/j.jmarsys.2019.03.007
https://archimer.ifremer.fr/doc/00487/59843/
http://archimer.ifremer.fr/
mailto:aregaudi@ifremer.fr


2  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

improve their IPP predictions considerably in oligotrophic oceanic regions such as the subtropical gyres 
where MLD is relatively low (<60 m) and cloudiness may bias satellite input data. 
 

Highlights 

► PP model skills were compared with in situ production across subtropical oceans. ► PPsat estimates 
obtained from some models provided closer values to the in situ PP. ► Model skill varied due to 
differences in predictions of in situ parameters. ► Model performance was better for areas showing 
higher IPPis. 
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considerably in oligotrophic oceanic regions such as the subtropical gyres where MLD 

is relatively low (< 60 m) and cloudiness may bias satellite input data. 

Keywords: Primary production, remote PP model, skills, subtropical gyre 

 

1. Introduction 

 Subtropical gyres are extensive regions that occupy about 70 % of the ocean 

surface. While primary production per unit of surface within these regions is relatively 

low (e.g. Jones 1996, Karl et al. 1996, Karl et al. 2001, Teira et al. 2002), their immense 

size makes their total contribution to ocean productivity significant. In these regions, 

phytoplankton growth rates and productivity show large variability with minimal net 

changes in biomass (Laws et al. 1987, Marañón et al. 2000, Marañón et al. 2003). 

Monitoring marine pelagic primary production across broad spatial scales, particularly 

across the subtropical gyre regions, is indeed essential to evaluate its role in the oceanic 

carbon budget and food webs (Volk & Hoffert 1985; Platt & Sathyendranath, 1988; 

Longhurst et al. 1995; Field 1998; Duarte et al. 1999).  

 Over the last two decades, significant efforts have been made to derive models 

that estimate marine primary production from remote sensing products (PPr, e.g. Platt & 

Sathyendranath, 1988; Lee et al., 1996; Behrenfeld & Falkowski, 1997; Behrenfeld et 

al. 2005; Westberry et al., 2008; Silsbe et al. 2016). PPr models are able to estimate the 

evolution of PP over different time scales (daily, monthly and annually) covering almost 

all parts of the globe. PPr models are mainly parameterized using remote sensing as 

input data and may differ in their complexities when dealing with depth and irradiance 

wavelength-dependent variability. However, the performance in reproducing in situ 

depth-integrated PP (IPP
is
) vary across regions, so evaluation of multiple models by 

comparing satellite depth-integrated PP (IPP
sat

) derived from PPr models and IPP
is
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across different regions is important to guide model selection (e.g. Behrenfeld & 

Falkowski 1997b; Campbell et al., 2002; Westberry et al., 2008; Friedrichs et al., 2009).  

Performance assessment of PPr models in the five subtropical gyre regions of the 

ocean has been uneven (e.g. Campbell et al., 2002; Westberry et al., 2008; Friedrichs et 

al., 2009), so that the evaluation of their performance for these areas is still insufficient. 

Indeed, some studies covered a broad but still limited spatial area (e.g. ~ 50 stations 

between North Pacific and South Pacific subtropical gyres in Friedrichs et al. 2009; ~ 

30 stations between North Atlantic and South Atlantic subtropical gyres in Tilstone et 

al. 2009). Other studies have analyzed PPr model skills using long-term time-series 

data, however they only included data from two stations located in subtropical gyre 

regions, specifically in the North Pacific subtropical gyre (ALOHA station of Hawaii 

Ocean Time series, HOT) and the North Atlantic subtropical gyre (Bermuda Atlantic 

Time-series Study, BATS) (Westberry et al. 2008, Saba et al. 2011; Ma et al. 2014). 

Therefore, the performance of PPr models in the North and South Pacific subtropical 

gyre regions remain insufficiently evaluated, whereas no study has been conducted yet 

on the performance of PPr models in the Indian subtropical gyre region. 

Due to the significant contribution of subtropical gyres to total oceanic primary 

production, it is essential to improve our knowledge on the performance of PPr models 

in predicting PP in these regions. This requires the comparison between IPP
is
 and IPP

sat
 

data covering a broader spatial scale across the subtropical gyres so far reported. Here, 

we provide more than 120 IPP
is
 measurements derived from the standard 

14
C method 

along the Malaspina Circumnavigation Expedition (MCE), which circumnavigated the 

subtropical and tropical ocean between 2010 and 2011 (Duarte, 2015). It encompassed 

fourteen Longhurst biogeochemical provinces (Longhurst, 1995), including four 

subtropical gyre regions, and the poorly-sampled Indian subtropical gyre region. The 
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MCE lasted 7 months and was divided by 6 transects of which each could be considered 

as an oceanic cruise on its own. These IPP
is
 data allowed to compare the performance of 

five commonly used remote PP models and explored afterward possibilities for 

improving their performances to support improved remote sensing assessment of PP in 

subtropical gyres. 

 

2. Methods 

2.1. Study area 

 Seawater samples were collected during the Malaspina Circumnavigation 

Expedition on board the R/V Hespérides from December 2010 to July 2011 (Fig. 1). 

The MCE was divided in seven transects during which IPP
is
 was measured: 1) from 

Cádiz, Spain to Rio de Janeiro, Brazil (Station 6 – 26) from December 2010 to January 

2011; 2) from Rio de Janeiro to Cape Town, South Africa (Station 27 – 44) from 

January 2011 to February 2011; 3) from Cape Town to Perth Australia (Station 46 – 68) 

from February 2011 to March 2011; 4) from Perth to Sydney, Australia (Station 69 – 

76) in March 2011; 5) from Auckland, New Zealand to Honolulu, Hawaii (Station 83 –

99) from April 2011 to May 2011; 6) from Honolulu to Panama, Panama (Station 104 – 

126) from  May 2011 to June 2011; and 7) from Cartagena de Indias, Colombia to 

Cartagena, Spain (Station 127 – 147) from June 2011 to July 2011. Sampled stations 

were grouped into different provinces following Longhurst classification (Longhurst, 

1995): the North Atlantic gyre region (NAGR) comprises all sampling sites located 

between the North Atlantic Subtropical and Tropical Gyral Provinces (NATR and 

NASE); the South African Coastal region (SACR) comprises all the stations found in 

the Benguela current (BENG) and the East African coastal current (EAFR); the West 
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Australian Current region (WACR) comprises all stations located in the Western 

Australian and Indonesian coasts (AUSW and SSTC, respectively).
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Figure 1. Location of the sampled station during the MCE and Longhurst biogeochemical ocean provinces (Lonhgurst, 1998; 2006). The 

provinces where IPP
is
 were sampled were: (2) Australia-Indonesia Coastal Province, AUSW; (3) Benguela Current Coastal Province, 

BENG; (30) Caribbean Province, CARB; (10) E. Africa Coastal Province, EAFR; (33) Indian S. Subtropical Gyre Province, ISSG; (45) N. 

Atlantic Subtropical Gyral Province (East), NASE; (34) N. Atlantic Tropical Gyral Province, NATR; (36) N. Pacific Tropical Gyre 

Province, NPTG; (37) Pacific Equatorial Divergence Province, PEQD; (35) N. Pacific Equatorial Countercurrent Province, PNEC; (38) 

South Atlantic Gyral Province, SATL; (51) S. Pacific Subtropical Gyre Province, SPSG; (52) S. Subtropical Convergence Province, SSTC; 

(40) Western Tropical Atlantic Province, WTRA. Grey numbers represent the provinces referenced by Lonhgurst, 1998 and 2006. For a 

complete list of provinces, please to the Table S1 in Pinedo-González et al. (2015). Blue numbers represent the station number during MCE 

and red solid lines represent the MCE transects.
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We maintained the same provinces codes as Longhurst (Longhurst, 1995) for the 

stations located in the South Atlantic Gyral Province (SATL), in the Indian South 

Subtropical Gyre Province (ISSG), in the South Pacific Subtropical Gyre Province 

(SPSG), in the North Pacific Tropical Gyre Province (NPTG) and in the North Pacific 

Equatorial Countercurrent Province (PNEC). 

 

2.2. In situ measurement of chlorophyll-a   

 Chlorophyll-a concentration was measured by High-Performance Liquid 

Chromatography (HPLC) as described in Zapata et al. (2000) with minor modifications 

(Latasa, unpublished). 2 L of seawater were filtered onto 25 mm glass fiber filters 

(Whatman GF/F) and frozen at - 80 °C until analysis by HPLC. Pigments were 

extracted with 2.5 mL acetone 90 % containing trans-ß-apo-8'-carotenal as internal 

standard, sonicated and stored at - 20 °C for 24 h. A large volume (720 – 1400 µL) of 

extract was injected onto an Agilent 1200 HPLC system and analyzed following the 

procedure described by Latasa (2014). The analytical precision of the method is better 

than 1 % (Latasa 2014). 

 

2.3. In situ mixed layer, nitracline and euphotic depths  

 The mixed layer depth (MLD) was estimated from CTD data (SBE911plus, Sea-

Bird Electronics) using the threshold method with a finite difference criterion, as the 

depth at which the potential density changed by 0.125 kg m
-3

 relative to the one at a 

near-surface reference level (usually 6 m), according to Monterey & Levitus (1997). 

 The nitracline was determined from nitrate plus nitrite concentration data, 

measured on a segmented flow Skalar auto-analyser by standard methods (Grasshoff et 

al., 1999, Moreno-Ostos, 2012), as the depth, from the surface, where the first sustained 
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increase of the concentration gradient is observed. It is a region of approximately 

maximum and steady concentration gradient in the first 200 m of the vertical profile, 

including 4 – 6 nitrate data points.  

 At each station, vertical profiles of underwater solar radiation were measured at 

noon (between 11 am to 1 pm local time) using a PRR-800 Underwater Profiling 

Radiometer (Biospherical Instruments). The profiling submarine radiometer measured 

underwater radiation in the ultraviolet and -visible bands. The euphotic zone depth (Zeu) 

was determined as the depth at which the light intensity reached the 1 % of its intensity 

at the surface.   

 

2.5. In situ measurement of primary production 

 Phytoplankton primary production was measured at 124 stations with the 
14

C-

uptake technique, following the procedures detailed in Marañón et al. (2000). Seawater 

was sampled from five depths in the euphotic zone corresponding to 100 % (ca. 3 m 

depth), 50 %, 20 %, 7 % and 1 % of incident Photosynthetically Active Radiation 

(PAR). For each depth, four 72 mL polystyrene bottles (three clear bottles and one dark 

bottle) were filled with unfiltered seawater, inoculated with 10 – 20 µCi NaH
14

CO3 and 

incubated on-deck from dawn to dusk. Temperature and irradiance in the incubators 

simulated the water temperature and the incident irradiance at the corresponding depth 

of each sample by using a combination of neutral density and blue filters (Mist Blue, 

ref. 061, Lee Filters ®). After incubation, samples from three of the five depths (100 %, 

20 % and 1 % PAR) were sequentially filtered through 20, 2 and 0.2 µm polycarbonate 

filters while the other depths (50 % and 7 % PAR) were directly filtered by 0.2 µm. 

Immediately after filtering, filters were then exposed to concentrated HCl fumes at least 

12 h to remove the non-fixed inorganic 
14

C. Filters were placed in scintillation vials to 
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which 5 mL of liquid scintillation cocktail was added. The radioactivity on each filter 

(disintegrations per minute, DPM) was determined using a Wallac scintillation counter. 

To compute the rate of photosynthetic carbon fixation, the dark-bottle DPM was 

subtracted from the light-bottle DPM values. A constant value of 24,720 µg L
-1

 (or 

2,060 µmol L
-1

) was assumed for the concentration of dissolved inorganic carbon for 

surface waters in tropical ocean (Key et al., 2004). A correction factor of 1.05 was 

applied to this constant value for discrimination isotopic. Total primary production was 

calculated as the sum of the primary production on each size class. For all triplicate 

measurements of total primary production conducted during MCE (n = 522), the mean 

coefficient of variation was 23 %. In situ depth-integrated primary production (IPP
is
, mg 

C m
-2

 d
-1

) was calculated by the trapezoidal integration of measurements from the 

surface to 1 % PAR depth. The IPP
is
 data set is available from Regaudie-de-Gioux et al. 

2019. The original IPP
is 

measurements were reported as hourly rates and then were 

converted to daily rates multiplying the hourly rates by the corresponding day length at 

each sampled station. The highest hourly chl-a-specific primary production (P
B
, mg C 

chl-a
-1

 h
-1

) in the water column was defined as the observed in situ P
B

opt (Behrenfeld & 

Falkowski 1997b) for each station in this study. The variability in IPP
is
 along MCE 

transects is described in Pinedo-González et al. (2015). 

 

2.6. Input data variables for IPP
sat

: Satellite-derived and modelled variables
 

 Ocean color models typically use Level-3, monthly or 8-day, satellite-derived 

input data. In this study, daily standard level 3 (i.e. mapped processed to surface 

quantities) products of PAR, ocean color index (OCI)-based chl-a, diffuse attenuation at 

490 nm (Kd(490)), sea surface temperature (SST) and particulate backscatter coefficient 

at 443 nm (bbp(443) from GSM model) were provided by the OceanColor Web 
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(https://oceancolor.gsfc.nasa.gov) and were calculated from the Moderate Resolution 

Imaging Spectroradiometer aboard the Aqua NASA spacecraft (MODISA). Spatial 

resolution of all products was ~ 9 km at the Equator. Additionally, the mixed layer 

depth (MLD) and the nitracline depths (ZNO3) were modelled variables for IPP
sat

. The 

daily product of MLD was provided by the Ocean Productivity Online Data 

(https://orca.science.oregonstate.edu). ZNO3 were calculated from monthly 

climatological nutrient fields reported in the World Ocean Atlas 2013 (Garcia et al., 

2014) at 1-degree resolution, and defined as the first depth at which nitrate + nitrite 

exceeded 0.5 µM. All variables were extracted from 1 pixel radius windows (i.e. 3 x 3-

pixel box) centered at the pixel nearest to the in situ sample and we calculated the 

average of each window (Bailey & Werdell 2006). Satellite variables were excluded 

when more than 70 % were masked. We used this matchup criteria to increase the 

number of matchups, particularly in subtropical areas where cloudiness is important 

increasing satellite masked data. 

 

2.7. Satellite algorithms 

 In the present study, we did not focus on the comparison of the Primary 

Production Algorithm Round Robin (PPARR) as it has already been thoroughly 

assessed (e.g. Campbell et al., 2002; Westberry et al., 2008; Friedrichs et al., 2009). 

Instead, we used several well-known PPr models (Table 1) that are commonly used to 

estimate satellite IPP (IPP
sat

) and assessed their performance in the subtropical gyres. 
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Algorithm ME Fmed Fmin Fmax RMSD B RMSDCP N

VGPM1 -0.06 1.07 0.54 2.09 0.26 0.04 0.26 97

VGPM2 -1.27 2.01 1.06 3.81 0.39 0.32 0.24 97

CbPM -0.70 2.02 0.85 4.78 0.33 0.23 0.27 65

AphPP -4.38 11.28 6.65 19.16 0.59 1.04 0.12 37

Algorithm Hemisphere ME Fmed Fmin Fmax RMSD B RMSDCP N

VGPM1 total -0.06 1.07 0.54 2.09 0.26 0.04 0.26 97

 

Table 1 – Model descriptions 

 First, we used the most widely utilized PPr model, the Vertically Generalized 

Production Model (VGPM) based on chl-a (Behrenfeld & Falkowski 1997). The VGPM 

uses remote inputs of chl-a, SST and PAR. Here we proposed several VGPM variants 

and alternative methods to estimate P
B

opt. The first VGPM variant (here called VGPM1) 

is the original VGPM as in Behrenfeld & Falkowski 1997 where the P
B

opt was obtained 

from a 7
th

-order polynomial SST regression (here called P
B

opt1). For the VGPM2 

variant, P
B

opt was estimated after Eppley (1972) as implemented by Antoine and Morel 

(1996) as an exponential function of temperature (here called P
B

opt2). In the VGPM3 

variant, P
B

opt was estimated after Kameda and Ishizaka (2005) as inversely proportional 

to phytoplankton size (here called P
B

opt3). Additionally, we modified these three VGPM 

variants with an alternative method to estimate Zeu, originally estimated from chl-a 

concentration (Morel & Berthon, 1989). The three extra variants of the VGPM models 

cited above (called hereafter, VGPM11, VGPM22 and VGPM33) included a modified 

Zeu estimated from the diffuse attenuation coefficient of PAR (m
-1

) (following Mobley, 

2004). 

 Additionally, we used the simplest PPr model, the Eppley-Square-Root model 

(ESQRT; Eppley et al., 1985). The ESQRT model uses only chl-a as remote inputs 

assuming that the standing stock is the sole determinant of photosynthetic rate. It 
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ignores any external forcing or changes in physiological state. We also used the original 

Howard–Yoder–Ryan model (HYR; Howard & Yoder 1997) which for many years was 

used as a standard MODIS algorithm. The maximum growth rate is parameterized here 

as a function of SST according to Eppley (1972). PPr is integrated here to the MLD 

rather than the euphotic depth. The HYR model uses remote inputs as chl-a, SST, PAR 

and MLD. Furthermore, we used the PPr model described by Marra et al. (2003) 

(MARRA) that is based on chlorophyll-specific absorption parameterized by SST and 

maximum quantum yield. The MARRA model uses chl-a, SST and PAR as remote 

inputs. Finally, we used the Carbon-based Production Model (CbPM; Westberry et al. 

2008). The CbPM uses remote inputs as chl-a, bbp(443), PAR, Kd(490), MLD and ZNO3. 

The CbPM utilizes bbp(443) to derive phytoplankton carbon biomass. 

 

2.8. Model validation 

 Performance of each PPr model was analyzed using the total root mean square 

difference (RMSD; Campbell et al., 2002):   

       
 

 
       

    
   

        (1) 

where (i) = log10[IPP
sat

(i)]-log10[IPP
is
(i)] and N is the total number of paired data. The 

model performance and predictive skills increase as RMSD values become closer to 0. 

RMSD captures a model’s ability to represent both the mean and the variability of in 

situ data and thus, is composed by the bias (i.e. the difference between the means, B) 

and the unbiased RMSD (i.e. representing the difference of variability, uRMSD): 

                         (2) 

                                    (3) 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

14 

When B is negative or positive, model underestimates or overestimates IPP
is
, 

respectively. Model estimation is closer to IPP
is
 when B is closer to 0. The differences 

in the variability of IPP
is
 and IPP

sat
 are smaller when uRMSD is closer to 0. 

Target diagram (Jolliff et al. 2009) will be used to illustrate model performances. This 

diagram allows visualizing bias, uRMSD, and total RMSD for all models on a single 

plot. For that, these quantities are normalized by the standard deviation of log10 IPP
is
 (σd 

= 0.26): 

    
  
           (4) 

                                   (5) 

where σm is the standard deviation of log10 IPP
sat

. 

The target diagram provides information about whether the model standard deviation is 

larger (uRMSD* > 0) or smaller (uRMSD* < 0) than the in situ standard deviation and 

on the presence of positive (B* > 0) or a negative (B* < 0) bias. The distance of each 

point from the origin is the standard deviation normalized total RMSD, RMSD*. Any 

points greater than RMSD* = 1 may be considered poor performers. 

The empirical cumulative distribution function (ECDF) illustrates the distribution of the 

data among values and orders the data from the smallest to the largest data.  

 

2.9. Uncertainty analysis 

 Considering that ocean color models use satellite-derived input variables, it is 

important to estimate how these data can affect their derived IPP
sat

. For that, we 

compared each station in situ variables with its respective satellite-derived variable 

when available: in situ chl-a, SST, P
B

opt, Zeu, MLD and nitracline depth with daily 

satellite chl-a, SST, P
B

opt, Zeu, MLD and nitracline depth data (for details see 2.6), 

respectively.  
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The median value of the ratio satellite to in situ inputs points to the overall bias. The 

semi-interquartile range (SIQR) provides insight on the spreading data and is defined as 

followed: 

      
     

 
                (6) 

Where Q1 is the 25
th

 percentile and Q3 is the 75
th

 percentile of each series of satellite to 

in situ inputs ratio.  

The median percent difference (MPD) was calculated to measure how accurately the 

satellite inputs agree with in situ inputs. It is defined as the median of the individual 

absolute percent differences (PD) as followed: 

       
        

  
         (7) 

where Yi is the in situ inputs and Xi is the corresponding satellite-derived inputs. 

Parameters of linear regression between in situ and satellite-derived inputs were also 

evaluated. 

 

3. Results 

3.1. In situ data  

 During the MCE, IPP
is
 ranged from 42.4 mg C m

-2
 d

-1
 in the Indian Ocean 

(station 54) to 877.6 mg C m
-2

 d
-1

 in the Pacific Ocean (station 102). The region with 

the highest mean IPP
is
 was the PNEC with 434.6 mg C m

-2
 d

-1
 while the region with the 

lowest mean IPP
is
 was the ISSG with 125 mg C m

-2
 d

-1 
(Table 2). The region with the 

highest variability of IPP
is
 was SACR, while the region with the lowest variability of 

IPP
is
 was NPTG (Table 2). The mean input variables ranged as followed (Table 2): chl-

a from 0.06 mg m
-3

 (SATL) to 0.17 mg m
-3

 (SACR and WACR, respectively); Zeu from 

73 m (PNEC) to 139 m (SATL); P
B

opt from 2.01 mg C mg chl-a
-1

 d
-1

 (WACR) to 9.66 

mg C mg chl-a
-1

 d
-1

 (PNEC); SST from 19 ºC (WACR) to 29 ºC (both SPSG and 
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PNEC); MLD from 27 m (PNEC) to 75 m (NPTG); and nitracline depth from 30 m 

(PNEC) to 147 m (SATL). 

 

IPP 
is

chl- a Zeu P
B

opt SST MLD Nitracline

mg C m
-2

 d
-1

mg m
-3

m mg C mg chl- a
-1

 h
-1

ºC m m

NAGR 272.2 (± 102.9) 0.07 (± 0.06) 110 (± 20) 5.70 (± 2.52) 25.5 (± 2.5) 49 (± 16) 132 (± 43)

SATL 224.8 (± 62) 0.06 (± 0.02) 139 (± 15) 3.77 (± 1.20) 25.3 (± 2.2) 51 (± 14) 147 (± 37)

SACR 288.2 (± 232.9) 0.17 (± 0.18) 79 (± 20) 3.26 (± 2.32) 22.7 (± 2.4) 54 (± 11) 69 (± 26)

ISSG 125 (± 62) 0.06 (± 0.02) 124 (± 27) 2.82 (± 1.07) 23.9 (± 1.3) 50 (± 16) 130 (± 40)

WACR 156.5 (± 63.9) 0.17 (± 0.10) 119 (± 31) 2.01 (± 0.96) 19.1 (± 2.9) 58 (± 17) 91 (± 34)

SPSG 210.6 (± 120.8) 0.10 (± 0.04) 134 (± 27) 2.97 (± 1.63) 28.9 (± 1.1) 59 (± 8) 137 (± 23)

NPTG 183.2 (± 58.2) 0.08 (± 0.02) 115 (± 22) 2.97 (± 1.23) 24.2 (± 1.6) 75 (± 28) 128 (± 39)

PNEC 434.6 (± 193.5) 0.15 (± 0.05) 73 (± 21) 9.66 (± 3.58) 28.8 (± 0.6) 27 ( ± 12) 30 (± 17)

total 244.8 (± 146.7) 0.11 (± 0.08) 113 (± 28) 4.20 (± 2.75) 25.4 (± 3.2) 54 ( ± 22) 114 (± 48)

 

Table 2 – Means and standard deviations of in situ IPP, chl-a, Zeu, P
B

opt, SST, MLD and 

Nitracline depth for each regional group and for the whole MCE. 

 

3.2. Comparison between in situ data and input data variables for IPP
sat

 

 Input data variables for IPP
sat 

showed variable agreements with their 

corresponding in situ observed variables. Satellite SST showed very good agreement 

with in situ SST (R
2
 = 0.95, r = 0.98, MPD = 2 %) and presented the lowest spreading 

values (SIQR = 0.02) (Table 3). The rest of the input data variables for IPP
sat 

showed 

reasonable agreement with their corresponding in situ variables with R
2
 ranging from 

0.16 to 0.56, SIQR from 0.09 to 0.23 and MPD from 19 % to 35 % (Table 3). The 

lowest overall bias of input data variables for IPP
sat

 in comparison with in situ inputs 

was observed for MLD (median MLD = 0.65) (Table 3).  

R
2

Slope r N Median SIQR MPD

Chl-a 0.16 0.72 ± 0.18 0.39 93 0.89 0.23 29.87

SST 0.95 0.96 ± 0.02 0.98 121 0.98 0.02 2.25

Nitracline 0.53 0.76 ± 0.07 0.73 113 0.83 0.21 23.94

Zeu1 0.32 0.34 ± 0.05 0.56 81 0.81 0.09 19.49

Zeu2 0.23 0.56 ± 0.11 0.48 81 1.08 0.16 20.16

MLD 0.56 0.48 ± 0.04 0.75 107 0.65 0.12 35.03
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Table 3 – Uncertainty analysis on differences between in situ data and input data 

variables for IPP
sat

 with the statistics of linear regression (R
2
 and slope ± 95 % CI; Fig. 

S1), the Pearson correlation coefficient (r), the number of match-ups, the median value 

of the ratio satellite to in situ data (Median), the semi-interquartile range of satellite to 

in situ inputs ratio (SIQR) and the median percent difference between satellite and in 

situ inputs data (MPD). 

 

3.3. Model phytoplankton physiology variable 

The three P
B

opt variables modelled from satellite-derived data (P
B

opt1, P
B

opt2 and 

P
B

opt3) presented weak agreements with observed P
B

opt data (R
2
 < 0.12) and showed the 

highest spreading values (SIQR = 0.57, 0.65 and 1.13, respectively). These P
B

opt data 

showed the highest overall bias in comparison with in situ inputs (median P
Bopt

1 = 1.49, 

median P
Bopt

2 = 1.80 and median P
Bopt

3 = 2.69). 

While P
B

opt1 and P
B

opt2 were described as function of SST, P
B

opt3 and in situ P
B

opt did 

not follow any correlation with SST (Fig. 2). P
B

opt3 presented a wider value range (from 

5 to > 30 mg C mg Chl-a
-1

 d
-1

) than in situ P
B

opt (from 0.14 to < 15 mg C mg Chl-a
-1

 d
-1

) 

between 21 and 28 ºC. 
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Figure 2. Representation of the three P
B

opt algorithms used in this study and in situ P
B

opt 

in function of in situ SST. 

 

3.4. Model performance across all regions 

 The estimation of model biases allowed observing that two models 

underestimated IPP
is
 (i.e. B < 0; HYR and MARRA models) while the rest of the 

models overestimated IPP
is
 (i.e. B > 0). Furthermore, IPP

sat
 estimated from VGPM1 and 

MARRA models provided the closest to IPP
is
 (B = 0.07 and B= -0.09, respectively; 

Table 4). RMSD showed significant variability among the different models ranging 

from 0.28 (ESQRT) to 0.52 (VGPM33) (Table 4). On contrary, uRMSD did not show 

significant variability among the different models ranging from 0.26 to 0.30 (Table 4).  

All models showed relatively poor agreement with IPP
is
 with R

2
 ranging from 0.18 to 

0.45 (Table 4).  
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Model N intercept slope R 
2

RMSD B uRMSD 

VGPM1 97 143.79 ± 30.26 0.58 ± 0.11 0.22 0.31 0.07 0.30

VGPM2 97 51.70 ± 42.40 1.28 ± 0.15 0.42 0.31 0.16 0.26

VGPM3 90 269.61 ± 28.47 0.68 ± 0.10 0.31 0.40 0.30 0.27

VGPM11 97 255.35 ± 28.89 0.48 ± 0.10 0.18 0.36 0.21 0.29

VGPM22 97 178.59 ± 37.92 1.21 ± 0.14 0.45 0.40 0.30 0.26

VGPM33 90 457.10 ± 22.01 0.52 ± 0.08 0.31 0.52 0.44 0.28

ESQRT 97 169.36 ± 21.40 0.51 ± 0.08 0.32 0.28 0.11 0.26

HYR 85 38.38 ± 12.51 0.29 ± 0.04 0.34 0.43 -0.34 0.26

MARRA 97 f-47.72 ± 39.67 1.14 ± 0.14 0.40 0.30 -0.09 0.28

CbPM 78 204.22 ± 62.03 1.20 ± 0.22 0.27 0.48 0.28 0.38

 

Table 4 – Number of match-ups, linear regression parameters (intercept, slope and R
2
; 

Fig. S2), RMSD, B and uRMSD for each participating model relative to IPP
is
. 

 

 The target diagram (Fig. 3) illustrates overestimation of observed productivity 

(B* > 0) for all models except for MARRA and HYR. All models, except CbPM and 

MARRA models, underestimated the variance of observed productivity (uRMSD* < 0) 

(Fig. 3). 

 

Figure 3.  Target diagram displaying B* (Eq. 4) and uRMSD* (Eq. 5) for the 5 models 

and VGPM variants relative to the IPP
is
. The solid circle is the normalized standard 

deviation of the IPP
is
. 
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Although the target diagram gave information about uRMSD for each model, it does not 

allow assessing whether a given uRMSD results from getting the correlation or the 

variability wrong. The Taylor diagram gives additional information about the variance 

of IPP
sat

 (the distance from the origin is the standard deviation) and the correlation 

between IPP
sat

 and IPP
is
 (the azimuth angle) (Fig. 4). Correlation coefficients between 

modelled and observation estimates ranged between 0.42 and 0.67. Model standard 

deviations ranged from < 100 mg C m
-2

 d
-1

 (HYR model) to > 300 mg C m
-2

 d
-1

 (CbPM) 

(Fig. 4). As the target diagram showed that none of the present models estimated IPP 

more accurately than using the mean of the observed data (Fig. 3), the Taylor diagram 

showed that VGPM1, VGPM3, VGPM11, VGPM33 and ESQRT were better at 

reproducing the magnitude of IPP
is
 variance (i.e. closer to the standard deviation of IPP

is
 

data) than the other models (Fig. 4). Furthermore, the Taylor diagram showed that the 

models with the highest correlations did not reproduce well the variability in IPP
is
 

(VGPM2, VGPM22, MARRA; Fig. 4). 

 

Figure 4. Taylor diagram of IPP. The black dot represents IPP
is
 data. Blue dashed lines 

represent arcs along the standard deviation axes and the black dashed line represents the 
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standard deviation of IPP
is
. Symbols falling close to the black dashed line indicate the 

best models at reproducing the magnitude of IPP
is
 variance. 

 

 The empirical cumulative distribution function (ECDF) illustrates the range of 

PP from observed data and from the different models (Fig. 5). Here, we observed that 

MARRA, VGPM1 and ESQRT models reproduced accurately the range of IPP from 

300 – 400 mg C m
-2

 d
-1

. Below 300 – 400 mg C m
-2

 d
-1

, MARRA model tended to 

underestimate the range of IPP and VGPM1 and ESQRT models tended to overestimate 

the range of IPP (Fig. 5). 

 

Figure 5. Empirical cumulative distribution function of IPP for the seven models and 

the observed data (black symbols). 

 

3.5. Region-specific model performance 

 The average performance of the five models and VGPM variants tested here 

varied across regions, with RMSD varying from 0.26 at SATL to 0.50 at SACR (Fig. 6). 

The average model performance was significantly lower at SATL (RMSD = 0.26) and 
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PNEC (RMSD = 0.27) than at ISSG (RMSD = 0.43), SACR (RMSD = 0.50) and 

WACR (RMSD = 0.47) (t-test, P < 0.05). At SACR, the average model performance 

was significantly higher than for the rest of the regions (t-test, P < 0.05), except WACR 

(t-test, P > 0.05).  

 

Figure 6. Average RMSD for all 5 models and VGPM variants at each region. The 

error bars are 2x standard error. 

 

Considering individual model skill, we observed that some models performed better 

than others in specific regions (Fig. 7). In four regions (NAGR, SATL, NPTG, PNEC), 

the ESQRT model showed the lowest RMSD and in the other four regions (ISSG, 

SPSG, SACR, WACR), the model that mainly showed the lowest RMSD was the 

MARRA model (Fig. 7).
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Figure 7. Model RMSD for each model at each region. Dark grey bars indicate models 

with better performance. 

 

3.6. PP model’s adjustments 

 We further explored each model performance by replacing the variables derived 

by remotely sensing (i.e. chl-a, SST, Zeu, P
B

opt, MLD, ZNO3) for our in situ data. From 

the five models tested here, we observed that when run with in situ values, model 

performance was improved only for two models: VGPM (RMSD = 0.18 and B = 0.06) 

and MARRA (B = -0.01) (Table 5). For the rest of PPr models, the average performance 

did not show significant improvement (Table 5). Regionally, the improvement was not 
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significant for all models (data not shown here). As explained previously, satellite-

derived P
B

opt presented the weakest agreement with observed P
B

opt data and might partly 

cause the poor agreement between IPP
sat

 from VGPM and IPP
is
. Hence, adjusting 

parameterized P
B

opt to match in situ P
B

opt data improved VGPM performance. 

Model r R 
2

RMSD B uRMSD N

VGPMis 0.73 0.53 0.18 0.06 0.17 86

CbPMis 0.39 0.07 0.61 0.45 0.42 78

ESQRTis 0.51 0.26 0.28 0.15 0.24 120

HYRis 0.40 0.16 0.39 -0.28 0.27 110

MARRAis 0.60 0.36 0.28 -0.01 0.28 110

VGPM1' 0.63 0.39 0.25 -0.0008 0.25 83

VGPM11' 0.66 0.44 0.28 0.14 0.24 83

 

 Table 5 – Pearson correlation coefficient (r), statistics of linear regression (R
2
), RMSD, 

B, uRMSD and N values for the five PPr models tested here with in situ variables and 

for VGPM1 (here called VGPM1’) and VGPM11 (here called VGPM11’) using 

modelled P
B

opt (Eq. 8). 

 

Although previous studies (e.g. Friedrichs et al., 2009, Milutinovic et al. 2009, Jacox et 

al. 2013) tried to improve the P
B

opt estimate, our approach for improving the P
B

opt 

estimate involved testing first the possible correlations between in situ P
B

opt and the 

other in situ variables using a principal component analysis (PCA) and then, guided 

from the PCA results, formulating P
B

opt as a function of the variables with the highest 

correlation with P
B

opt. From PCA results (Fig. 8), we observed that P
B

opt had a strong 

positive correlation with SST and a strong negative correlation with MLD. Then, using 

multiple least-square regression, we estimated in situ P
B

opt as a function of in situ MLD 

and SST (R
2
 = 0.26, P < 0.0001) through the fitted regression equation: 

    
                                                      (8) 
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Figure 8. Biplot of in situ parameters (SST, sea surface temperature; Chl, chl-a; MLD, 

mixed layer depth; Zeu, Zeu; DCM, deep chlorophyll maximum; DL, daylength; Nitra, 

ZNO3; Pbopt, P
B

opt). 

 

Then we evaluated the VGPM performance (i.e. VGPM1) using this modelled P
B

opt (Eq. 

8). We observed that the VGPM had RMSD = 0.25 and B = -0.0008 (Table 5). We 

observed also that its normalized standard deviation was lower than the normalized 

standard deviation of the IPP
is
, meaning that this model estimated IPP more accurately 

than using the mean of the observed data (data not shown here). 

 

4. Discussion 

 Here, we compared here about 100 IPP
is
 with IPP

sat
 values derived from five of 

the most commonly used PPr models for the four subtropical gyre regions sampled, 

including the Indian subtropical gyre region. IPP
is
 results presented here were consistent 

as the methodology was coherent and consistent from the first to the last transect 

allowing to dissipate any uncertainties about model prediction variations resulting from 
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the methodology. This comparison allowed us to estimate model performances and 

explore pathways to improve them. From the five models and variants tested here, we 

observed that most of them did not derive a good representation of the IPP
is
 variability. 

Only VGPM1, MARRA and ESQRT models were better at estimating IPP
is
 with IPP

sat
 

closer to IPP
is
 (|B| ~ 0.09) than for the other models (|B| ~ 0.29).  

Although HYR model had been used for many years as a standard MODIS 

algorithm, we observed that it showed low performance to predict IPP
is
. The original 

HYR model is extended to MLD and in general, MLD was less than Zeu in the studied 

regions (Table 2). Thus, we estimated the performance of HYR model extended to Zeu 

(data not shown here) and we observed that B and RMSD were lower for HYR model 

extended to Zeu (using Zeu1, B = -0.09 and RMSD = 0.30; using Zeu2, B = 0.04 and 

RMSD = 0.29) than for HYR model extended for MLD. Hence, HYR models extended 

to Zeu derived IPP
sat

 values closer to IPP
is
 than the original in subtropical gyre regions 

where MLD is shallower. However, a Taylor diagram revealed that they were not better 

at reproducing the magnitude of IPP
is
 variance than the original HYR model that (data 

not shown here), and that they had low correlation with IPP
is
. 

To understand the limitations of the models used here to estimate IPP
is
 

accurately, we examined whether these limitations were caused by the input data 

variables for IPP
sat

 or by the model itself. Indeed, PPr models strongly rely on chl-a and 

P
B

opt and a weak agreement between satellite-derived chl-a and P
B

opt with in situ data 

may explain the poor model performance. Although satellite-derived and modelled data 

inputs such as SST, MLD and ZNO3 had a relatively good agreement with in situ data, 

chl-a and, especially P
B

opt, had poor agreements with in situ data (R
2
 = 0.16 and 

0.01<R
2
<0.11, SIQR = 0.23 and 0.57<SIQR<1.13, respectively; Table 3). When 

satellite-derived and modelled data were substituted by in situ-derived data (when 
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available), we found that, over the best performing models, the VGPM and MARRA 

models improved model-data linear regression statistics (R
2
) by 68 % and 10 %. Total 

RMSD declined about the half for VGPM and a large decline was observed in VGPM 

and MARRA biases (76 % and 86 % respectively; Table 5).  

 Several studies concluded P
B

opt to be the IPP model input parameter with the 

weakest agreement with in situ data (Behrenfeld & Falkowski 1997, Behrenfeld et al. 

2002; Siegel et al. 2001; Milutinović et al. 2011). These studies suggested that P
B

opt 

cannot be derived adequately using only sea surface temperature (SST) as input, 

considering that light and nutrient availability may have analogous physiological effects 

on algal photosynthetic capacity and, thus, on P
B

opt. Milutinović et al. (2011) suggested 

that the success of an SST-dependent P
B

opt will be variable over time and location. After 

our parameterization of P
B

opt as a function of MLD and SST, we found that using 

satellite-derived and modelled input data, VGPM had its model-data linear regression 

statistics (R
2
) improved by 32 %, its total RMSD reduced by 31 % and its bias reduced 

by 72 % (Table 5). In this study, about 80 % of the dataset collected during the MCE 

was located in subtropical regions where MLD is relatively shallow (< 60 m). We 

believe that the parametrization of P
B

opt from SST and MLD in oceanic ecosystems 

where MLD is shallower (< 60 m) should improve the estimation of P
B

opt for IPP
sat

 and 

thus, improve PPr models. Indeed, when modelled P
B

opt (Eq. 8) was substituted in the 

original VGPM1 model here, its performance was improved by 100 % (B < 0.0008, 

Table 5). Our results are specific to a circumnavigation that lasted 7 months and cruised 

all the subtropical oceans by 6 transects with consistent methodology. Although we 

believe that our results present a good representation of subtropical gyres ecosystems, 

we are aware that further sampling efforts are required to confirm the improvement of 

the parametrization of P
B

opt using SST and MLD where MLD < 60 m. 
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The use of in situ variables, especially chl-a, in PPr models improved remote PP 

estimates and provided a pathway to improve their performance. Obtaining in situ chl-a 

data across the oceans is now possible through use of autonomous technologies such as 

gliders and profiling floats. Part of the Argo International Program 

(www.argo.ucsd.edu), Bio-Argo aims to contribute to the development of profiling float 

equipped with bio-optical sensors to measure chl-a and backscattering. Starting in 2011, 

Bio-Argo delivers a series of 5-6 profiling floats on a yearly basis. Although the 

deployment of floats equipped with bio-optical sensors did not achieve widespread 

coverage as yet, it is expected that these will deliver a high quantity of long-range and 

months-long deployments shortly.  

The majority of MCE stations where IPP
is
 was estimated encompassed 

subtropical gyre regions with low IPP
is
 (i.e. more than 70 % of IPP

is
 < 300 mg C m

-2
 d

-

1
). Model performances were generally better for high values of IPP (above 500 mg C 

m
-2

 d
-1

); when model-data misfit was in general lower (Fig. 4). This observation 

confirms the challenge to predict IPP
is
 in the ultra-oligotrophic regions encompassed by 

the oligotrophic gyres. We believe that further efforts are required to improve the 

performance of ocean color models such as VGPM to be applied to highly oligotrophic 

regions such as subtropical gyres, where IPP is relatively low (< 300 mg C m
-2

 d
-1

), the 

MLD is shallower and cloudiness may bias satellite input data.  Hence, efforts to 

improve the algorithms and parameters used in PPr models (such as those provided in 

this work) specific for the oligotrophic subtropical gyre regions are essential to further 

understand the reasons for the poor predictions made by the existing models. The 

development of improved and robust satellite-based algorithms to predict oceanic 

primary production in subtropical gyres requires additional efforts to obtain in situ 

estimates of net primary production. This sampling effort is particularly necessary for 
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some of the subtropical gyre regions, like in the three gyres located in the Southern 

Hemisphere (e.g. Marañon et al. 2000; Poultron et al. 2006; Regaudie-de-Gioux et al. 

2012; this study). Because this ocean bioma comprises 70 % of the ocean, improving 

PPr estimates therein is an imperative to progress toward a global ocean observing 

system.  
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Supplement Material 

 

Figure S1. Multi-paneled regression plots of satellite-derived vs. in situ data (a: 

chlorophyll-a concentration; b: SST; c: MLD; d: nitracline depth). Solid lines represent 

the linear regression. Dotted lines represent the 95 % confident intervals and the dashed 

lines represent the 1:1 lines. 
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Figure S2. Multi-paneled regression plots of (a) VGPM1 vs. IPP
is
, (b) VGPM2 vs. IPP

is
, 

(c) VGPM3 vs. IPP
is
, (d) VGPM11 vs. IPP

is
, (e) VGPM22 vs. IPP

is
, (f) VGPM33 vs. 

IPP
is
, (g) ESQRT vs. IPP

is
, (h) HYR vs. IPP

is
, (i) MARRA vs. IPP

is
, (j) CbPM vs. IPP

is
. 

Solid lines represent the linear regressions. Dotted lines represent the 95 % confident 

intervals and the dashed lines represent the 1:1 lines. 

 

 

 

 

 

 

 

 

Research highlights 

 
• PP model skills were compared with in situ production across subtropical oceans.  

• PP
sat

 estimates obtained from some models provided closer values to the in situ PP.  

• Model skill varied due to differences in predictions of in situ parameters.  

• Model performance was better for areas showing higher IPP
is
.  
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