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Abstract: From the recent developments of data-driven methods as a means to better exploit
large-scale observation, simulation and reanalysis datasets for solving inverse problems, this study
addresses the improvement of the reconstruction of higher-resolution Sea Level Anomaly (SLA)
fields using analog strategies. This reconstruction is stated as an analog data assimilation issue,
where the analog models rely on patch-based and Empirical Orthogonal Functions (EOF)-based
representations to circumvent the curse of dimensionality. We implement an Observation System
Simulation Experiment (OSSE) in the South China Sea. The reported results show the relevance
of the proposed framework with a significant gain in terms of Root Mean Square Error (RMSE)
for scales below 100 km. We further discuss the usefulness of the proposed analog model as a
means to exploit high-resolution model simulations for the processing and analysis of current and
future satellite-derived altimetric data with regard to conventional interpolation schemes, especially
optimal interpolation.

Keywords: analog data assimilation; sea level anomaly; sea surface height; interpolation;
data-driven methods

1. Introduction

Over the last two decades, ocean remote sensing data has benefited from numerous remote earth
observation missions. These satellites measured and transmitted data about several ocean properties,
such as sea surface height, sea surface temperature, ocean color, ocean current, sea ice, etc. This has
helped building big databases of valuable information and represents a major opportunity for the
interplay of ideas between the ocean remote sensing community and the data science community.
Exploring machine learning methods in general and non-parametric methods in particular is now
feasible and is increasingly drawing the attention of many researchers [1,2].

More specifically, analog forecasting [3] which is among the earliest statistical methods explored
in geoscience benefits from recent advances in data science. In short, analog forecasting is based on
the assumption that the future state of a system can be predicted throughout the successors of past
(or simulated) similar situations (called analogs). The amount of currently available remote sensing
and simulation data offers analog methods a great opportunity to catch up their early promises. Several
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recent works involving applications of analog forecasting methods in geoscience fields contribute in
the revival of these methods, recent applications comprise the prediction of soil moisture anomalies [4],
the prediction of sea-ice anomalies [5], rainfall nowcasting [6], numerical weather prediction [7–9],
etc. One may also cite methodological developments such as dynamically-adapted kernels [10] and
novel parameter estimation schemes [11]. Importantly, analog strategies have recently been extended
to address data assimilation issues within the so-called analog data assimilation (AnDA) [12,13],
where the dynamical model is stated as an analog forecasting model and combined to state-of-the-art
stochastic assimilation procedures such as Ensemble Kalman filters.

Producing time-continuous and gridded maps of Sea Surface Height (SSH) is a major challenge
in ocean remote sensing with important consequences on several scientific fields from weather and
climate forecasting to operational needs for fisheries management and marine operations (e.g., [14]).
The reference gridded SSH product commonly used in the literature is distributed by Copernicus
Marine Environment Monitoring Service (CMEMS) (formerly distributed by AVISO+). This product
relies on the interpolation of irregularly-spaced along-track data using an Optimal Interpolation (OI)
method [15,16]. While OI is relevant for the retrieval of horizontal scales of SSH fields up to ≈100 km,
the prescribed covariance priors lead to smoothing out finer-scales. Typically, horizontal scales from
a few tens of kilometers to ≈100 km may be poorly resolved by OI-derived SSH fields, while they
may be partially revealed by along-track altimetric data. This has led to a variety of research studies
to improve the reconstruction of the altimetric fields. One may cite both methodological alternatives
to OI, for instance locally-adapted convolutional models [17] and variational assimilation schemes
using model-driven dynamical priors [18], as well as studies exploring the synergy between different
sea surface tracers, especially the synergy between SSH and SST (Sea Surface Temperature) fields and
Surface Quasi-Geostrophic dynamics [17,19–23].

In this work, we build upon our recent advances in analog data assimilation and its application to
high-dimensional fields. While the works in [12,13] presented the AnDA framework by combining
the analog forecasting method and stochastic filtering, these works have only shown applications to
geophysical toy models. It was not until the work in [24] that the AnDA methodology was applied to
realistic high dimensional fields, namely, Sea Surface Temperature (SST). Dealing with the curse of
dimensionality is a critical challenge, in [24] we have shown that the use of patch-based representations
(a patch is a term used by the image processing community to refer to smaller image parts of a given
global image [25]) combined with EOF-based representations (EOF stands for Empirical Orthogonal
Function, a classic dimensionality reduction technique also known as Principal Component Analysis
(PCA)) leads to a computationally-efficient interpolation of missing data in SST maps outperforming
classical OI-based interpolation schemes. Another development in AnDA applied to high dimensional
fields was the introduction of conditional and physically-derived operators [26], where the analog
forecasting operators account for the theoretical studies relating to synergies between ocean variables
(e.g., SSH and SST) and those highlighting the importance of inter-scale dependencies. In this paper,
we make use of these previously developed methodologies and tools and apply the AnDA to Sea Level
Anomaly fields. The contribution of this work is two-fold: (i) Confronting AnDA to the reconstruction
of an ocean tracer with scarce observations compared to SST (due to the nature of the available
altimeters); (ii) designing an Observation System Simulation Experiment (OSSE) based on numerical
simulation data to build the archived datasets used for the analog search; (iii) Reconstructing Sea
Level Anomaly (SLA) by using SST or large scale SLA as auxiliary variables embedded in the analog
regression techniques as shown in Section 4.

Using OFES (Ocean General Circulation Model (OGCM) for the Earth Simulation) numerical
simulations [27,28], we design an Observation System Simulation Experiment (OSSE) for a case-study
in the South China Sea using real along-track sampling patterns of spaceborne altimeters. Several
particular mesoscale variation patterns characterizing this region were studied in the literature, we refer
the reader to [29] and references therein. We also note that our method is not region specific and can be
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applied to any region of interest. Using the resulting groundtruthed dataset, we perform a qualitative
and quantitative evaluation of the proposed scheme, including comparisons to state-of-the-art schemes.

The remainder of the paper is organized as follows: Section 2 presents the different datasets used
in this paper to design an OSSE, Section 3 gives insights on the classical methods used for mapping SLA
from along track data, Section 4 introduces the proposed analog data assimilation model. Experimental
settings are detailed in section 5 and results for the considered OSSE are shown in Section 6. Section 7
further discusses the key aspects of this work.

2. Data: OFES (OGCM for the Earth Simulator)

An Observation System Simulation Experiment (OSSE) based on numerical simulations is
considered to assess the relevance of the proposed analog assimilation framework. Our OSSE uses
these numerical simulations as a groundtruthed dataset from which simulated along-track data are
produced. We describe further the data preparation setup in the following sections.

2.1. Model Simulation Data

The Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES) is considered in
this study as the true state of the ocean. The simulation data is described in [27,28]. The coverage of the
model is 75◦S–75◦N with a horizontal resolution of 1/10◦. 34 years (1979–2012) of 3-daily simulation
of SSH maps are considered, we proceed to a subtraction of a temporal mean to obtain SLA fields.
In this study, our region of interest is located in the South China Sea (105◦E to 117◦E, 5◦N to 25◦N).
This dataset is split into a training dataset corresponding to the first 33 years (4017 SLA maps) and a
test dataset corresponding to the last year of the time series (122 SLA maps).

2.2. Along Track Data

We consider a realistic situation with a high rate of along track data. More precisely we use
along-track data positions registered in 2014 where four satellites (Jason2, Cryosat2, Saral/AltiKa,
HY-2A) were operating. Data is distributed by Copernicus Marine and Environment Monitoring
Service (CMEMS).

From the reference 3-daily SLA dataset and real along-track data positions, we generate simulated
along-track data from the sampling of a reference SLA field: More precisely, for a given along-track
point, we sample the closest position of the 1/10◦ regular model grid at the closest time step of
the 3-daily model time series. As we consider a 3-daily assimilation time step (see Section 2.1 for
details), we create a 3-daily pseudo-observation field, to be fed directly to the assimilation model. For a
given time t, we combine all along-track positions for times t− 1, t and t + 1 to create an along-track
pseudo-observation field at time t. We denote by s3dAT the simulated 3-daily time series of along-track
pseudo-observation fields. An example of these fields is given in Figure 1.
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Figure 1. An example of a ground-truth Sea Level Anomaly (SLA) field (meters) in the considered
region and its associated simulated pseudo-along track.

3. Problem Statement and Related Work

3.1. Data Assimilation and Optimal Interpolation

Data assimilation consists in estimating the true state of a physical variable x(t) at a specific time t,
by combining (i) equations governing the dynamics of the variable, (ii) available observations y(1, ..., T)
measuring the variable and (iii) a background or first guess on its initial state xb. The estimated state is
generally called the analyzed state and noted by xa. Data assimilation is a typical example of inverse
problems, and similar formulations are known to the statistical signal processing community through
optimal control and estimation theory [30]. We adopt here the unified notation of [31] and formulate
the problem as a stochastic system in the following:{

x(t) =M(x(t− 1)) + η(t), (1)

y(t) = H(x(t)) + ε(t). (2)

Equation (1) represents the dynamical model governing the evolution of state x through time,
while η is a Gaussian centered noise of covariance Q that models the process error. Equation (2)
explains the relationship between the observation y(t) and the state to be estimated x(t) through the
operatorH. The uncertainty of the observation model is represented by the ε error, considered here
to be Gaussian centered and of covariance R. We assume that ε and η are independent and that Q
and R are known. Two main approaches are generally considered for the mathematical resolution of
the system (1) and (2), namely, variational data assimilation and stochastic data assimilation. They
differ in the way they infer the analyzed state xa, the first is based on the minimization of a certain cost
function while the latter aims to obtain an optimal a posteriori estimate. We encourage the reader to
consider the book of [32] for detailed insights on the various aspects and methods of data assimilation.

A popular data assimilation algorithm that is largely used in the literature to grid sea level
anomalies from along-track data is called Optimal Interpolation (OI) (e.g., [15,33]), this algorithm is
also the method adopted in CMEMS altimetry product. Optimal Interpolation (OI) aims at finding
the Best Linear Unbiased Estimator (BLUE) of a field x given irregularly sampled observations y in
space and time and a background prior xb. The multivariate OI equations were derived in [34] for
meteorology and numerous applications in oceanography have been reported since the early work
of [16]. Supposing that the background state xb has covariance B, and the observation operator is
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linearH = H, the analyzed state xa and the analyzed error covariance Pa can be calculated using the
following OI set of equations:

K = BH(R + HBHT)−1 called the Kalman gain, (3)

xa = xb + K(y−Hxb), (4)

Pa = (I−KH)B. (5)

It is worth mentioning that [35] showed that OI is closely related to the 3D-Var variational data
assimilation algorithm which obtains xa by minimizing the following cost function:

J(x) = (x− xb)TB−1(x− xb) + (y−Hx)TR−1(y−Hx). (6)

An important limitation of OI is that the Gaussian-like covariance priors lead to smoothing out
the small-scale information (e.g., mesoscale eddies), more specifically, this is a limitation due to the
use of a static climatological B matrix. For satellite-derived altimetry fields, this usually results in
over-smoothing altimetry fields for structures below ≈100 km [18]. This limitation may be even more
critical in the context of future high-resolution altimetry missions, which supports the development of
new OI-based methods (e.g., multi-scale OI schemes as in [36]) or alternatives as addressed by our
work.

3.2. Analog Data Assimilation

Endorsed by the recent development in data-driven methods and data storage capacities,
the Analog Data Assimilation (AnDA) was introduced as an alternative to classical model-driven data
assimilation under one or more of the following situations [13]:

• The model is inconsistent with observations.
• The cost of the model integration is high computationally.
• (mandatory) The availability of a represenative (large) dataset of the dynamics of the state

variables to be estimated. These datasets are hereinafter called catalogs and denoted by C.
The catalog is organized in a two-column dictionary where each state of the system is associated
with its successor in time, forming a set of couples (Ai,Si) where Ai is called the analog and Si
its successor.

Given the considerations above, AnDA resorts to evaluating filtering, respectively smoothing,
posterior likelihood, i.e., the distribution of the state to be estimated x(t) at time t, given past
and current observations y(1, ..., t), respectively given all the available observation y(1, ..., T).
This evaluation relies on the following state-space model:{

x(t) = F (x(t− 1)) + η(t), (7)

y(t) = H(x(t)) + ε(t). (8)

The difference between AnDA and classical data assimilation resides in the transition model
Equation (7). The counterpart of a model-driven operator M of Equation (1) is here the operator
F which refers to the considered data-driven operator, so called, the analog forecasting operator.
This operator makes use of the available catalog C and assumes that the state forecast can be inferred
from similar situations in the past.

Provided the definitions of the analogs and successors given above, the derivation of this operator
resorts to characterizing the transition distribution i.e., p(x(t)|x(t− 1)). Following [13], a Gaussian
conditional distribution is adopted:

p(x(t)|x(t− 1)) = N (µ(x(t− 1)), Σ(x(t− 1))), (9)
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whereN is a Gaussian distribution of mean µ(x(t− 1)) and covariance Σ(x(t− 1)). These parameters
of the Gaussian distribution are calculated using the result of a K nearest neighbors search. The K
nearest neighbors (analogs) Ak∈(1,...,K) of state x(t− 1) and their successors Sk∈(1,...,K), along with a
weight associated to each pair (Ak,Sk) are used to calculate µ(x(t− 1)) and Σ(x(t− 1)) as we will
show in the next paragraph, the forecast state x(t) is then sampled from N (µ(x(t− 1)), Σ(x(t− 1))).
The weights are defined using a Gaussian kernel KG.

KG (u, v) = exp
(
−‖u− v‖2

σ

)
. (10)

Scale parameter σ is locally-adapted to the median value of the K distances ‖x(t− 1)−Ak‖2 to
the K analogs. Other types of kernels might be considered (e.g., [4,10]), investigating kernel choice is
out of the scope of this paper.

The mean and the covariance of the transition distribution might be calculated following several
strategies. We consider in this work the three analog forecasting operators introduced in AnDA [13],
more details can be found in Appendix A:

• Locally-constant operator: Mean µ(x(t − 1)) and covariance Σ(x(t − 1))) are given by the
weighted mean and covariance of the K successors Sk∈(1,...,K).

• Locally-incremental operator: Here, the increments between the K analogs and their
corresponding successors are calculated Sk∈(1,...,K) − Ak∈(1,...,K). The weighted mean of the K
increments is then added to the x(t− 1) to obtain µ(x(t− 1)). While Σ(x(t− 1))) results in the
weighted covariance of these differences.

• Locally-linear operator: A weighted least-square estimation of the linear regression of the state at
time t given the state at time t− 1 is performed based on the K pairs (Ak,Sk). The parameters of the
linear regression are then applied to state x(t− 1) to obtain µ(x(t− 1)). Covariance Σ(x(t− 1)))
is represented by the covariance of the residuals of the fitted weighted linear regression.

We may state clearly the key difference between the AnDA and reduced-rank Kalman filters
and the OI method. It lies in the fact that the AnDA introduces a dynamical operator and not a
prescribed space-time covariance model, and this dynamical operator is state-dependent and globally
non-linear. The proposed analog forecasting operator can be seen as a state-dependent linear Gaussian
operator, meaning that it is locally Gaussian and linear at each time step with a parameterization that
depends on the current state, such that globally the dynamical operator is non-linear and non-Gaussian.
A special case where AnDA is equivalent to OI is when all the elements of the catalog are considered
as neighbors of any state vector. This case comes to assume that the dynamical operator is linear and
state-independent. It is obviously of low interest due to the computational burden resulting from
using all the catalog.

The application of the AnDA framework faces the curse of dimensionality i.e., the search of
analogs is highly affected by the dimensionality of the problem and can fail at finding good analogs
for state vector dimensions above 20 [13]. As proposed in [24], the extension of AnDA models
to high-dimensional fields may then rely on turning the global assimilation issue into a series of
lower-dimensional ones. We consider here an approach similar to [24] using a patch-based and
EOF-based representation of the two-dimensional (2D) fields, i.e., the 2D fields are decomposed into
a set of overlapping patches, each patch being projected onto an EOF space. Analog strategies then
apply to patch-level time series in the EOF space.

Overall, as detailed in the following section, the proposed analog data assimilation model for SLA
fields relies on three key components: A patch-based representation of the SLA fields, the selection of
a kernel to retrieve analogs and the specification of a patch-level analog forecasting operator.
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4. Analog Reconstruction for Altimeter-Derived SLA

4.1. Patch-Based State-Space Formulation

As stated above, OI may be considered as an efficient model-based method to recover
large-scale structures of SLA fields. Following [24], this suggests considering the following two-scale
additive decomposition:

X = X̄ + dX + ξ, (11)

where X̄ is the large-scale component of the SLA field, typically issued from an optimal interpolation,
dX the fine-scale component of the SLA field we aim to reconstruct and ξ is the remaining
unresolved scales.

The reconstruction of field dX involves a patch-based and EOF-based representation. It consists in
regarding field dX as a set of P× P overlapping patches (e.g., 2◦ × 2◦), an example of patch locations
is shown in Figure 2. This set of patches is referred to as P , and we denote by Ps the patch centered on
position s. After building a catalog CP of patches from the available dataset of residual fields X− X̄
(see Section 3.2), we proceed to an EOF decomposition of each patch in the catalog. The reconstruction
of field dX(Ps, t) at time t is then stated as the analog assimilation of the coefficients of the EOF
decomposition in the EOF space given an observation series in the patch space. Formally, dX(Ps, t)
decomposes as a linear combination of a number NE of EOF basis functions:

dX(Ps, t) =
NE

∑
k=1

αk(s, t)EOFk, (12)

with EOFk the kth EOF basis and αk(s, t) the corresponding coefficient for patch Ps at time t. Let
us denote by Φ(Ps, t) the vector of the NE coefficients αk(s, t): Φ(Ps, t) = {α1(s, t), ..., αNE(s, t)}.
This vector represents the projection of dX(Ps, t) in the lower-dimensional EOF space.

Figure 2. Two examples of patch locations and their overlapping patch neighbours.
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4.2. Patch-Based Analog Dynamical Models

Given the considered patch-based representation of field dX, the proposed patch-based analog
assimilation scheme involves a dynamical model stated in the EOF space. Formally, Equation (9) leads
to the following Gaussian conditional distribution in the EOF space:

p(Φ(Ps, t)|Φ(Ps, t− 1)) = N (µ(Φ(Ps, t− 1)), Σ(Φ(Ps, t− 1))), (13)

We consider the three analog forecasting operators presented in Section 3.2, namely, the locally-constant,
the locally-incremental and the locally-linear. The calculation of the weights associated to each
analog-successor pair relies on a Gaussian kernel KG (Equation (10)). The search for analogs in the
NE-dimensional patch space (in practice, NE ranges from 5 to 20) ensures a better accuracy in the
retrieval of relevant analogs compared to a direct search in the high-dimensional space of state dX.
It also reduces the computational complexity of the proposed scheme.

Another important extension of the current study is the possibility of exploiting auxiliary variables
with the state vector Φ in the analog forecasting models. Such variables may be considered in the
search for analogs as well as regression variables in a locally-linear analog setting. Regarding the
targeted application to the reconstruction of SSH fields and the proposed two-scale decomposition
(Equation (11)), two types of auxiliary variables seem to be of interest: The low-resolution component
X̄ to take into account inter-scale relationship [17], and Sea Surface Temperature (SST) with respect
to the widely acknowledged SST-SSH synergies [17,19,21]. We also apply patch-level EOF-based
decompositions to include both types of variables in the considered analog forecasting models
(Equation (13)).

4.3. Numerical Resolution

Given the proposed analog assimilation model, the proposed scheme first relies on the creation
of patch-level catalogs from the training dataset. This step requires the computation of a training
dataset of fine scale data dXtraining, this is done by subtracting a large-scale component X̄training from
the original training dataset. Here, we consider the large-scale component of training data to be the
result of a global (By global, we mean here an EOF decomposition over the entire case study region, by
contrast to the patch-level decomposition considered in the analog assimilation setting.) EOF-based
reconstruction using a number of EOF components that retains 95% of the dataset variance, which
accounts for horizontal scales up to ≈100 km. This global EOF-based decomposition provides a
computationally-efficient means for defining large-scale component X̄. This EOF-based decomposition
step is followed by the extraction of overlapping patches for all variables of interest, namely X̄training,
dXtraining and potential auxiliary variables, and the identification of the EOF basis functions from the
resulting raw patch datasets. This leads to the creation of a patch-level catalog CP from the EOF-based
representations of each patch.

Given the patch-level catalog, the algorithm applied for the mapping SLA fields from along-track
data, referred to PB-AnDA (for Patch-Based AnDA), is stated in Algorithm 1 and a sketch of the
method is shown in Figure 3.
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Algorithm 1 Patch-Based AnDA

1: Compute the large-scale component X̄, here, we consider the result of optimal interpolation (OI)
projected onto the global EOF basis functions.

2: Split the case study region into overlapping P× P patches, here, 20× 20 patches

3: For each patch position s, use the Analog Ensemble Kalman Smoother (AnEnKS) [13], for patch
Ps of field dX. As stated in (13), the assimilation is performed in the EOF space, i.e., for EOF
decomposition Φ(Ps, t), using the operator derived from EOF-based reconstruction (12) and
decomposition (11) as observation modelH in (8) and the patch-level training catalog described in
the previous section. The assimilation is sequential and is performed each 3-days.

4: Reconstruct fields dX from the set of assimilated patches {dX(Ps, ·)}s. This relies on a spatial
averaging over overlapping patches (here, a 5-pixel overlapping in both directions).

5: the reconstruction of fields X as X̄ + dX.

We may point out two important aspects in the implementation of the proposed patch-level
AnDA setting:

• (step 3) In the analog forecasting setting, the search for analogs is restricted to patch exemplars in
the catalog within a local spatial neighborhood (typically a patch-level 8-neighborhood), except
for patches along the seashore for which the search for analogs is restricted to patch exemplars at
the same location.

• (step 4) In practice, we do not apply the patch-level assimilation to all grid positions. Consequently,
the spatial averaging may result in blocky artifacts. We then apply a patchwise EOF-based
decomposition-reconstruction with a smaller patch-size (here, 17× 17 patches) to remove these
blocky artifacts.

𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

Creation of patch-based catalogs from training datasets

X𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑑𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

substraction

Global EOF 
reconstruction (95% 
variance retained)

Extracted dataset for
each patch position

EOF

X𝑂𝐼
Simulated

along-track
data

𝑓𝑖𝑛𝑒 𝑠𝑐𝑎𝑙𝑒
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

substraction

Optimal 
Interpolation

Extracted observations 
for each patch position

Catalog of EOF 
coefficients

𝑑𝑋

AnDA for each patch +
spatial averaging over 
overlapping patches + 
postprocessing

X

𝑋𝑟𝑒𝑐𝑜𝑛𝑠𝑡

Global EOF
projection on
the training
dataset

Figure 3. Sketch of the proposed patch-based Analog Data Assimilation (PB-AnDA). The left block
details the construction of the patch-based catalogs from the training dataset. The right block illustrates
the process of obtaining the large-scale component of the SLA reconstructed field. The orange dashed
rectangle represents the application of the AnDA using the catalog and the fine-scale observations.
Finally, the green dashed rectangle shows the final addition operation that yields the reconstructed
SLA field.
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5. Experimental Setting

We detail below the parameter setting of the models evaluated in the reported experiments,
including the proposed PB-AnDA scheme:

• PB-AnDA: We consider 20× 20 patches with 15-dimensional EOF decompositions (NE = 15),
which typically accounts for 99% of the data variance for the considered dataset. The
postprocessing step exploits 17× 17 patches and a 15-dimensional EOF decomposition. Regarding
the parametrization of the AnEnKS procedure, we experimentally cross-validated the number of
nearest neighbors K to 50, the number of ensemble members nensemble to 100 and the observation
covariance error in Equation (8) is considered to be diagonal R = κ2I and κ = 0.001m.

• Optimal Interpolation: We apply an Optimal Interpolation to the processed along-track data.
It provides the low-resolution component for the proposed PB-AnDA model and a model-driven
reference for evaluation purposes. The background field is a null field. We use a Gaussian
covariance model with a spatial correlation length of 100 km and a temporal correlation
length of 15 days (±5 timesteps since our data is 3-daily). These choices result from a
cross-validation experiment.

• VE-DINEOF: We apply a second state-of-the-art interpolation scheme using a data-driven strategy
solely based on EOF decompositions, namely VE-DINEOF [37]. Using an iterative reconstruction
scheme, VE-DINEOF starts by filling the missing data with a first guess, here along-track
pseudo-observation field for along-track data positions and X̄ for missing data positions. For each
iteration, the resulting field is projected on the most significant EOF components calculated from
the clean catalog data, then missing data positions are updated using pixels from the reconstructed
new field. We run this iterative process until convergence. To make this algorithm comparable
to the proposed PB-AnDA setting, we perform the reconstruction for each patch position then
regroup the results as in PB-AnDA.

• G-AnDA: With a view to evaluating the relevance of the patch-based decomposition, we also
apply AnDA at the region scale, referred to as G-AnDA. It relies on an EOF-based decomposition
of the detail field dX. We use 150 EOF components, which accounts for more than 99% of the total
variance of the SSH dataset. From cross-validation experiments, the associated AnEnKS procedure
relies on a locally-linear analog forecasting model with K = 500 analogs, nensemble = 100 ensemble
members and a diagonal observation covariance similar to as in PB-AnDA.

The patch-based experiments were run on Teralab infrastructure using a multi-core virtual
machine (30 CPUs, 64G of RAM). We used the Python toolbox for patch-based analog data
assimilation [24] (available at github.com/rfablet/PB_ANDA). Optimal Interpolation was
implemented on Matlab using [36]. Throughout the experiments, two metrics are used to assess
the performance of the considered interpolation methods: (i) Daily and mean Root Mean Square Error
(RMSE) series between the reconstructed SLA fields X and the groundtruthed ones; (ii) daily and mean
correlation coefficient between the fine-scale component dX of the reconstructed SLA fields and of the
groundtruthed ones. These two metrics allow a good evaluation on image reconstruction capabilities
and are widely used in missing data interpolation literature [38,39].

6. Results

We evaluate the proposed PB-AnDA approach using the OSSE presented in Section 2. We perform
a qualitative and quantitative comparison to state-of-the-art approaches. We first describe the
parameter setting used for the PB-AnDA as well as benchmarked models, namely OI, an EOF-based
approach [37] and a direct application of AnDA at the region level. We then report numerical
experiments for noise-free and noisy observation data as well the relevance of auxiliary variables in
the proposed PB-AnDA scheme.

github.com/rfablet/PB_ANDA
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6.1. SLA Reconstruction from Noise-Free Along-Track Data

We first performed an idealized noise-free experiment, where the along-track observations were
not contaminated with noise. The interpolation performances for this experiment are illustrated in
Table 1. Our PB-AnDA algorithm significantly outperforms OI. More specifically, the locally-linear
PB-AnDA results in the best reconstruction among the competing methods. We suggest that this
improvement comes from the reconstruction of fine-scale features learned from the archived model
simulation data. Figure 4a reports interpolated SSH fields and their gradient fields which further
confirm our intuition. PB-AnDA interpolation shows an enhancement of the gradients and comes out
with some fine-scale eddies that were smoothed out in OI and VE-DINEOF. This is also confirmed by
the Fourier power spectrum of the interpolated SLA fields in Figure 4b.

Table 1. SLA Interpolation performance for a noise-free experiment: Root Mean Square Error (RMSE)
(meters), correlation statistics for Optimal Interpolation (OI), VE-DINEOF, G-AnDA and PB-AnDA
with regard to the groundtruthed SLA fields. The relative gain with regard to OI is also shown in
percentage. See Section 5 for the corresponding parameter settings.

Criterion RMSE Correlation RMSEOI−RMSE
RMSEOI

OI 0.026 ± 0.007 0.81 ± 0.08 -
VE-DINEOF 0.023 ± 0.007 0.85 ± 0.07 11.53%

G-AnDA 0.020 ± 0.006 0.89 ± 0.04 23.07%

PB-AnDA
Locally-constant 0.014 ± 0.005 0.95 ± 0.03 46.15%
Locally-Increment 0.014 ± 0.005 0.95 ± 0.03 46.15%
Locally-Linear 0.013 ± 0.005 0.96 ± 0.02 50.00%

(a)
Figure 4. Cont.
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(b)
Figure 4. Reconstructed SLA fields (meters) using noise-free along-track observation using OI,
VE-DINEOF, G-AnDA, PB-AnDA on the 54th day (24 February 2012): From left to right, the first
row shows the ground truth field, the simulated available along-tracks for that day, the ground truth
gradient field. The second and third rows show each of the reconstruction and their corresponding
gradient fields, from left to right, OI, VE-DINEOF, G-ANDA and PB-AnDA. The Fourier power
spectrum of the competing methods is also included.

6.2. SLA Reconstruction from Noisy Along-Track Data

We also evaluated the proposed approach for noisy along-track data. Here, we ran two
experiments with an additive zero-mean Gaussian noise applied to the simulated along-track data.
We considered a diagonal noise covariance of γ2I where γ = 0.01 m (Experiment A) and γ = 0.03 m
(Experiment B) which was more close to the instrumental error of conventional altimeters. Given the
resulting noisy along-track dataset, we applied the same methods as for the noise-free case study.

We ran PB-AnDA using different values for κ. For Experiment A, Table 2 shows that the minimum
is reached using the true value of the error κ = 0.01 m. While for Experiment B, Table 3 shows that the
minimum is counter-intuitively reached again using value of the error κ = 0.01 m with a negligible
margin compared to the true value.

Table 2. Impact of standard variation of observation error κ in AnDA interpolation performance using
noisy along-track data (γ = 0.01 m): RMSE (meters) of AnDA interpolation for different values of
parameter κ. For the same dataset, OI RMSE is 0.039.

κ 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmsePB−AnDA 0.035 0.030 0.028 0.025 0.025 0.029 0.044

Table 3. Impact of standard variation of observation error κ in AnDA interpolation performance using
noisy along-track data (γ = 0.03 m): RMSE (meters) of AnDA interpolation for different values of
parameter κ. For the same dataset, OI RMSE is 0.066.

κ 0.1 0.05 0.03 0.01 0.005 0.001 0.0001

rmsePB−AnDA 0.038 0.036 0.035 0.0349 0.037 0.046 0.076

Our algorithm is then compared with the results of the application of the competing algorithms
considered in this work. Results are shown in Table 4. PB-AnDA still outperforms OI in terms of RMSE
and correlation statistics in both experiments. The locally-linear version of PB-AnDA depicts the best
reconstruction performance. We report an example of the reconstruction in Figure 5. Similarly to the
noise-free case study, PB-AnDA better recovers finer-scale structures in Figure 5a compared with OI,
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VE-DINEOF and G-AnDA. In Figure 5b, PB-AnDA also better reconstructs a larger-scale North-East
structure, poorly sampled by along-track data and hence poorly interpolated by OI.

Table 4. SLA Interpolation performance for noisy along-track data: RMSE (meters) and correlation
statistics for OI, VE-DINEOF, G-AnDA and PB-AnDA w.r.t. the groundtruthed SLA fields.
The relative gain with regard to OI is also shown in percentage. See Section 5 for the corresponding
parameter settings.

Criterion RMSE Correlation RMSEOI−RMSE
RMSEOI

γ = 0.01 m

OI 0.039 ± 0.005 0.64 ± 0.09 -
VE-DINEOF 0.035 ± 0.005 0.68 ± 0.09 10.25%

G-AnDA 0.030 ± 0.005 0.78 ± 0.06 23.07%

PB-AnDA
Locally constant 0.026 ± 0.005 0.82 ± 0.05 33.33%
Increment 0.028 ± 0.005 0.81 ± 0.05 28.20%
Local Linear 0.0245 ± 0.005 0.83 ± 0.05 37.17%

γ = 0.03 m

OI 0.066 ± 0.006 0.41 ± 0.09 -
VE-DINEOF 0.060 ± 0.006 0.45 ± 0.09 9.09%

G-AnDA 0.039 ± 0.006 0.67 ± 0.09 40.90%

PB-AnDA
Locally constant 0.035 ± 0.006 0.688 ± 0.064 46.96%
Increment 0.036 ± 0.006 0.656 ± 0.07 45.45%
Local Linear 0.032 ± 0.006 0.708 ± 0.063 51.51%

(a)
Figure 5. Cont.
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(b)
Figure 5. Reconstruction of SLA fields (meters) from noisy along-track data using OI, VE-DINEOF,
G-AnDA & PB-AnDA on day 225th (a) & 228th (b).

6.3. PB-AnDA Models with Auxiliary Variables

We further explore the flexibility of the analog setting to the use of additional geophysical
variable information as explained in Section 4.2. Intuitively, we expect SLA fields to involve inter-scale
dependencies as well as synergies with other tracers [19,40]. The use of auxiliary variables provide the
means for evaluating such dependencies and their potential impact on reconstruction performance.
We consider two auxiliary variables that are used in the locally-linear analog forecasting model (7):
(i) To account for the relationship between the large-scale and fine-scale component, we may consider
variable X̄; (ii) considering potential SST-SSH synergies, we consider SST fields. Overall, we consider
four parameterization of the regression variables used in PB-AnDA: The sole use of dX (PB-AnDA-dX),
the joint use of dX and SST fields (PB-AnDA-dX+SST), the joint use of dX and X̄ (PB-AnDA-dX+X̄), the
joint use of dX and the groudntruthed version of X̄ denoted by X̄GT , (PB-AnDA-dX+X̄GT). The later
provides a lower-bound for the reconstruction performance, assuming the low-resolution component
is perfectly estimated.

We report mean RMSE (meters) and correlation statistics for these four PB-AnDA parameterizations
in Table 5 for the noisy case-study. Considering PB-AnDA-dX as reference, these results show a very
slight improvement when complementing dX with SST information. Though limited, we report a
greater improvement when adding the low-resolution component X̄. Interestingly, a significantly
greater improvement is obtained when adding the true low-resolution information. The mean results
are in accordance with [17], which reported that large-scale SLA information was more informative
than SST to improve the reconstruction of the SLA at finer scales. Though mean statistics over one
year leads to rather limited improvement, daily RMSE time series (Figure 6) reveal that for some
periods, for instance between day 130 and 150, relative improvements in terms of RMSE may reach 10%
with the additional information brought by the large-scale component. In this respect, it may noted
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that PB-AnDA-dX+X̄ always perform better than PB-AnDA-dX. An example of the reconstruction in
reported in Figure 7.

Table 5. PB-AnDA reconstruction performance using noisy along-track data for different choices of
the regression variables in the locally-linear analog forecasting model: PB-AnDA-dX using solely dX,
PB-AnDA-dX+ SST (Sea Surface Temperature) using both dX and SST, PB-AnDA-dX + X̄ using both
dX and X̄, and PB-AnDA-dX + X̄GT using dX and the true large-scale component X̄GT . The table
shows the RMSE (meters) and correlation statistics.

PB-AnDA Model RMSE Correlation

γ = 0.01 m PB-AnDA-dX 0.025 ± 0.005 0.83 ± 0.05
PB-AnDA-dX + SST 0.024 ± 0.005 0.83 ± 0.05
PB-AnDA-dX + X̄ 0.023 ± 0.005 0.84 ± 0.05
PB-AnDA-dX + X̄GT 0.021 ± 0.004 0.87 ± 0.04

γ = 0.03 m PB-AnDA-dX 0.032 ± 0.006 0.708 ± 0.06
PB-AnDA-dX + SST 0.031 ± 0.006 0.710 ± 0.06
PB-AnDA-dX + X̄ 0.029 ± 0.006 0.717 ± 0.06
PB-AnDA-dX + X̄GT 0.026 ± 0.005 0.730 ± 0.05

Figure 6. Daily RMSE (meters) time series of PB-AnDA SLA reconstructions using noisy along-track
data for different choices of the regression variables in the locally-linear analog forecasting model:
PB-AnDA-dX (light blue), PB-AnDA-dX+ SST (orange) and PB-AnDA-dX + X̄ (green).
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(a)

(b)
Figure 7. (Noisy observation) Reconstruction of SLA fields (meters) using PB-AnDA with different
multivariate regression models on day 57th (a) & 237th (b).
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7. Discussion

Analog data assimilation can be regarded as a means to fuse ocean models and satellite-derived
data. We regard this study as a proof-of-concept, which opens research avenues as well as new
directions for operational oceanography. Our results advocate for complementary experiments at the
global scale or in different ocean regions for a variety of dynamical situations with a view to further
evaluating the relevance of the proposed analog assimilation framework. Such experiments should
evaluate the sensitivity of the assimilation with respect to the size of the catalog. The scaling up to
the global ocean also suggests investigating computationally-efficient implementation of the analog
data assimilation. In this respect, the proposed patch-based framework intrinsically ensures high
parallelization performance. From a methodological point of view, a relative weakness of the analog
forecasting models (9) may be their low physical interpretation compared with physically-derived
priors [18]. The combination of such physically-derived parameterizations to data-driven strategies
appear to be a promising research direction. While we considered an OSSE to evaluate the proposed
scheme, future work will investigate applications to real satellite-derived datasets, including the use of
independent observation data such as surface drifters’ track data to further assess the performance of
the proposed algorithm.

The analog method is at the heart of this work as it is appealing by its implementation ease and its
intuitive strategy, but it must not be seen as the only data-driven method adapted to the framework we
presented. As long as a data-driven forecasting operator can be derived, other data-driven methods can
be investigated [41,42]. One promising path is the use of neural networks, as they sparked off a series
of breakthroughs in other fields [42–46]. While neural network based approaches can lead to better
performances due to their superior regressing capabilities, two clear advantages of adopting analog
methods are the fact that they do not need a time consuming training phase and that analog methods
are easy to understand and interpret compared to black-box approaches such as neural networks.

The Analog Data Assimilation method as used in this work relies on several hyperparameters,
assumptions and design choices. These considerations are discussed in the following:

• In this work, we used all the available data for the creation of the catalog, we expect that a rich
dataset is important in increasing the likelihood of finding good analogs, yet a more thorough
study is needed to assess the impact of reducing the temporal resolution of the dataset versus
reducing the amount of the total available data. To compensate the computational impact of using
a large dataset for the search for analogs, we used the FLANN (Fast Library for Approximate
Nearest Neighbors) library as in [26]. This method makes use of tree-indexing techniques and is
suitable for this kind of high dimensional applications [47].

• While we used a conditional Gaussian distribution in Equation (9), another alternative is the use of
a conditional multinomial distribution. This resorts to sampling one of the analogs’ successors as
the forecast. Adopting this alternative would mean that we rely strongly on the archived catalog,
so that forecasts of each ensemble member are actual elements of the catalog. This reduces the
ability of the model to generate a rich variability of forecast scenes as done by the conditional
Gaussian distribution.

• While we used a Gaussian kernel in Equation (10), other alternatives include cone kernels [10]
which are more adapted to finding analogs in time series. The performance of our algorithm was
slightly improved at the expense of more time execution and an additional hyperparameter to
tune empirically, and we decided to prioritize simpler and efficient kernels. Regarding the scale
parameter, the median was chosen due to its robustness to outliers.

• Although the AnEnKS was used in this work, a possible alternative is the use of an analog based
Particle Smoother which drops Gaussian assumptions, however techniques based on particle
filters need more ensemble members than their Ensemble Kalman Filter counterparts, thus causing
a considerable increase in computational demands which was impractical for our application.
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• We encourage the reader to refer to the discussion section in [24] for more insights about the
rationale behind the use of patch-based representations and EOF-based dimensionality reduction.

Through the experiments conducted in this work, it was shown that the best performance
was always reached using the locally-linear analog operator, which is in line with our previous
findings [13,24]. An explanation for the superiority of this approach is that it better approximates
locally the true dynamical model [48].

Beyond along-track altimeter data as considered in this study, future missions such as SWOT
(NASA/CNES) promise an unprecedented coverage around the globe. More specifically, the large
swath is expected to provide a large number of data, urging for the inspection of the potential
improvements that this new mission will bring compared to classical along-track data. In the context
of analog data assimilation, the interest of SWOT data may be two-fold. First, regarding observation
model (8), SWOT mission will both significantly increase the number of available observation data
and enable the definition of more complex observation models exploiting for instance velocity-based
or vorticity-based criterion. Second, SWOT data might also be used to build representative patch-level
catalogs of exemplars. Future work should investigate these two directions using simulated SWOT
test-beds [49].

8. Materials and Methods

The experimental results presented in this work were obtained using the Python PB-AnDA
toolbox made available by the authors at https://github.com/rfablet/PB_ANDA.

9. Conclusions

This work sheds light on the opportunities that data science methods are offering to improve
altimetry in the era of big data. Assuming the availability of high-resolution numerical simulations, we
show that Analog Data Assimilation (AnDA) can outperform the Optimal Interpolation method and
retrieve smoothed out structures resulting from the sole use of OI both with idealized noise-free
and more realistic noisy observations for the considered case study. Importantly, the reported
experiments point out the relevance for combining OI for larger scales (above 100 km) whereas
the proposed patch-based analog setting successfully applies to the finer-scale range below 100 km.
This is in agreement with the recent application of the analog data assimilation to the reconstruction of
cloud-free SST fields [24]. We also demonstrate that AnDA can embed complementary variables in a
simple manner through the regression variables used in the locally-linear analog forecasting operator.
In agreement with our recent analysis [17], we demonstrate that the additional use of large-scale SLA
information may further improve the reconstruction performance for fine-scale structures.

We may state here the limitations of the present work and possible research avenues for the future.
The experiments presented in this work were conducted on a numerical simulation derived dataset.
A major future work direction would be then to apply the same procedure on real satellite-derived
SLA contaminated with more complex noise models, then investigate the contribution of the use of
numerical simulation datasets as catalogs. As combining multi-source datsets can also be challenging
when using auxiliary variables relationships with SLA, an interesting experiment for example would be
constructing a catalog with real SST observations combined with numerical simulation SLA datasets.

More efforts should be directed to assess the quality of the catalogs (spatio-temporal resolution,
total years of measurements to consider, occurence of rare events, etc.). Besides, building a good
catalog can represent an opportunity for the use of neural networks based methods, and confronting
these powerful regressors to our method is a promising future step. We also note that PB-AnDA can
be a relevant candidate for the interpolation of other geophysical variables (e.g., Sea Surface Salinity,
Chlorophyll concentrations, etc.) under the condition that they verify the set of assumptions made in
this work.

https://github.com/rfablet/PB_ANDA
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Abbreviations

The following abbreviations are used in this manuscript:

AVISO+ Archivage, Validation et Interprétation des données des Satellites Océanographiques
CMEMS Copernicus Marine Environment Monitoring Service
OSSE Observation System Simulation Experiment
OGCM Ocean General Circulation Model
OFES OGCM for the Earth Simulation

Appendix A. Analog Forecasting Operators

In this appendix, we present the calculations needed for the three analog forecasting operators
used in this work. An illustration is also given in Figure A1. Following [13], we give for each operator,
the equations for µ and Σ given A the analogs of x(t− 1), their successors S and the corresponding
weights KG:

Figure A1. Illustration of the three analog forecasting operator.

Locally-Constant Operator

µ = ∑K
k=1KG(x(t− 1),Ak)Sk(x(t− 1))

Σ = covKG (Sk(x(t− 1)))k∈1,K) where covKG is a weighted covariance.
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Locally-Incremental Operator

τk(x(t− 1)) = Sk(x(t− 1))−Ak(x(t− 1))
µ = x(t− 1) + ∑K

k=1KG(x(t− 1),Ak)τk(x(t− 1))
Σ = covKG (x(t− 1) + τk(x(t− 1))k∈1,K)

Locally-Linear Operator

Fitting a weighted least square between the K analogs and their successors we obtain slope
α(x(t− 1)) and intercept β(x(t− 1)) parameters, and residuals ξk(x(t− 1)) that lead us to µ and Σ:

ξk(x(t− 1)) = Sk(x(t− 1))− (α(x(t− 1))Ak(x(t− 1) + β(x(t− 1)))
µ = α(x(t− 1)).x(t− 1) + β(x(t− 1))
Σ = cov((ξk(x(t− 1)))k∈1,K)
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