FN Archimer Export Format PT J TI Ecophysiological differences between vesicomyid species and metabolic capabilities of their symbionts influence distribution patterns of the deep‐sea clams BT AF Cruaud, Perrine Decker, Carole Olu, Karine ARNAUD-HAOND, Sophie Papot, Claire Le Baut, Jocelyn Vigneron, Adrien Khripounoff, Alexis Gayet, Nicolas Cathalot, Cecile Caprais, Jean-Claude Pignet, Patricia Godfroy, Anne CAMBON BONAVITA, Marie-Anne AS 1:1,2,3;2:4;3:4;4:4,5;5:4;6:4;7:1,2,3;8:4;9:4;10:4;11:4;12:1,2,3;13:1,2,3;14:1,2,3; FF 1:PDG-REM-EEP-LMEE;2:PDG-REM-EEP-LEP;3:PDG-REM-EEP-LEP;4:PDG-RBE-MARBEC-LHM;5:;6:;7:PDG-REM-EEP-LMEE;8:PDG-REM-EEP-LEP;9:PDG-REM-EEP-LEP;10:PDG-REM-GM-LCG;11:PDG-REM-EEP-LEP;12:PDG-REM-EEP-LMEE;13:PDG-REM-EEP-LMEE;14:PDG-REM-EEP-LMEE; C1 IFREMER, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, Technopôle Brest Iroise Plouzané, France Laboratoire de Microbiologie des Environnements Extrêmes Université de Bretagne Occidentale, UMR6197 Plouzané ,France CNRS, Laboratoire de Microbiologie des Environnements Extrêmes UMR6197, Technopôle Brest Iroise Plouzané ,France IFREMER, Centre Bretagne, Laboratoire Environnement Profond REM-EEP‐LEP, Technopôle Brest Iroise Plouzané ,France MARBEC, Institut Français de Recherche pour L'Exploitation de la Mer Univ Montpellier, CNRS, IRD Sète ,France C2 IFREMER, FRANCE UBO, FRANCE CNRS, FRANCE IFREMER, FRANCE IFREMER, FRANCE SI BREST SETE SE PDG-REM-EEP-LMEE PDG-REM-EEP-LEP PDG-RBE-MARBEC-LHM PDG-REM-GM-LCG UM BEEP-LM2E MARBEC IN WOS Ifremer UPR WOS Ifremer UMR WOS Cotutelle UMR copubli-france copubli-univ-france IF 1.359 TC 3 UR https://archimer.ifremer.fr/doc/00493/60426/64028.pdf LA English DT Article CR BIG BO L'Atalante DE ;deep-sea ecosystems;Guaymas Basin;marine ecology;pliocardinae bivalve;sulfur storage;vesicomyid movements AB This study provides an analysis of vesicomyid bivalve–symbiont community distribution across cold seep and hydrothermal vent areas in the Guaymas Basin (Gulf of California, Mexico). Using a combination of morphological and molecular approaches including fluorescent in situ hybridization (FISH), and electronic microscopy observations, vesicomyid clam species and their associated symbionts were characterized and results were analyzed in light of geochemical conditions and other on‐site observations. A greater diversity of vesicomyids was found at cold seep areas, where three different species were present (Phreagena soyoae [syn. kilmeri], Archivesica gigas, and Calyptogena pacifica). In contrast, A. gigas was the only species sampled across the hydrothermal vent area. The same haplotype of A. gigas was found in both hydrothermal vent and cold seep areas, highlighting possible contemporary exchanges among neighboring vents and seeps. In either ecosystem, molecular characterization of the symbionts confirmed the specificity between symbionts and hosts and supported the hypothesis of a predominantly vertical transmission. In addition, patterns of clams could reflect potential niche preferences for each species. The occurrence of numerous traces of vesicomyid movements on sediments in the sites colonized by A. gigas seemed to indicate that this species might have a better ability to move. Furthermore, variation in gill sulfur content could reveal a higher plasticity and sulfur storage capacity in A. gigas. Thus, the distribution of vesicomyid species across the chemosynthetic areas of the Guaymas Basin could be explained by differences in biological traits of the vesicomyid species that would allow A. gigas to more easily exploit transient and punctual sources of available sulfide than P. soyoae. PY 2019 PD JUL SO Marine Ecology-an Evolutionary Perspective SN 0173-9565 PU Wiley VL 40 IS 3 UT 000472949800006 DI 10.1111/maec.12541 ID 60426 ER EF