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Abstract (Short version)

As the only low-latitude connection between ocean basins, the Indonesian

Throughflow allows the direct transmission of heat and salinity between the Pacific

and Indian Oceans. The Mg/Ca and 6180 of calcite of Globigerinoides ruber (G. ruber)

were used to estimate the sea surface temperature (SST) and 6180 of water, an

indicator of hydrologic conditions, over the past 20,000 years. I also attempted to

estimate thermocline structure using Pulleniatina obliquiloculata, but the Mg/Ca and

6180 of calcite data yield conflicting interpretations, indicating further work on this

proxy is required. The G. ruber Mg/Ca results suggest that the SST of the outflow

passages were influenced by high latitude Southern Hemisphere temperature. At

approximately 10,000 years before present, there was a warming in the Makassar

Strait. This local warming was coincident with the flooding of the Sunda Shelf, which

opened a connection between the South China Sea and the Indonesian Throughflow.

Regional 6180 of seawater reconstructions suggest that the mean position of the

Intertropical Convergence Zone (ITCZ) was approximately the same as modern at

the last glacial maximum and was displaced to the south during the Younger Dryas

and Heinrich Stadial 1, suggesting the ITCZ responds to changes in the

interhemispheric temperature gradient.
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Abstract

As the only low-latitude connection between ocean basins, the Indonesian

Throughflow allows the direct transmission of heat and salinity between the Pacific

and Indian Oceans. Despite its potential importance, the role of the Indonesian

Throughflow in global ocean circulation and regional climate is still not clear due to

sparse measurements and the relative difficulty of modeling the region. The Mg/Ca

and 6180 of calcite of the calcitic planktic foraminifera Globigerinoides ruber (G.

ruber) were used to estimate the sea surface temperature and 6180 of water, an

indicator of hydrologic conditions, over the past 20,000 years. I also attempted to

estimate thermocline structure using the foraminifera, Pulleniatina obliquiloculata,

but the Mg/Ca and 6180 of calcite data yield conflicting interpretations, indicating

further work on this proxy is required. The G. ruber Mg/Ca results suggest that the

sea surface temperature of the outflow passages was influenced by high latitude



Southern Hemisphere temperature. This connection is likely via intermediate

waters that upwell in the Banda Sea. At approximately 10,000 years before present,

there was a warming in the Makassar Strait. This local warming was coincident with

the flooding of the Sunda Shelf, which opened a connection between the South China

Sea and the Indonesian Throughflow. Regional 5180 of seawater reconstructions

show that during the last glacial maximum the 6180 of seawater pattern was very

similar to modern, but there were relatively enriched values over the equatorial

IndoPacific during high latitude Northern Hemisphere cold events (Heinrich Stadial

1 and the Younger Dryas). From these results we postulate that the mean position of

the Intertropical Convergence Zone was approximately the same as modern at the

last glacial maximum and was likely displaced to the south during the Younger

Dryas and Heinrich Stadial 1, suggesting the Intertropical Convergence Zone

primarily responds to changes in the interhemispheric temperature gradient. These

results shed light on the primary controls of the temperature and hydrology of

Indonesian Throughflow region.
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Chapter 1

Introduction

Approximately 10-15 Sv (1 Sv = a million cubic meters per second) of water

makes its way from the Pacific Ocean into the Indian Ocean, meandering through a

series of straits known as the Indonesian Throughflow [Gordon, 2005; Sprintall et

al., 2009]. The water's path is not straightforward; there are rich seasonal and

interannual cycles, topographic barriers, and vigorous tidal and wind driven mixing

[Ffield and Gordon, 1996; Gordon et al., 2010; Koch-Larrouy et al., 2008]. There are

three main entrances into the Indonesian Throughflow: the Makassar Strait, the Java

Sea, and the Eastern Passages. Of these the Makassar Strait dominates

volumetrically, supplying water from the subtropical North Pacific [Gordon et al.,

2008]. The Java Sea adds freshwater from the South China Sea [Qu et al., 2006] and

the Eastern Passages contain the only deep entrance (the Lifamatola Strait, sill

depth 2,000m) [Talley and Sprintall, 2005]. There are also three outflow passages:

the Timor Strait, the Ombai Strait, and the Lombok Strait (Fig 1). Each outflow

passage has its own characteristics as well. The smallest, the Lombok Strait, is the

most influenced by the seasonal reversal of the winds (the monsoons). During the



boreal winter months, the Lombok Strait occasionally loses its status as an outflow

passage; its flow is reversed by the winds, particularly, at the surface. The Ombai

Strait also has occasional seasonal flow reversals in the surface, and the largest

passage, the Timor Strait has very little seasonal variability [Sprintall et al., 2009].

Though volumetrically the most important, and relatively well studied, the

Makassar Strait is still poorly understood. Initial measurements indicated the flow

of the surface layer reversed with the seasons, with a strong and constant

thermocline flow. This reduced surface flow was attributed to a plume of freshwater

from the Java Sea blocking flow during the boreal winter [Gordon et al., 2003],

though it could also be explained by the Ekman transport caused by the monsoon

winds [Sprintall and Liu, 2005]. Later work showed that the surface flow is inhibited

throughout the year, and the maximum flow is always in the thermocline [Gordon et

al., 2008]. Neither of the proposed mechanisms explains a year round suppression

of surface flow. The reason for this year round suppression of the surface flow is still

not clear. Here, we propose an alternative mechanism: the persistently higher sea

level of the southern Java Sea compared to the Flores Sea creates a pressure

gradient. A surface northward geostrophic flow is established, inhibiting surface

flow. The thermocline flow is unaffected since the sill depth between the Java Sea

and the Indonesian Throughflow is only 40m.

Oceanography (Chapter 2):



What can our climate reconstructions add to our understanding of the

Indonesian Throughflow? Quite a lot, it turns out. We can test some of the emerging

hypotheses about the Indonesian Throughflow. We can start with a very basic

question: does the water exiting the Indonesian Throughflow resemble the water

going in? Not at all. The water that enters the Indonesian Throughflow is warm and

salty. What comes out is relatively cool and fresh (Fig 2). The fundamental nature of

this great transformation is the focus of work in modern oceanography [Fang et aL.,

2010; Gordon et aL., 2003; Koch-Larrouy et aL, 2008]. How can the paleo record help

us understand this issue? A current hypothesis for explaining the cool, fresh nature

of the Indonesian Throughflow is that water from the Java Sea blocks the warm

surface flow through the Makassar Strait. The flow of the cooler subsurface water is

unaffected and therefore this cooler water dominates [Gordon et aL, 2003]. In a

stroke of geological good luck, the Java Sea is so shallow that 20,000 years ago when

the great continental ice sheets robbed the oceans of water and sea level was 120

meters lower, the entire Java Sea was exposed shelf area. Thus by reconstructing

oceanographic conditions as sea levels rose to modern, we can examine what, if any,

effect the Java Sea water had on the Indonesian Throughflow.

Our long records can also give us insight into the major controls on the

temperature of the Indonesian Throughflow. Here, we find something unexpected;

the opening of the Java Sea when sea levels rose did not appear to affect the sea

surface temperatures of the outflow passages. Instead, over the past 20,000 years

the sea surface temperatures of the Indonesian Throughflow outflow paralleled high

latitude Southern Hemisphere temperature variations recorded in ice cores. This is



not a temperature pattern we see in the inflow area to the Indonesian Throughflow.

How does this temperature pattern get to the Indonesian Throughflow? We suggest

that there is more deep water entering through a poorly studied passage, the

Lifamatola Strait, than is currently estimated. This water is then vigorously mixed in

the Banda Sea, which brings deep water to the surface. It is likely that this mixing is

the primary source of the cool the Indonesian Throughflow waters in the modern, as

our records suggest the Java Sea inflow does not change the sea surface temperature

of the outflow passages. Further observational work in the Indonesian Throughflow

region will allow us to test this hypothesis.

Hydrology (Chapter 3):

The primary controls on the sea surface temperature of the Indonesian

Throughflow turned out to be much more complicated than expected and highly

dependent on the unique topography of the region. As is turns out, the major

changes in hydrology are much more straightforward. Along the equator, winds

from the north and south meet over warm water. At this point of convergence, air

rises and heavy precipitation occurs. This area of convection is the Intertropical

Tropical Convergence Zone (ITCZ). The ITCZ migrates with the seasons and gets

tugged towards the warmer hemisphere. Due to the current continental

configuration, the northern hemisphere is slightly warmer, and the position of the

ITCZ is biased to the north [Koutavas and Lynch-Stieglitz, 2005]. What would happen

if the interhemispheric temperature gradient were reduced? Temperature



compilations show that during times of rapid cooling in the northern hemisphere

(for example during Heinrich Event 1 and the Younger Dryas), the southern

hemisphere warmed, decreasing the interhemispheric temperature gradient

[Shakun and Carlson, 2010]. The expectation is that the ITCZ would lose some of its

northward bias. Our hydrologic proxies show exactly that. Our data suggest that,

despite the complexity of the Indonesian Throughflow, the ITCZ responded

uniformly to these high latitude northern hemisphere cooling events and its mean

position shifted southward.

Proxies (Chapter 4):

In order to reconstruct temperature and hydrology on timescales longer than

the instrumental record, we have turned to proxies. Proxies can give us estimates of

past oceanographic conditions. The data in this thesis is based on the geochemistry

of planktic foraminifera. Foraminifera are single celled organisms that build shells,

specifically of calcium carbonate (CaCO3), and we utilize the chemical variation in

these shells. The amount of 180 compared to 160 (or 5180) that is incorporated into a

foraminifera's shell depends on both the temperature and the 6180 of the water in

which the shell grows [Emiliani, 1970]. The 6180 of the water can tell us about

hydrologic processes, but we need an independent temperature estimate to isolate

the 8180 of seawater component. Here we take advantage of the observation that

foraminifera growing at higher temperatures incorporate more Mg into their shells.



Thus, the Mg/Ca ratio in a shell can be used estimate past temperatures [Rosenthal

et al., 1997].

We investigate two types of foraminifera. Globigerinoides ruber (G. ruber) has

photosynthetic symbionts and is primarily found in the mixed layer. Pulleniatina

obliquiloculata (P. obliquiloculata) lives in the upper thermocline at -80-100m. By

measuring both species, the hope was to reconstruct thermocline structure. This

was a very exciting prospect. Firstly, early observational results from the Makassar

Strait showed that thermocline temperature, but not surface temperature was

correlated to Makassar Strait transport [Ffield et al., 2000]. Secondly, temperature

anomalies associated with the Indian Ocean Dipole are often larger in the

subsurface than in the surface [Shinoda et al., 2004]. Finally, modeling simulations of

the Last Glacial Maximum suggest that thermocline temperatures in the Western

Equatorial Pacific may be the best diagnostic for past changes in the Walker

Circulation [DiNezio et al., 2011]. Thus, the depth habitat of P. obliquiloculata makes

this foraminifera well suited to address several important climatic questions.

While our 6 180caicite and Mg/Ca-based temperature results from G. ruber are

self-consistent, and can be reconciled with modern conditions and other climate

reconstructions (and are the basis for the results described in Chapters 2 and 3), our

P. obliquiloculata results are difficult to interpret. We use the difference between the

Mg/Ca-based temperatures of G. ruber - P. obliquiloculata to infer the thermocline

structure. Using the 6 1 80calcite of G. ruber and P. obliquiloculata we make a similar

estimate. In the coretop data, these two methods yield qualitatively similar results.

In the downcore records, they predict a different sign of change in the thermocline



structure, making an oceanographic interpretation difficult. While previous authors

have suggested that the unique oceanographic conditions at their study sites cause

this inconsistency [Steinke et al., 2010; Xu et aL, 2008], we suggest that the difficulty

of using the combination of G. ruber and P. obliquiloculata to reconstruct

thermocline conditions is pervasive throughout the IndoPacific Warm Pool. We urge

caution in using the geochemistry of P. obliquiloculata to reconstruct water column

structure and suggest more work is required before this proxy can be reliably used.

Summary

Not only is the Indonesian Throughflow at an oceanic crossroads, this thesis

demonstrates it is also a climatic balancing point between the Northern and

Southern Hemisphere. High latitude Southern Hemisphere temperature variation

appears to influence the sea surface temperature of the outflow passages. On the

other hand, the hydrology of the entire region responds in concert with changes in

the interhemispheric temperature gradient. This suggests that the geometry of the

Indonesian Seas has an influence on local sea surface temperatures, but the

hydrologic changes are primarily influenced by extratropical forcings.
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Figure 1: Map of Indonesian Throughflow. Water flows from the Pacific into the
Indian Ocean through the Indonesian Throughflow. Water from the three major
inflow passages (the Makassar Strait, the Java Sea, and the Eastern Passages) is
mixed within the Banda Sea and flows out via the Timor Sea, the Ombai Strait, and
the Lombok Strait. The circulation schematic is based on [Fang et al., 2010; Gordon
et al., 2010; Tomczak and Godfrey, 1994].
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Figure 2: Hydrographic data from within the Indonesian Seas. Data are from
CTD casts from two cruises, BJ8-03 and SO0184, both of which took place during the
boreal summer. The inflow from both the North Pacific (red) and the South Pacific
(teal) have subsurface salinity maxima. Vigorous mixing and freshwater influx (both
from the Java Sea and local precipitation) erode these salinity maxima and water
exits the Indonesian Throughflow fresher than it enters.
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Chapter 2

Southern Hemisphere Influence on the Indonesian Throughflow

Abstract

In the modern ocean, vigorous vertical mixing in the Banda Sea combines

North Pacific and South China Sea surface and thermocline waters with

intermediate water from the southern hemisphere to create a distinctive Indonesian

Throughflow water mass that flows from the tropical Pacific into the Indian Ocean

[Gordon et aL, 2003; Koch-Larrouy et aL, 2008]. The Indonesian Throughflow

contributes to the warm water return path of the meridional overturning

circulation, but the controls on and the influence of the Indonesian Throughflow on

deglacial and Holocene sea surface temperature evolution are unknown. Here, we

present Mg/Ca-based sea surface temperature reconstructions from the Makassar

Strait, the main path for North Pacific water to enter the Indonesian Throughflow,

and from the Savu Sea, where Indonesian Throughflow exits into the eastern Indian

Ocean. We show that during the last deglaciation surface temperature trends in both

the Makassar Strait and the Indonesian Throughflow outflow resemble high-latitude

southern hemisphere temperature trends. In contrast to the high-latitude southern



hemisphere, the Makassar Strait warmed -10,000 years ago, when sea level rise

permitted the inflow of South China Sea water across the previously exposed Sunda

Shelf [Linsley et al., 2010], which apparently isolated the Makassar Strait from

southern hemisphere influence. We argue that sea surface temperatures of the

outflow passages of the Indonesian Throughflow were unaffected. We suggest that a

sustained oceanic connection between the southern hemisphere and the Indonesian

Throughflow through the mixing in the Banda Sea provides a mechanism for

Southern Source Water to influence tropical Indian Ocean sea surface temperatures.

Introduction:

The Indonesian Throughflow (ITF) transfers approximately 10-15 Sv (1 Sv =

106 m3/s) of water from the Pacific to the Indian Ocean through the Indonesian Seas,

and plays an important role in the global oceanic circulation. Water enters the ITF

via three routes: the Sulawesi Sea, the Java Sea, and the Eastern Passages (Figure 1)

[Gordon et al., 2003; Koch-Larrouy et al., 2008]. North Pacific surface and

thermocline water flows through the Sulawesi Sea and into the Makassar Strait.

From the Makassar Strait, some flows into the Indian Ocean via the Lombok Strait,

with the rest flowing to the Flores Sea, and then eastward into the Banda Sea

[Gordon et aL, 2003; Koch-Larrouy et al., 2008]. Relatively fresh surface water from

the South China Sea is advected across the shallow Sunda Shelf and through the Java

Sea, and into the southern Makassar Strait and Flores Sea [Fang et al., 2010].

Approximately 2.5 Sv of Southern Source Waters enter the ITF through the

Eastern Passages between Sulawesi and Irian Jaya [Van Aken et al., 2009]. The



Southern Source Water is composed of both of Antarctic (0 = -1.31'C, salinity =

34.62) and Subantarctic water (0 = 5.09'C, salinity = 34.25) (potential temperature

and salinity estimates are from Gebbie and Huybers [2011]). Water from the

Eastern Passages, Makassar Strait and Java Sea enter the Banda Sea, where vigorous

vertical mixing, both tidal and wind driven, combines the water masses, mixing

down relatively fresh surface water throughout the column [Koch-Larrouy et al.,

2008], and creating characteristic cool, low-salinity ITF water [Fang et al., 2010;

Gordon et al., 2003]. This ITF water then flows into the Indian Ocean via the Ombai

Strait and the Timor Sea.

Though a relatively small net volumetric contribution [Fang et al., 2010], the

flow from the South China Sea plays a key role in setting the character of ITF water

and transport [Gordon et al., 2003; Koch-Larrouy et a., 2008]. It has been proposed

that the advection of freshwater from the South China Sea (Figure S1) creates a

northward pressure gradient within the Makassar Strait, increasing the residence

time of surface water in the Strait, resulting in thermocline-intensified flow [Gordon

et al., 2003]. We suggest an alternate explanation is required since the reduced

surface flow relative to the thermocline occurs throughout the year [Gordon et aL,

2008], even in boreal summer when the surface flow is towards the South China Sea.

In all seasons, the sea level of the southern Java Sea is higher than the Banda Sea

[Carton and Giese, 2008] (Figure S1-3). The resulting pressure gradient may be

associated with a northward geostrophic flow that opposes southward transport

through the Makassar Strait. Since the sill between the Java Sea and the ITF is only



40m, this pressure gradient is not present at thermocline depths, explaining the

relatively enhanced subsurface flow.

Previous studies have shed light on the role of the South China Sea

Throughflow by focusing on the effect of the flooding of the shallow Sunda Shelf

-10,000 years before present (yr BP). This flooding opened a connection for South

China Sea Throughflow to enter the Makassar Strait, freshening the ITF relative to

the Western Pacific Warm Pool [Linsley et al., 2010]. Additionally, cooling in the

thermocline of the ITF outflow was attributed to thermocline intensified flow that

resulted from this fresh South China Sea inflow [Xu et al., 2008]. Previous work has

also shown that the deglacial sea surface temperature (SST) changes in the

Makassar Strait and Antarctica were synchronous [Visser et al., 2003]. The link was

attributed to a switch between an El Niflo-like climate during glacial times to a La

Nifia-like climate during deglacial times.

Here, we evaluate the link between high latitude southern hemisphere

temperatures and the ITF in greater detail, and re-evaluate the influence of the

South China Sea on SST. We present core-top and downcore Mg/Ca-based SST

estimates, using the surface mixed-layer planktic foraminifera Globigerinoides ruber

(G. ruber), to study past changes in the SST of the ITF region.

Materials and Methods

Approximately, 40 G. ruber (white, morphotype sensu stricto; 212-300[tm)

were used for Mg/Ca analysis. Samples were gently crushed; cleaned using a



method that included reductive followed by oxidative steps; and run on an Element

XR ICP-MS at Rutgers University or an Element 2 ICP-MS at Woods Hole

Oceanographic Institution.

The age models for all sediment records presented here are based on the

radiocarbon ages of planktic foraminifera (Appendix A). All radiocarbon ages were

converted to calendar ages using the Marine09 calibration [Reimer et al., 2009] and

no local reservoir age adjustment (see also supplementary discussion).

Results:

In agreement with a previous study [Arbuszewski et al., 2010], and in contrast

with another [Mathien-Blard and Bassinot, 2009], our new core top data, in

conjunction with data from other regions [Arbuszewski et al., 2010; Dahl and Oppo,

2006; Ferguson et al., 2008; McConnell and Thunell, 2005; Mohtadi et al., 2011a;

Regenberg et al., 2006], demonstrate that there is no discernable salinity influence

on the Mg/Ca-based temperature estimates of G. ruber at low salinities. Arubszewski

et al. [2010] suggest this threshold is 35. With more data from fresh regions, we

suggest the threshold is 36 (Figure 2 and supplementary discussion); thus, we can

interpret the Mg/Ca data strictly in terms of temperature with no correction for

salinity effects.

Our new high-resolution SST record from the Savu Sea (GeoB10069-3, here

69-3) is bathed in water supplied by the ITF entering the Indian Ocean (Figure 1) via

the Ombai Strait. In addition we generated a high-resolution SST record from the



Flores Sea (BJ8-03 136GGC, here 136GGC) and a low-resolution SST record from the

Makassar Strait (BJ8-03-23GGC, here 23GGC).

We group temperature reconstructions of our new records and published

records into three regions: the Western Pacific Warm Pool [Rosenthal et al., 2003;

Stott et al., 2007], the Southern Makassar Strait [Linsley et al., 2010; Visser et aL,

2003], and the outflow of the ITF [Levi et al., 2007; Xu et al., 2008] (Figure 1, Table

S1), and reconstruct regional averages (Figure 3 and 4). We include 136GGC in our

Makassar Strait group since it is geographically close, though it is in the nearby

Flores Sea.

Western Pacific Warm Pool SSTs warmed continuously throughout the

deglacial as noted previously [Kiefer and Kienast, 2005]. This continuous warming

lacked the characteristic millennial scale variability of Antarctic records. Western

Pacific Warm Pool SSTs peaked at -10,000 yr BP, and cooled slightly during the

remainder of the Holocene (Figures 3,4).

Deglacial SST evolution in the Southern Makassar Strait differed from the

Western Pacific Warm Pool. The three longer records suggest a plateau in warming

that began at -14,000 yr BP and lasted -2,000 yr. These sites then warmed until

-8,000 yr BP (Figure 3,4). SSTs in the Makassar Strait cool only slightly after

peaking in the mid-Holocene.

In the ITF outflow sites, SSTs rose from -20,000 yr BP (Figures 3,4) to

-15,000 yr BP, remained constant between -15,000 yr BP and -12,000 yr BP,

peaked at -10,000 yr BP and then cooled by about 10C into the late Holocene. The

temperature pattern of the outflow records differs from the pattern in other areas of



the eastern Indian Ocean. For example, SST reconstructions from sites to the north

of the outflow, off the coasts of western Java and central Sumatra, differ in that they

show continuous warming from 20,000 yr BP until -5,000 yr BP and lack a

Holocene cooling [Mohtadi et al., 2010].

Discussion:

A strong Antarctic-type signal [e.g. Kawamura et aL, 2007] is seen in the

outflow sites (Figure 4). Not only did warming at each of the sites cease during the

Antarctic Cold Reversal (Figure 3), but the sites reached peak temperature at

approximately the same time as Antarctica, and then cooled in concert with the

Indian Ocean sector of Antarctica. In fact, the outflow passage SST stack correlates

more strongly with the Dome Fuji record than it does with either the WPWP or

Makassar Strait stack (Table S3). This deglacial and Holocene temperature pattern is

also suggested in a SST reconstruction from the Chatham Rise, east of New Zealand

[Pahnke et aL, 2003] (Figure 4). The close correspondence between all these records

suggests a strong high-latitude southern hemisphere imprint on SSTs of the outflow

region.

We propose that the similar deglacial SST trends in the ITF outflow and high-

latitude southern hemisphere are due to the direct oceanic connection between

Southern Source Water and the ITF provided by the Eastern Passages [Van Aken et

aL, 2009]. Additionally, while small, the deep flow in the Timor Sea is from the

Indian Ocean [Sprintall et aL, 2009], which may contribute Southern Source Water

to the ITF. The Southern Source Water is mixed throughout the water column in the



Banda Sea, and thus affects ITF outflow SSTs. Although the inflow of Southern

Source Water through the deep Eastern Passages only makes up 20% of the ITF

[Van Aken et al., 2009], the apparently much larger reconstructed temperature

variations at the higher latitudes (as seen at the Chatham Rise [Pahnke et aL, 2003])

would cause water sourced from these high southern latitude regions to have a

disproportionate influence in the southern Indonesian region.

We test whether our hypothesis of a Southern Source Water influence at the

outflow passages is consistent with modern observations of the ITF. We estimate

the portion of Southern Source Water (SSW) required to cause the Holocene SST

decrease in the outflow passages using the following equations:

Equation 1: TITF outflow(tl) = asswssw(t1) + 1aiTi(ti)

Equation 2: TITF outflow(t2) = csswTssw(t2) + cciTi(t2)

Where TITF outflow(ti) is the outflow temperature at time ti. This temperature is

determined by the water temperature at all source regions and the portion of water

(a) that comes from each source region. Using the Chatham Rise record to estimate

the temperature of the Southern Source Water (Tssw), we estimate the portion of

SSW (assw) required to cause the Holocene cooling in the outflow passages. The SSTs

at all other source regions are assumed unchanged. Equation 2 is subtracted from

Equation 1 to obtain:

ATITF outflow = asswATssw

The temperature change from the Early to Late Holocene is -1.2C at the

outflow passages (ATITF outflow), and -3"C at the Chatam rise (ATssw) [Pahnke et al.,

2003]. This would require the ITF to be composed of 40% Southern Source Water,



which is much higher than the 20% (2.5 Sv of a total 13 Sv transport) suggested by

the INSTANT monitoring program [Gordon et al., 2010; Van Aken et aL, 2009]. We

note, however, that a Holocene TEX86 record off the coast of West Antarctica shows

a 6'C Holocene cooling [Shevenell et al., 2011]. Weighting the Chatham Rise record

and the West Antarctica record equally suggests a 4.5'C cooling in Southern Source

Water. This reduces the portion of Southern Source Water required to -25%. If the

other source regions for the ITF in fact cooled slightly (the WPWP average cools by

0.6'C, Fig 4), then even less Southern Source Water would be required.

In summary, if the Chatham Rise is representative of Southern Source Water

temperature entering the ITF, and the temperature at the rest of the source regions

to the ITF did not change over the course of the Holocene, our proposed mechanism

is not consistent with the most recent modern observations of the ITF. However, if

we consider additional temperature records from Southern Source regions and the

apparent cooling of the WPWP, then our proposed mechanism is consistent with

modern estimates of ITF transport.

Though Makassar Strait SSTs appear to follow an Antarctic pattern through

the deglacial, during the Holocene, Makassar Strait SST warms compared to both the

outflow passages and Antarctic trends. We hypothesize that the warming of the

Makassar Strait is due to a change in the influence of Banda Sea water. In the

modern, some Banda Sea water enters the Makassar Strait during the southeast

monsoons [Fallon and Guilderson, 2008; Gordon et al., 2003]. We propose that prior

to the flooding of the Sunda Shelf there was a greater influx of Banda Sea water.

After the flooding of the Sunda Shelf, the influence of the South China Sea increased



the residence time of the surface waters within the Makassar Strait, which warmed

the Makassar Strait relative to the ITF outflow passages. We suggest that the

reduction of surface transport through the Makassar Strait trapped a portion of the

heat that was previously exported, leading to a surface warming in the Makassar

Strait.

We draw on our new data, modern observations, and a modeling study to

suggest that there was no discernable effect of the flooding of the Sunda Shelf on the

SST of the ITF outflow. We note that both before and after the Sunda Shelf flooding,

outflow temperatures closely follow Antarctic temperature trends.

As described above, today, the South China Sea Throughflow into the

southern Makassar Strait reduces surface transport through the Makassar Strait.

Results from an Ocean General Circulation Model suggest that this reduction in

surface transport leads to a 0.18 PW (1 PW = 1015 Watts) decrease in heat transport

through the Makassar Strait, lowering the Makassar Strait transport-weighted

temperature by 2'C [Tozuka et aL, 2007]. Here we hypothesize that this decrease in

heat transport does not result in cooler outflow temperatures as previously

suggested [Gordon et al., 2003]. Modern observations show that the South China Sea

Throughflow is a source of 0.2 PW of heat to the ITF [Qu et al., 2006], enough to

compensate for the decreased heat transport through the Makassar Strait, implying

a zero net balance for the heat budget of the ITF outflow. Therefore, we propose that

the opening of the Java Sea that occurred with the flooding of the Sunda Shelf at

-9,500 yr BP did not influence ITF outflow surface temperatures. Rather, we



postulate that the deglacial and Holocene trends in the ITF outflow SSTs are due to

the influence of high latitude southern hemisphere temperature.

We explore alternate hypotheses to explain our temperature reconstructions,

some of which we are able to rule out, while others require further work. These

hypotheses include an ENSO-like teleconnection, changes in local insolation,

changes in wind driven mixing, and changes in tidal mixing.

It is possible that a direct atmospheric connection with Antarctica [Visser et

aL, 2003] is the source of the deglacial SST variability in the ITF outflow records.

However, the absence of a significant correlation between ENSO and SSTs in the

outflow region during the instrumental era (Figure S4) strongly suggests that an

ENSO-Antarctica teleconnection is not the source of the connection between the ITF

and Antarctica.

Changes in radiative forcing via either mean annual insolation or C02 are

unlikely to be the source of the SST variability in the outflow region. Firstly, we note

that all three regions (WPWP, the Makassar Strait, and the Outflow Passages) would

experience similar radiative forcing as they are geographically close. Additionally,

peak SSTs in our outflow region occur at 10,000 BP, coincident with a minimum in

mean annual insolation (Fig S5) [Laskar et aL, 2004]. Similarly, CO2 values rise

during most of the Holocene [Monnin et al., 2004], so CO2 greenhouse warming

would not explain the cooling in our outflow passages.

A change in wind-driven upwelling is another potential source of variability

in the outflow passages. The percentage of Globigerina bulloides (G. bulloides)

relative to the total number of planktic foraminifera was used as a proxy for



upwelling, with a higher percent of G. bulloides corresponding to more upwelling

[Prell, 1984]. The percent of G. bulloides in both 69-3 and a nearby site off the

southern coast of Java (10053-7) [Mohtadi et al., 2011b] suggest there is a peak in

upwelling at -10,000 BP, with a decrease in upwelling throughout the Holocene

(Fig S5). If upwelling were the primary control on SSTs in the outflow passages, we

would expect coolest SSTs at 10,000 BP and increasing SSTs throughout the

remainder of the Holocene. However, our SST reconstructions show the opposite

trend.

The transformation of water properties within the Indonesian Sea has been

attributed to tidal mixing [Ffield and Gordon, 1996]. Modeling results suggest that

tides cause a majority of the mixing that occurs within the ITF [Koch-Larrouy et al.,

2008]. Changes in sea level [e.g. Clark and Mix, 2002] likely altered the amount of

tidal mixing, and in particular how tidal dissipation was partitioned between the

continental shelves and the deep ocean [Egbert et al., 2004; Wunsch, 2005]. The

degree to which changes in sea level may have changed the mixing within the ITF is

unknown. Even today, estimates of tidal dissipation within the ITF region suffer

from large uncertainties [Ray et al., 2005]. In the modern, much of the tidal mixing

occurs when the main flowpath of the ITF is over shallow sills or narrow passages

[Hautala et al., 1996; Ray et al., 2005]. Since the vertical mixing at these choke

points is influenced by the details of sill topography [Hatayama, 2004] past sea level

differences may have changed the location and/or amount of tidal mixing. The

degree to which mixing within the Indonesian Seas changed in the past could be

empirically evaluated with benthic foraminifera temperature reconstructions along



depth transects. Within the modern Banda Sea, the entire water column is mixed,

but the intensity of local insolation restratifies the water column with respect to

temperature. In the modern, temperatures are uniform only below 1,000m

[Tomczak and Godfrey, 1994]. A change in depth of this temperature gradient would

suggest a change in mixing intensity. This, along with modeling the influence of

reduced sea level on the mixing that occurs at the ITF's choke points would give

insight into the potential role of changes in tidal mixing on ITF water properties.

Conclusions:

Our study demonstrates a persistent link between SSTs in the eastern ITF

outflow region and high latitude southern hemisphere temperature during the last

20,000 years, which we suggest is through an oceanic pathway. Southern Source

Water enters the Indonesian Seas primarily through the Eastern Passages and to a

lesser extent through the Timor Stait. Subsequently, it is mixed upward in the Banda

Sea, where it enters the main ITF. This direct oceanic connection between Antarctic

temperature and tropical SSTs would allow the transmission of southern high

latitude climate signals to the ITF outflow and into the Indian Ocean. Our proposed

mechanism of a direct oceanic connection appears as a testable hypothesis of the

modern controls on the ITF outflow.

Our results also highlight the importance of the South China Sea Throughflow

for sea surface temperatures in the ITF region. Prior to the establishment of the

South China Sea Throughflow, southern hemisphere climate had a greater impact on

Makassar Strait SST. The South China Sea Throughflow, however, changed the



surface circulation so that the Makassar Strait was no longer strongly influenced by

the southern hemisphere. Makassar Strait SSTs warmed, and remained elevated

throughout the Holocene.
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Figure 1:
Map of the Indonesian Throughflow area. The primary flow path of surface water
is shown in gray arrows. The freshwater flow from the Java Sea is indicated by a
dashed arrow. The flow of deep water through the Eastern Passages is shown by
blue arrows. Coretops are indicated by filled circles, new downcore records are
indicated with diamonds, and triangles indicate downcore data from previously
published records. Black triangles correspond to Western Pacific Warm Pool sites,
red triangles and diamonds with Maskassar Strait sites, and blue triangles and
dimonds with outflow passage sites. This color coding corresponds with the records
shown in figures 3-4. Background color shows mean annual SST from the World
Ocean Atlas 05 dataset [Locarnini et al., 2006].
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Coretop excess Mg/Ca versus salinity. Excess Mg/Ca [Arbuszewski et al., 2010] is
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Figure 3:
Mg/Ca-based sea surface temperature estimates from this paper, along with
previously published data. All records are converted to temperature using a
multispecies equation [Anand et al., 2003], except for MD41, for which we used the
published sea surface temperatures [Rosenthal et al., 2003] (see also the
supplementary discussion). Thin lines connect raw data, bold lines are 500 year
averages from the Western Pacific Warm Pool (black), the Makassar Strait (red), and
the outflow passages (blue). Mean annual sea surface temperatures measured by
satellite are indicated for each core site (+) and modern sea surface temperature
estimates from multi-core samples are indicated by diamonds.
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Figure 4:
Comparison of sea surface temperature records to Southern Hemisphere
records. Mg/Ca-based sea surface temperature records, placed into 500-year, non-
overlapping bins and averaged, with the shading around the bins representing the
propagated error that includes both the analytical error and the error in the Mg/Ca-
temperature calibration (see supplementary discussion for a detailed discussion). A
Mg/Ca-based sea surface temperature record from the Chatham Rise [Pahnke et aL,
2003] is shown in purple (vertical bar is uncertainty, see supplementary discussion
for details) and 6180 from the Indian Ocean sector of Antarctica (Dome Fuji) is
shown in black [Kawamura et al., 2007]. Black rectangles denote the Antarctic Cold
Reversal (timing inferred from Dome Fuji data) and the timing of the Sunda Shelf
flooding [Sathiamurthy and Voris, 2006].
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Supplementary material:

I. Coretop study - The influence of salinity on the Mg/Ca-temperature
relationship

All our samples for the coretop study were taken with a multi-coring device

on three cruises in the Indonesian Throughflow region and the Eastern Indian

Ocean (Figure 1, dots; also see Appendix B).

The influence of salinity on Mg/Ca was explored by combining our new

coretop data with previously published G. ruber data. All our samples were prepared

using a full trace metal cleaning, including reductive and oxidative steps [Boyle and

Keigwin, 1985/6; Rosenthal et al., 1997]. However, some of the previously published

data were from samples that were not cleaned with a reductive step. To account for

this, we added 10% to the Mg/Ca of all samples cleaned using both oxidation and

reduction following Abruszewski et al. [2010].

We evaluate how well the Mg/Ca measurements predict temperature by

calculating the "excess Mg/Ca" [Arbuszewski et al., 2010].

Excess Mg/Ca = measured Mg/Ca - predicted Mg/Ca

In order to determine predicted Mg/Ca we used the Anand et al. [2003]

multispecies calibration in conjunction with modern data from either World Ocean

Atlas 2005 (WOA05) temperature data [Locarnini et al., 2006], or the temperature

data presented in the original publication.



Anand multispecies equation: = 0.38e.09T

Ca

When excess Mg/Ca is compared with salinity (again either WOA0S data [Antonov et

aL, 2006] or the salinity from the original publication was used), there is no

correlation below 36 (Figure 2, r2 = 0.001). This finding supports a recent paper

which found a salinity threshold of 35 [Arbuszewski et aL, 2010], but conflicts with

another, which suggests that the influence of salinity on Mg/Ca is a concern at all

salinities [Mathien-Blard and Bassinot, 2009]. This discrepancy is likely due to two

reasons. First there were very few Mg/Ca data from relatively fresh sites in previous

publications. The new data presented here address this issue. Secondly, one must

use caution if using 6 180calcite and 6 180seawater measurements to estimate calcification

temperature.

We did not consider calculating the calcification temperature based on

6 180cacite and 6 18 0seawater because of the very limited 6 180seawater data in our study

area. We suggest the gridded database of 6 180seawater [LeGrande and Schmidt, 2006]

is not appropriate to use in this case because it uses both P04* and salinity to

estimate 6 180seawater in areas with few 6 180seawater measurements. Therefore, the

most robust manner to evaluate salinity's effect on Mg/Ca is to calculate excess

Mg/Ca with modern temperature data and not estimated isotopic temperature. This

avoids the circularity of including a salinity-based 6 180seawater estimate in a

comparison with salinity.

We also explored the influence of core depth on our samples by examining

the relationship between Mg/Ca excess and core depth (Figure S6, R2 = 0.005). The



lack of correlation between depth and Mg/Ca suggests that preferential dissolution

is not the source of the Mg/Ca excess.

Modern SST

Modern SST data were downloaded from NASA's Ocean Color Radiometry

Online Visualization and Analysis Global Monthly Products

(http://reason.gsfc.nasa.gov/Giovanni/).

Our Mg/Ca-based modern temperature estimates for the Makassar Strait and

ITF outflow regions are consistently cooler than satellite-derived mean annual

temperature, though they are all within the seasonal range. This could be due to a

growth preference during the upwelling season and/or because G. ruber may calcify

throughout the upper 30 m [Wang, 2000], even in regions with a shallow mixed

layer.

II. Downcore records

Temperature calibration (cleaning method adjustments)

Previous work [Arbuszewski et al., 2010; Barker et al., 2003; Rosenthal et al.,

2004] has shown that the reductive step in Mg/Ca cleaning reduces the Mg/Ca of a

sample by approximately 10%. The Mg/Ca-temperature calibration [Anand et al.,

2003] we used was based on samples that were cleaned without a reductive step. To

account for this we add 10% to the Mg/Ca of samples that were cleaned with the full

(with oxidative and reductive steps) cleaning method [Boyle and Keigwin, 1985/6;

Rosenthal et al., 1997].



Original Anand et al. (2003) multispecies equation [Anand et al., 2003]:

g = 0.38e.09T
Ca

Revised equation for the full cleaning method:

Mg + .1Mg = O.8 .09T+0.1 =0.38e-0
Ca Ca

or

Ca = 0.345e0.09
T

Ca

Errors on our temperature estimates

There are two primary sources of error in converting Mg/Ca to temperature.

The first is within the Mg/Ca-temperature calibration equation, and the second is

the reproducibility of Mg/Ca measurement.

We used the values and associated errors on the Anand multispecies equation

[Anand et al., 2003]:

=beaT
Ca

b = 0.38 (+/- 0.02); a = 0.090 (+/- 0.003) *C-1

or for the full cleaning equation:

b = 0.345(+/- 0.02); a = 0.090 (+/- 0.003) C-1

Our estimate of the reproducibility of our Mg/Ca measurements is based on

comparing samples from the same depth. The foraminifera from these duplicates

were not homogenized prior to running, so this should be a conservative estimate of



reproducibility based on both the natural variability that a sample may contain and

instrumental error. The standard deviation of the Mg/Ca difference between 17

such duplicates was 0.21.

These two sources of error were propagated [Bevington and Robinson, 1992] as

follows:

8SST dSST ( SST
GisrT = ( Ga2 +(-Orb )2 + ( CMg ICa

da db dMg Ca

where

Mg
dSST 1 ~8 - 2 1 (n( ),

da a2 b

8SST 1
db ab'

and

LSST 1 1

dMg/ a Mg/
/Ca /Ca

For each core, if there was a single data point in the 500 year bin, the error

was simply JSST, as determined above. If there was more than one temperature

value within the 500 year bin, the errors were calculated in the following manner

[Bevington and Robinson, 1992], where n is the number of data points in each bin,

CUlinSST =2 CSTi

The errors on each 500 year bin in the regional stack were determined by

summing the square of the errors (&2binSST) from each individual core.



v)i'erageSST n 2 ( binSSTi
i=1

The error on the Chatham Rise core (MD97-2120) was determined by

propagating the reported analytical relative uncertainty (5.8%) [Pahnke et aL,

2003], and the reported calibration error (±0.8*C) [Mashiotta et al., 1999] which

gives a total error of ±1"C.

Our approach to error propagation is conservative in that a portion of the

calibration error is due to the analytical uncertainty in the Mg/Ca measurements. By

also including our analytical uncertainty in our error propagation we are likely

overestimating the errors.

Radiocarbon calibration and age model construction

All radiocarbon dates were converted into calendar ages using the Calib 6.0

program and the Marine 09 calibration [Reimer et al., 2009]. No local reservoir

correction was applied as modern measurements suggest the regional AR is close to

zero [Bowman, 1985; Southon et al., 2002]. The median probability was used for

constructing age models. All dates used, and their associated errors, can be found in

Appendix A.

In cases where the first standard deviation of calendar ages had two modes,

we reported a range of calendar ages that encompasses both peaks, as a

conservative estimate. In cases where we used a polynomial or linear fit, we

estimated error at the age control points by summing the squares of both the



radiocarbon calibration errors (first standard deviation) and an estimate of the

polynomial's error at these points (also first standard deviation). These values are

included in Appendix A.

For cores 23GGC, 70GGC, 136GGC, 69-3, MD62, and MD65, age models were

constructed by linearly interpolation between dates. The age models for MD41,

MD78, and MD81 were constructed by utilizing the equations listed below.

Polynomial for MD97-2141

y = -0.00000000124x 5 + 0.000001404x 4 -0.0007356x 3 +0.1782x 2 + 31.90x+4314

R2 = 0.979

Linear fit for MD01-2378 (the intercept was set at 1050 years, to produce a realistic

coretop age)

y = 48.884x + 1050

R2 = 0.991

Polynomial for MD98-2181

y = -0.000000002262x 4+0.000004298x 3+0.006586x2+4.412x+107

R2= 0.997

There is also uncertainty in the age model of the Dome Fuji record of

approximately +/- 1,000 years [Kawamura et al., 2007]. For a detailed explanation

of the errors associated in that age model, refer to that paper's supplementary

material.
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Figure Si: Sea surface salinity and height of the ITF. January through March and
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Figure S2: Boxes used to calculate sea surface height difference for Fig S3.
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Figure S3: Difference in sea level height. The difference in sea level height [Carton
and Giese, 2008] between the southern Java Sea and the Banda Sea (red line) and the
southern Java Sea and the Flores Sea (blue line). The sea level of the southern Java
Sea is nearly always higher than the Flores Sea. Boxes used to average the sea level
height are shown in Fig S2.
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Figure S4: SST ENSO correlation. The linear correlation coefficient between the
NINO3 index [Kaplan et al., 1998; Reynolds et al., 2002] and global reconstructed
monthly SST anomalies [Smith et aL, 2008; Xue et al., 2003] from January 1900 until
December 2010. Tan coloring indicates no significant correlation at the 95% level.
The lack of correlation between the NINO3 index and SST anomalies in the ITF
outflow region suggests that an ENSO teleconnection cannot be the source of SST
variability in the region.
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Figure S6: Excess Mg/Ca versus depth. Excess Mg/Ca is calculated by subtracting
climatological [Anand et al., 2003] SSTs from Mg/Ca based SST estimates. The lack of
correlation between core depth and excess Mg/Ca suggests that there is no
preferential dissolution in our coretop data.



Water Sample
Core ID in depth interval

Core ID, location text Lat./Long. (m) (yrs) Reference
BJ8-03 23GGC, S 5* 12'S, 117*
Makassar Strait 23GGC 29'E 1189 180 this study
BJ8-03 70GGC, SW 3* 34'S, 119*
Sulawesi, Makassar Strait 70GGC 23'E 482 125 Linsley et al., 2010
BJ8-03 136GGC, Flores 5o 56'S, 120*
Sea 136GGC 14'E 526 200 this study

9* 36'S, 120*
GeoB10069-3 Savu Sea 69-3 55'E 1,250 190 this study

8* 47'N,
MD97-2141, Sulu Sea MD41 121* 17'E 3,633 90 Rosenthal et aL, 2003
MD98-2162, S. Makassar 4* 41'S, 117
St. MD62 54'E 1,855 415 Visser et al., 2003

9* 39'S, 118*
MD98-2165, Sumba St. MD65 20'E 2,100 200 Levi et al., 2007

13* O'S, Xu et al., 2008;
MDO1-2378, Timor Sea MD78 121* 47'E 1,783 125 Samthein et al., 2011
MD98-2181, W. Pacific, 6* 27'N,
Mindanao MD81 125* 50'E 2,114 50 Stott et al., 2007

Table Si: Core locations.



Core Reference Cleaning Method Equation used
oxidative and

BJ8-03 23GGC this study reductive modified Anand
oxidative and

BJ8-03 70GGC Linsley et al., 2010 reductive modified Anand
BJ8-03 oxidative and
136GGC this study reductive modified Anand

oxidative and
GeoB10069-3 this study reductive modified Anand

SST from original
MD97-2141 Rosenthal et al., 2003 oxidative publication
MD98-2162 Visser et al., 2003 oxidative Anand
MD98-2165 Levi et al., 2007 oxidative Anand

oxidative and
MD01-2378 Xu et al., 2008 reductive modified Anand
MD98-2181 Stott et aL, 2007 oxidative Anand

Table S2: Summary of cleaning method and Mg/Ca -
used on each core.

temperature equation



WPWP Mak Outflow Dome Fuji

WPWP 1 0.9626 0.9582 0.9717
Mak 0.9626 1 0.9414 0.9335
Outflow 0.9582 0.9414 1 0.9825
Dome Fuji 0.9717 0.9335 0.9825 1

Table S3: Correlation matrix of SST stacks and Dome Fuji 6180. All correlations
are significant (n = 45; p << 0.01).
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Chapter 3

The deglacial hydrologic variability of the Tropical Pacific and Indian Oceans

inferred from 6180 of seawater reconstructions

Abstract

The hydrologic cycle of the tropics can change rapidly and dramatically,

affecting the amount of water vapor, and potentially temperatures, globally.

Previous studies have demonstrated variability in the tropical hydrologic cycle

during the last deglaciation and both high and low latitude origin of the variability

has been proposed. Here we use the Mg/Ca-based temperature and the 6180 of

calcite of planktic foraminifera to solve for the 5180 of seawater. We combine new

data with previously published 8180 of seawater reconstructions from throughout

the tropical Eastern and Western Pacific and Eastern Indian Oceans in order to

evaluate the possible mechanisms controlling hydrologic changes. Our synthesis of

the 5180 of the published and new seawater reconstructions suggests that

hydrologic conditions at the last glacial maximum and late Holocene were similar.

However, 5180 of seawater enrichments occurred at most of the sediment sites

during the Younger Dryas and Heinrich Stadial 1. Similar enrichments in the East



and West tropical Pacific seem to rule out forcing by an El Nifio-Southern

Oscillation-like mechanism. The spatial pattern of change is instead consistent with

a migration of the Intertropical Convergence Zone.

1. Introduction

The temperature of the tropics appears to have been relatively stable over

the last 20 kyr, compared to the high latitudes, which were characterized by large

temperature fluctuations [e.g. Alley and Clark, 1999; Dansgaard et al., 1989;

Ruddiman and Mcintyre, 1981]. The large, rapid temperature fluctuations

documented in the high latitudes either do not have temperature counterparts in

the tropics [Kiefer and Kienast, 2005; Stott et al., 2007] or, if they do, their amplitude

is diminished [Kiefer and Kienast, 2005; Lea et al., 2003; Shakun and Carlson, 2010].

On the other hand, recent work has highlighted dramatic hydrologic responses that

occurred in concert with high latitude climate change (e.g. [Lynch-Stieglitz et al.,

2011; Partin et al., 2007; Stager et al., 2011; Tierney et al., 2008; Yuan et al., 2004]).

During the last deglacial, two prominent Northern hemisphere cooling events

occurred -- Heinrich Event 1 (H1; -17.5 to 16 kyr BP) and the Younger Dryas

(-12.9 to 11.7 kyr BP) [Alley and Clark, 1999]. Heinrich Events, first identified by

large amounts of ice rafted debris in sediment cores [Heinrich, 1988; Hemming,

2004], appear to coincide with 1) the end of cooling stadials as recorded by the 8180

of Greenland ice and 2) very cold Atlantic sea surface temperatures (SSTs) [Bond et

al., 1993]. Similarly, the Younger Dryas coincides with ice rafted debris in North

Atlantic sediments and cooler temperatures [Bond et al., 1993]. The cause of these



abrupt cooling events in the North Atlantic is still under debate, but the leading

hypothesis is that they resulted from freshwater input at the sites of deepwater

formation, which altered the Meridional Overturning Circulation [Broecker, 1991].

The source of freshwater was likely iceberg discharge for Heinrich Events [Bond et

al., 1992]. Evidence of the fresh water source is more elusive for the Younger Dryas

[Broecker, 2006], though recent work suggests freshwater may have been routed

through the Arctic [e.g. Murton et aL, 2010].

Terrestrial records indicate that tropical hydrological changes associated

with both H1 and the Younger Dryas were large and pervasive [e.g. Stager et al.,

2011; Tierney et al., 2008; Wang et al., 2007; Yuan et al., 2004]. Whereas hydrologic

changes over land have been attributed in large part, but not entirely, to southward

shifts of the Intertropical Convergence Zone (ITCZ) during North Atlantic cold

events (See for example, Stager et al. [2011] and Oppo and Curry [2012] for recent

compilations of H1 terrestrial responses), there is not a consensus in studies of

marine sediments. Some have inferred that changes in the mean Pacific state (e.g.

east-west SST gradient changes) were a dominant control on tropical Pacific

hydrology during these events [e.g. Levi et al., 2007; Rosenthal et al., 2003; Stott et

al., 2002], while others have suggested that the data are consistent with a migration

of the ITCZ.

The 5180 of seawater ('180seawater) can be used to inform us as to past

hydrologic changes. The 6 18 0seawater and salinity often have a positive linear

relationship as both quantities are similarly influenced by evaporation and

precipitation, with more enriched 61 8 0seawater values corresponding to saltier



conditions. This linear relationship varies by region [LeGrande and Schmidt, 2006]

as sea ice formation, atmospheric distillation, and river runoff affect salinity

differently than they do the 6180 of water [Craig and Gordon, 1965]. Moreover, the

exact relationship between 6 180seawater and salinity has likely varied in the past

[LeGrande and Schmidt, 2011; Oppo et al., 2007]. Thus, the 6 18 0seawater can best

inform us about large-scale changes in the hydrologic cycle, and should not be

viewed as a simple paleosalinity proxy [Craig and Gordon, 1965; LeGrande and

Schmidt, 2011].

Here, we re-examine the influence of abrupt North Atlantic events on tropical

hydrology from a marine perspective. We present a new high-resolution record of

the 6180 of calcite (5 18 Ocalcite) of the mixed layer planktic foraminifera

Globigerinoides ruber (G. ruber) from the Savu Sea, which is supplied by Indonesian

Throughflow (ITF) water entering the Indian Ocean through the Ombai Strait

(Figure 1). Using submitted (20ky-present) [Gibbons et al., in revision] and new

(35kyr - 20kyr) Mg/Ca-based temperature reconstructions, and following previous

work [e.g. Lea et al., 2000] we calculated the 6 18 0seawater at this site over the past 35

kyr. Recent studies have suggested that the opening of the passages between

marginal basins and seas as sea level rose during the last deglaciation, influenced

6 18 0seawater and freshwater gradients in the region [Ding et al., 2002; Linsley et al.,

2010; Rosenthal et al., 2003; Xu et al., 2010]. However in this study, we focus on

larger scale, basin-wide variations and the information that 6 18 0seawater can provide

about past changes in the tropical hydrologic cycle. We combine our new record



with published 5 18 0seawater reconstructions from throughout the IndoPacific Warm

Pool and the Eastern Equatorial Pacific Ocean (Table 1) to determine the most

important mechanism(s) of deglacial tropical hydrologic change.

2. Materials and Methods

The new data we present was generated on sediment core GeoB10069-3 (90

36'S, 1200 55'E, 1,250m; referred to as 69-3), retrieved from the Savu Basin in the

Eastern Indian Ocean. The Savu Basin is in the path of one of the outflow passages of

the ITF. Today, minimum temperatures at 69-3 are -26*C and occur in the boreal

summer (all seasons are with respect to the Northern Hemisphere) and maximum

temperatures are -31 0C.

Stable isotope measurements from 69-3 were made at Bremen University on

a Finnigan MAT251. Long-term precision of 6 180calcite measurements is 0.07%o,

based on repeated measurements of a suite of standards. Approximately 5-20

individual tests were used for each measurement.

Approximately 40 G. ruber tests (212-300 im) were used for each Mg/Ca

measurement. Samples were cleaned with a full trace metal cleaning procedure,

including oxidative and reductive steps [Boyle and Keigwin, 1985/6; Rosenthal et al.,

1997]. Samples were run on either an Element ICP-MS at Wood Hole Oceanographic

Institution or an Element XR ICP-MS at Rutgers University. Internal reproducibility

based on repeated measurements of consistency standards is -1%.

Mg/Ca values were converted to temperature using the Anand multispecies

equation [Anand et al., 2003]. The equation was adjusted [Gibbons et al., in revision]



to account for the fact that the Anand calibration was based on foraminifera that had

been cleaned only with an oxidative step:

Original Anand Multi-species equation: Mg/Ca = 0.38exp(O.090T)

Modified Anand equation: Mg/Ca = 0.345exp(O.090T)

Mg/Ca-based temperature estimates and 5180caicite data from the same depth

horizons were used to calculate 618 0seawater. Following Lea et al. [2000], the low-

light 0. universa calibration [Bemis et al., 1998] was used to obtain 8180seawater:

Bemis low-light 0. universa equation: T('C) = 16.5 - 4 .8 0(6 18Ocalcite - 6 18Oseawater) - 0.27%o

For 20-0 kyr before present (BP), the change in 6180seawater due to continental

ice decay was removed using the sea level curve of Clark and Mix [2002] and the

corresponding change in the global 6180seawater of 1.0%o [Schrag et al., 2002]

allowing us to estimate the 5180 of seawater corrected for ice volume (6180seawater-

icevolume). For 35-20kyr BP we used the sea leve curve of Waelbroeck et al. [2002].

We also compiled previously published Mg/Ca and S18 0calcite data from

planktic foraminifera from cores throughout the Indian and Pacific tropics (Fig 1,

Table 1). All records are based on data from G. ruber, with the exception of V21-30,

which utilized Globigerinoides saccuhfer (G. saccuhfer). In our compilation we

examine the past 20 kyr. We have attempted to treat the data from the cores in the

same manner in order to better allow us to compare datasets.

Where possible, Mg/Ca was converted to temperature using either the

original Anand multispecies or the modified version based on cleaning method (see

Table 1). For cores TR163-22 [Lea et al., 2006] and MD41 [Rosenthal et al., 2004],

we used the SSTs from the original publication in order to account for the potential

effects of dissolution. All S180seawater values were calculated as described above.



We evaluate the 5 18 0seawater reconstructions by comparing them to modern

water measurements. In each core, we average 6 18Oseawater samples from 2-0 kyr BP.

We plot these "modern" averages against the mean annual World Ocean Atlas 05

salinity [Antonov et aL, 2006] from each core location. We compare the resulting

'18Oseawater/salinity relationship with regional 5 18 0seawater and salinity data compiled

by LeGrande and Schmidt [2006] (Fig 2). For the IndoPacific coretops, the slopes of

the reconstructed 6 18 0seawater/salinity (m = 0.48) and the modern water

8180seawater/salinity (m = 0.44) are within error. For the Eastern Equatorial Pacific,

the slopes are also very similar (0.22 for the water samples and 0.31 for the

foraminifera samples).

All age models are based on previously published planktic foraminifera

radiocarbon dates with the exception of the 4 oldest dates from 69-3 which are

presented here (Appendix A). All radiocarbon dates were converted to calendar

ages using the Calib 6.0 program, the Marine 09 calibration, and the global reservoir

age [Reimer et aL, 2009]. The calendar age with the median probability was selected.

Several of the age models were published previously: 69-3, MD62, MD81, MD41,

MD65, and MD78 [Gibbons et al., in revision]. Age models for V21-30, 43JC, TR163-

22, MD65, 29-4, 38-4, MD76, MD70, MD90, and MD38 were created by linearly

interpolating between derived calendar ages.

We computed the arithmetic average of our data using 500-year non-

overlapping bins. For each time interval we only averaged the cores with data; cores

without data were simply excluded from the time bin. Principal component analysis

Uollife, 2002] was also used to explore the common features of the 8 1 8 0seawater-



icevolume. All data were placed into 500-year non-overlapping bins. Missing values

were replaced with the average value of the record [following Marchal et al., 2002].

We computed the principal components for the time interval from 1.25 kyr BP to

19.75 kyr BP (Fig 5).

Maps Of 6 180seawater-icevolume, averaging data over 1,000 years, and centered at

6.5 kyr BP, 12.5 kyr BP, 14.5 kyr BP, 15.5 kyr BP, 17.5 kyr BP, and19.5 kyr BP,

provide insight into the spatial pattern of changes through time (Figs 6-9), discussed

below.

3. Results

GeoB1 0069-3

The 5180calcite from 69-3 increased by -0.5%o from 35 kyr BP to 20 kyr BP,

consistent with the change in global ice volume [Waelbroeck et al., 2002]. 6 1 80calcite

began to decrease at 18 kyr BP, dropping by -1.75%o until stabilizing at -8kyr (Fig

3). Approximately, 1%o of this decrease can be attributed to the global change in ice

volume [Clark and Mix, 2002; Schrag et al., 2002].

The Mg/Ca varies between 3.3 and 3.6 mmol/mol (or -25C and 26*C) from

35-20kyr BP. Mg/Ca-based temperatures from 20kyr BP until present were

previously published [Gibbons et al., in revision], but are described again briefly

here. Mg/Ca values increase to 3.8 mmol/mol (-26.5'C) from 20kyr until 15kyr BP.

Mg/Ca values then remain constant until -12kyr BP. Mg/Ca values peak at 10 kyr

BP (4.5 mmol/mol, 28.5*C), and then decrease by -0.5 mmol/mol (1.25*C) by the

late Holocene.



The 6 18 0seawater-icevolume estimates suggest several notable features. The glacial

(35kyr-20kyr BP) portion averages O.1%o. There are several enrichment events

during this portion of the record. The largest is an ~0.2%o enrichment from 32.5-

31kyr BP, approximately coincident with some estimates of the age of Heinrich

Event 3 [Hemming, 2004]. Another small enrichment event occurred at ~ 28kyr BP.

The most pronounced events, however, occurred during the deglacial, from 19.5kyr

BP until 15kyr BP, and from -12.5kyr until 11.2kyr BP. During the Holocene,

6 18Oseawater-icevolume values decreased from O%o in the early Holocene to

approximately -0.2%o by 5kyr BP. 6 18 0seawater-icevolume values then remained

approximately constant for the remainder of the Holocene.

Regional data

The records that we have compiled from the IPWP and Eastern Equatorial

Pacific Ocean show a wide range of deglacial temperature histories (Fig 4b).

Although 5 18 0seawater-icevolume trends also vary, most records show generally enriched

6 18Oseawater-icevolume values during the deglacial (Fig 4c). The relationship between the

6 18 0seawater-icevolume records was explored using principal component analysis. The

first principal component (PC1; Fig 5) explains 53% of the variance in the records.

There is a longitudinal, though not latitudinal, coherence to how strongly the

records contribute to the first principal component (eigenvector elements or

loadings are shown in Fig 6). Cores in the IndoPacific Warm Pool and Eastern

Equatorial Pacific have high loadings and contribute approximately equally. The

cores with the smallest loadings for the first principal component are the northern



most cores (MD41 and MD90) and MD78, MD70, and MD76. We will refer to the

latter group (MD78, MD70, and MD67) as the "southern cores." Strictly speaking

they are not the southernmost cores (see Table 1), but they appear to group

together hydrologically. The second and third principal components explain 9% and

8%, respectively, and there is no regional coherence to the loadings, nor does their

temporal pattern appear meaningful (not shown). We thus infer that these principal

components are dominated by noise rather than real oceanographic variability.

The arithmetic average of 6 18 0seawater-icevolume from all records results in a

stacked record that contains all the same major features as the first principal

component, providing confidence that both represent important basin-wide

changes. Average 6 18Oseawater-icewater values were similar in the glacial and late

Holocene, with values of approximately 0%o. As with PC1, there were two large

enrichment events, of over 0.3%o from 17.75-15.75yr BP and at 12.25 kyr BP (Fig

4).

4. Discussion

Deglacial Changes in hydrology

Throughout most of the IndoPacific Warm Pool and Eastern Equatorial

Pacific, the 6180seawater-icevolume was similar at the LGM and Holocene with an

approximately 0.3%o enrichment from 17.75-12kyr BP. This near basin-scale

coherency is surprising in light of the large range in deglacial temperature patterns

(Fig 4b). Both PC1 and the average of the 618 0seawater-icevolume records reveal that this

enriched period can be divided into two intervals, which correspond to H1 and the



Younger Dryas. We note the enriched period corresponding to H1 is much longer

than the traditional H1 time interval (-17.5-16 kyr BP) [Alley and Clark, 1999], and

spans the full H1 stadial or extended H1 interval from -19 to 14.6 kyr BP [Hall et al.,

2006; McManus et al., 2004; Stanford et al., 2006; Stanford et al., 2011].

The first principal component further suggests that this variability is a

shared feature among most of the cores. The loadings from PC1 help us explore the

regional coherence in the 8180seawater-icevolume pattern (Fig 6). Cores from the Eastern

Equatorial Pacific and IndoPacific contribute similarly to PC1. The southernmost

cores (MD70, MD76, and MD78) in our compilation contribute the least. In fact, not

only are these cores minor contributors to the first PC, their S18 0seawater-icevolume

records show relatively little variation throughout the last 20 kyr. The

northernmost cores (MD41 and MD90) are also minor contributors to PCi, though

in both cores, there are slightly enriched values corresponding to H1 and the

Younger Dryas, respectively. The reason that MD41 does not contribute to the

loading of PC1 is likely due to local factors at MD41 (discussed below) as well as a

short H1 enrichment. At MD90, the 81 8 0seawater-icevolume increases throughout the

Holocene, which has been attributed to increased freshwater (decreased salt)

export from the South China Sea due to the flooding of the Sunda Shelf [Linsley et al.,

2010]. Additionally, MD90 has a relatively muted expression of the Younger Dryas

and H1. The presence of a latitudinal gradient and lack of a longitudinal gradient

provides additional insights on possible mechanisms for the dominant hydrologic

changes in the tropical Indo-Pacific during the deglacial, captured by 6 18 Oseawater-

icevolume.



In the modern, climate variability described by El Nifio-Southern Oscillation

(ENSO) results in large precipitation anomalies [e.g. Wang and Schimel, 2003] and

several authors have attributed past changes in 6 18 0seawater to ENSO or changes in

Pacific mean state variability [Lea et al., 2000; Levi et al., 2007; Rosenthal et al.,

2003; Stott et al., 2002]. For example, the enriched 6 180seawater values in MD81

during high latitude cool events were attributed to "El Nifno-like" conditions [Stott et

al., 2002]. Though earlier work had suggested a reduced zonal salinity gradient in

the Pacific during cold intervals [Lea et al., 2000; Rosenthal et al., 2003], more recent

work using an Eastern Equatorial Pacific 6 18 0seawater record derived from alkenone-

based temperature and 6 18 0calcite, suggests synchronous deglacial 6 180seawater

changes in the eastern and western Pacific, arguing against ENSO-like changes

[Leduc et al., 2009]. Our results expand on this initial observation using 3 cores from

the Eastern Equatorial Pacific and 11 cores from the IndoPacific Warm Pool.

Moreover, we focus only on 6 18 0seawater reconstructions based entirely on

foraminifera, which helps to reduce age uncertainty.

Indeed, the data we have compiled suggest that the East-West 8180seawater

gradient remained approximately constant through time (Figs 7-9). As ENSO

variability is characterized by opposite precipitation anomalies in the eastern and

western tropical Pacific, the data are not consistent with ENSO-type changes.

Moreover, speleothem records from two locations in Brazil, which today experience

opposite rainfall anomalies associated with ENSO, show synchronous millennial-

scale changes in precipitation during the deglacial, also suggesting no mean ENSO

change from the LGM to present [Wang et al., 2007]. It has been hypothesized that if



the tropical Pacific becomes "locked" in either an El Nifno or La Nifia state, the

resulting teleconnections could control global climate [Cane, 1998; Clement et al.,

1999]. Our compilation, however, does not provide any support for the hypothesis

that the tropical Pacific is the source of high latitude millennial-scale climate change,

though we cannot rule out that there are some changes in the Walker Cell that our

data do not resolve. Currents can advect and mute 6 18 0seawater signals, and vapor

transport over the Isthmus of Panama can change with the migration of the ITCZ,

potentially masking a change in the Walker Cell [LeGrande and Schmidt, 2011; Oppo

et al., 2007].

The variations in this dataset are most easily explained by changes in the

position of the Intertropical Convergence Zone (ITCZ). We first examine the LGM to

Holocene difference. Most records suggest there was relatively little 5 180seawater-

icvolume change between the LGM and the Holocene. A notable difference between the

LGM and Holocene in one record can be attributed to local factors; the relatively

depleted 5 18 0seawater-icevolume conditions in the Sulu Sea (MD41) may be due the lower

sea level at the LGM which allowed relatively more fresh South China Sea water than

equatorial Pacific water to enter the Sulu Sea, decreasing its 8 180seawater values

[Rosenthal et aL., 2003]. Speleothem records from China [Yuan et al., 2004] and

Borneo [Partin et al., 2007] may suggest a decrease in precipitation during the LGM.

However, as noted by Partin [2007] once global 6 18 0seawater changes are removed,

the speleothem 6180 changes are smaller, suggesting a modest decrease in the

monsoons during the LGM, which can be at least in part attributed to cooler SST.



Thus the enriched 6180 values in Borneo are not inconsistent with 6 180seawater-icevolume

evidence suggesting the ITCZ position during the LGM was similar to the Holocene.

Though there is relatively little 6 18 0seawater-icevolume change from the LGM to

modern, the data suggest dramatic hydrologic changes in parallel with Northern

Hemisphere high latitude rapid temperature change. Others have suggested a

southward migration of the ITCZ during the Younger Dryas and H1 [Benway et al.,

2006; Leduc et al., 2009], and the greater spatial coverage of the cores we have

compiled allows us to evaluate this hypothesis in greater detail. The two northern

most cores (MD41 and MD90) show some enrichment in the 6 1 80seawater-icevolume

values, the equatorial cores (MD62, MD81, MD41, 43JC, V21090, TR163-22, 69-3,

MD65, 29-4, and 38-4) show larger 6 18 0seawater-icevolume enrichments, and the

southern cores (MD78, MD76, and MD70) show no change. To the south of our study

area, wetter conditions are documented in a peat bog during H1 (though not during

the Younger Dryas) [Muller et al., 2008]. As discussed in more detail below, this

spatial pattern is consistent with a southward displacement of the ITCZ.

Enriched 6180 values in speleothems from Borneo during H1 have been

interpreted as a decrease in local rainfall caused by a southward displacement of the

ITCZ [Partin et al., 2007]. Though Partin et al. [2007] claim 6180 values are not

enriched during the Younger Dryas, we suggest a Younger Dryas enrichment is

masked by the global decrease in 8 18 0seawater. Removing the global ice volume-

related 6180 change highlights not only the relatively small changes from the LGM to

late Holocene and the relatively enriched period during H1 (a 1.0%o enrichment),

but also shows a 0.5%o enrichment during the Younger Dryas. We also note that two



of the three speleothems that make up the spliced Borneo record experience a

growth hiatus coincident with the Younger Dryas (13.0 kyBP - 11.7 kyr BP for

SSCO1 and 12.7 kyr BP to 11.9 kyr BP for BA04) which is consistent with drier

conditions. The Borneo record displays a remarkable correspondence with our PC1

(Fig 5). The difference between the LGM and H1 in the speleothem record at Borneo

is 1%o. This is over twice as large as is observed in nearby 5 180seawater-icevolume

reconstructions (Fig 4c, Fig 5) [Rosenthal et al., 2003; Steinke et al., 2008; Stott et al,

2004; Visser et al., 2003], confirming that the speleothem record reflects some

degree of decreased precipitation, and not just a change in source water. Support for

a 6180 response to reduced precipitation in Borneo during North Atlantic cold

events is also provided by a water-isotope-enabled fully coupled model simulations

[Lewis et al, 2010].

The 8 18 0seawater-icevolume data uniformly suggest a southward migration of the

ITCZ during H1 and the Younger Dryas, but not during the LGM. In the modern

ocean, the ITCZ is biased towards the northern hemisphere. This is generally

attributed to the global continental configuration, and the resulting warm bias of the

northern hemisphere, but the geometry of the coastlines and oceanic/atmospheric

feedbacks may also play a role [Koutavas and Lynch-Stieglitz, 2005]. The warm bias

of the Northern Hemisphere is accentuated by the Atlantic Meridional Overturning

Circulation, which exports heat northward near the surface at every latitude in the

Atlantic Ocean [Houghton et aL, 1996]. A reduction in the Atlantic Meridional

Overturning Circulation could decrease this heat transfer, and therefore reduce the

interhemispheric temperature gradient [Broecker, 1998].



Changes in the interhemispheric temperature gradient associated with

millennial scale climate events consistent with the predictions of Broecker [1998]

have been documented. Using a global compilation of temperature records Shakun

and Carlson [2010], show that both H1 and the Younger Dryas were characterized

by cooling in the Northern Hemisphere and warming in the Southern Hemisphere,

in contrast to the LGM, when cooling was global.

Whether the Atlantic Meridional Overturning Circulation is actually the

source of the millennial scale changes in the interhemispheric temperature gradient

is still under debate. While many proxies suggest a change in water mass

distribution during the LGM [e.g. Boyle and Keigwin, 1987; Curry and Oppo, 2005;

Robinson et al., 2005], it is not obvious that this change was associated with a

dramatic change in the strength of the overturning circulation [Curry and Oppo,

2005; Hall et al., 2006; McManus et al., 2004; Praetorius et al., 2008; Stanford et al.,

2006; Yu et al., 1996], and is consistent with the lack of change in interhemispheric

temperature gradient. Thus, one possible explanation for the lack of a LGM minus

late Holocene 5 18 0seawater-icevolume difference in our tropical study area is that the ITCZ

was close to its modern position. In addition, the 6 18 0seawater-icevolume should not be

expected to preserve modest differences in the 6180 of precipitation, because

changes in the ocean are muted due to ocean mixing and advection by currents [e.g.

Oppo et al., 2007].

On the other hand, several lines of evidence suggest a significant reduction in

the Atlantic Meridional Overturning Circulation during H1 and the Younger Dryas

[e.g. Hall et al., 2006; McManus et al., 2004; Oppo and Curry, 2011; Praetorius et al.,



2008; Stanford et al., 2006]. Thus, the decrease in the northward heat transport

during H1 and the Younger Dryas associated with a reduction in the Atlantic

Meridional Overturning Circulation may have been more significant than during the

LGM.

Modeling sensitivity studies that add freshwater to the North Atlantic (e.g.

"hosing" experiments), show a decrease in the Atlantic Meridional Overturning

Circulation and a southward shift in the ITCZ [Dahl et al., 2005; Zhang and Delworth,

2005], and specifically a drying in the Indo Pacific Warm Pool region [Zhang and

Delworth, 2005]. A freshwater hosing experiment using a water isotope-enabled

fully coupled model allows us to directly compare the 8 18 0seawater data with model

output [Lewis et al., 2010]. This model experiment simulates a southward shift in

the ITCZ. The 6180 of precipitation is enriched in the northern part of the IndoPacific

and depleted in the south. Dividing the two regions is a band that experiences no

change in the 5180 of precipitation. According to the model simulations, this region

of no change experiences an increase in summer precipitation (corresponding to

depleted 8180) and a decrease in winter precipitation (corresponding to enriched

5180). While this band is slightly to the north of the cores that show no change in the

5180seawater-icevolume, we suggest that this change in seasonality is the most likely

explanation for the lack of 6180seawater-icevolume change in core MD70, MD76, and

MD78 during H1 and the Younger Dryas. Unfortunately, 81 80seawater-icevolume changes

in the entire tropical Pacific and Indian Oceans during the simulated hosing

experiment are not significant at the 95% level, so we cannot directly compare our

seawater reconstruction to the modeled 8180seawater response. However, the similar



spatial pattern to the 5 180seawater of precipitation lends support to our

interpretations.

Conclusion

Eastern Equatorial Pacific and IndoPacific Warm Pool changes in 5180seawater-

icevolume suggest the migration of the ITCZ controls major hydrologic changes from

the LGM to present. The 518 0seawater-icevolume values at the sites we study during the

LGM were similar to today's, suggesting relatively small changes in the IndoPacific

tropical hydrologic cycle compared to H1 and the Younger Dryas, when the

5180seawater-icevolume pattern suggests a southward migration of the ITCZ. The spatial

patterns Of 5180seawater-icevolume values during H1 and the YD are consistent with

simulated changes in the 6180 of precipitation in a hosing experiment. Utilizing our

greater spatial resolution, we reject an ENSO-like change from the LGM to present,

and instead concur with the findings of those previous studies which suggest that

there was a southward ITCZ migration during H1 and the Younger Dryas.

Additionally, by focusing on records that derive 6 180seawater entirely from

foraminifera, rather than from two sediment constituents (e.g. foraminifera and

alkenones), we increase our confidence in the timing of these millennial-scale

events. These results, combined with our findings of an ITCZ position at the LGM

that is similar to modern, suggest that the migration of the ITCZ was due to changes

in the interhemispheric temperature gradient.



Average
Core Water Sample
ID in depth interval

Core ID, location text Lat./Long. (m) (y) Mg/Ca equation Reference
GeoB10029-4, 1- 30'S, Anand et al.,
Eastern Indian Ocean 29-4 100* 8'E 962 600 2003 [Mohtadi et al., 2010]
GeoB10038-4, 5* 56'S, Anand et al.,
Eastern Indian Ocean 38-4 103* 15'E 1,819 560 2003 [Mohtadi et al., 2010]
GeoB10069-3 Savu 9* 36'S,
Sea 69-3 120' 55'E 1,250 190 modified Anand this study
MD97-2141, Sulu 8* 47'N, SSTs from
Sea MD41 121* 17'E 3,633 90 publication [Rosenthal et al., 2003]
MD98-2162, S. 4* 41'S, Anand et al.,
Makassar St. MD62 117* 54'E 1,855 415 2003 [Visser et al., 2003]
MD98-2165, Sumba 9* 39'S, Anand et al.,
St. MD65 118* 20'E 2,100 200 2003 [Levi et aL., 2007]
MD98-2170, Timor 10' 36'S, Anand et al.,
Sea MD70 125*23'E 832 300 2003 [Stott et al., 2007]
MD98-2176, Seram 5' 00'S, Anand et al.,
Sea MD76 133' 27'E 2,382 75 2003 [Stott et aL, 2007]
MD98-2181, W. 6' 27'N, Anand et al.,
Pacific, Mindanao MD81 125' 50'E 2,114 50 2003 [Stott et al., 2007]
MDO1-2378, Timor 13' 05'S, [Sarnthein et al., 2011;
Sea MD78 121' 47'E 1,783 125 modified Anand Xu et al., 2008]
MDO1-2390, South 6' 38'N, Anand et al.,
China Sea MD90 113' 25'E 1,545 200 2003 [Steinke et al., 2008]
ME0005A-43JC 7' 51'N, SSTs from
Eastern Eq. Pacific 43JC 83' 37'W 1,368 240 publication [Benway et al., 2006]
TR163-22 Eastern TR163- 0' 31'N, SSTs from
Eq. Pacific 22 92' 24'W 2,830 270 publication [Lea et aL., 2006]
V21-30 Eastern Eq. 1 13'S, Anand et al.,
Pacific V21-30 89' 41'E 617 430 2003 [Koutavas et aL, 2002]

Table 1: Cores used in this study. All cores use data from G. ruber, except V21-30
which uses G. sacculifer.
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Core locations and mean annual sea surface salinity from the World Ocean Atlas 05
[Antonov et al., 2006].
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Figure 2: Foraminifera-based reconstructed "modern" 6 180seawater estimates plotted
against modern WOAO5 salinity data [Antonov et al., 2006]. Modern water
6 1 80seawater and salinity data [LeGrande and Schmidt, 2006] are also shown. The
IndoPacific plot includes all water data from 90'E-140*E and 10*N-10*S. The
Eastern Equatorial Pacific plot includes data from 90*W to 100*W and 11*N to 10*S.
All water samples are from 100m or above and most are from the surface. For the
IndoPacific samples, the slope for the foraminifera-based line is 0.48 (R2 = 0.76) and
for the water samples it is 0.44 (R2 = 0.79). For the Eastern Equatorial Pacific the
slope for the modern is 0.22 (R2 = 0.70) and the reconstructed 6 1 80seawater values
tend to fall within the scatter of the data.
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Figure 5: A comparison of climate records. Top panel is a 6180 records from Dome
Fuji [Kawamura et al., 2007]in the Indian Ocean sector of Antarctica. Second panel is
GISP 6180 from Greenland [Grootes and Stuiver, 1997]. The third panel is the first
principal component (PCI) of all IndoPacific and Eastern Equatorial Pacific
S18 0seawater-icevolume records included in this study (see table 1 for included cores).
Dots (blue) are an average of all the 6180seawater-icevolume records. Note the inverted
axes for both PC1 and the average 818 0seawater-icevolume record. The final panel is a
spliced record of 6180 from three Borneo speleothems [Partin et al., 2007], with the
global change in 6180 due to ice volume removed [Clark and Mix, 2002; Schrag et al.,
2002].
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Figure 6: Top panel is eigenvector elements (loadings) for PC1. Following panel is
6 18 0seawater-icevolume anomalies relative to present. For MD41, the modern 6 8 seawater

estimate from the gridded data of Le Grade and Schmidt [2006] was used to
calculate the anomaly. For all other cores anomalies were calculated with respect to
the last 2,000 years. Bottom panel is an average of 1,000 years and is centered on
6.5 kyr BP
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Figure 7: 5 18 0seawater-icevolume anomalies as described for Figure 6. Top panel is
centered on 12.5kyr BP and bottom panel is centered on 14.5 kyr BP. There are
generally enriched conditions during the Younger Dryas (12.5 kyr BP) and a partial
recovery to late Holocene conditions during the Bolling-Allerod (14.5 kyr BP). Note
the lack of change in the East-West gradient.
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conditions occur throughout Heinrich Stadial 1, and are not only confined to
Heinrich Event 1.
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Figure 9: 6 180seawater-icevolume anomalies as described for Figure 6. Panel is centered
on 19.5kyr BP (the LGM). Relatively small anomalies suggest the position of the ITCZ
at the LGM was very similar to the Late Holocene.
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Chapter 4

The thermocline structure of the IndoPacific Warm Pool from the Last Glacial

Abstract

The thermocline structure of the IndoPacific Warm Pool is influenced by both

global and local processes. Several studies suggest that it responds to changes in the

Walker Circulation, and others suggest that it is sensitive to the inflow of fresh

water from the South China Sea. However, observations and paleoceanographic

reconstructions are sparse throughout the IndoPacific Warm Pool, and there is still

considerable uncertainty related to the influence of the atmospheric circulation

variability and the South China Sea inflow on the thermocline structure, especially in

the Indonesian Throughflow region. Here we present thermocline reconstructions

using the 6180 of calcite, Mg/Ca-based temperature estimates, and 6180 of seawater

estimates using the mixed layer foraminifera Globigerinoides ruber (G. ruber) and

the thermocline-dwelling foraminifera Pulleniatina obliquiloculata (P.

obliquiloculata). We present data from both coretops and a suite of downcore

records from throughout the IndoPacific Warm Pool. Our results suggest that in the

modern ocean, the Mg/Ca-based temperature of P. obliquiloculata is a valid proxy
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for upper thermocline temperature, whereas some caution is required in its use

downcore. If the Mg/Ca-based thermocline temperatures for the Last Glacial

Maximum (LGM) are reliable, our data suggest the temperature difference between

surface and subsurface waters in IndoPacific Warm Pool was uniformly smaller at

the LGM, perhaps consistent with a more vigorous Walker Circulation [DiNezio et al.,

2011]. Further our suite of data argue against the hypothesis that the flooding of the

Sunda Shelf, which allowed South China Sea water to enter the Indonesian Seas,

caused the cool thermocline temperatures observed in the outflow passages of the

Indonesian Throughflow after -10kyr before present (BP). We note, however, there

is difficulty in reconciling the 6 18Ocacite and Mg/Ca-based temperature data from P.

obliquiloculata, and suggest further calibration work is required.

1. Introduction

The Indonesian Throughflow (ITF) connects the Pacific to the Indian Ocean

through a series of passages between Indonesian islands. It forms the only low-

latitude, inter-ocean connection, allowing direct heat and salinity exchanges

between the Pacific and Indian Oceans [Gordon, 2005]. ITF water has been

identified in Aghulas eddies within the South Atlantic Ocean, and it is believed to

contribute to the warm water return limb of the global overturning circulation

[Gordon, 1986]. A relatively higher sea level in the western equatorial Pacific Ocean

drives the ITF into the Indian Ocean [Wyrtki, 1987]. Approximately 85% (8 Sv) of

the water transported through the ITF enters from the Sulawesi Sea and passes

through the Makassar Strait [Gordon et al., 2003]. From there, most flows into the
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Flores Sea, and then to the Banda Sea (Figure 1). Within the Banda Sea, vigorous

mixing with local freshwater creates characteristic low-salinity ITF water [Fieux et

al., 1994; Gordon, 2005]. There are three main exits for the ITF: the Lombok Strait,

the Ombai Strait, and the Timor Sea, and they respectively account for

approximately 20%, 30%, and 50% of the total ITF outflow [Sprintall et aL., 2009].

Estimates of the total ITF transport vary widely due to sparse direct

observations, large seasonal and interannual variability, and the difficulty of

modeling the region [reviewed in Godfrey, 1996]. The most recent measurements

suggest that the transport is between 9 and 15 Sv [Gordon, 2005; Sprintall et al.,

2009] with the monsoon [Gordon et al., 2003; Sprintall et al., 2009], El Nifno-

Southern Oscillation (ENSO) [Ffield et al., 2000; Gordon et al., 2008], and the Indian

Ocean Dipole (IOD) [Sprintall et al., 2009] all contributing to the observed

variability.

During the boreal winter monsoon (all seasons are discussed with respect to

the Northern Hemisphere), fresh surface water from the South China Sea is advected

through the Java Sea into the southern Makassar Strait and Flores Sea (dashed

arrow in Figure 1) [Fang et al., 2010]. This buoyant fresh water reduces the sea

surface salinity of the Makassar Strait in relation to the Western Pacific Warm Pool.

Previous work has suggested that this "freshwater plug" reduces the density

gradient along the strait, inhibits the flow of surface water through the Makassar

Strait, and intensifies the thermocline flow [Gordon et aL, 2008]. While this

mechanism may contribute to the thermocline dominated flow observed in the

Makassar Strait, it cannot be the only explanation. The "freshwater plug" is only
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present during the winter monsoon, but the flow is greater in the thermocline than

in the surface in the Makassar Strait throughout the year [Gordon et al., 2008]. A

complementary, or perhaps alternative, mechanism involves the persistently higher

sea level in the southern Java Sea compared to the Flores Sea. The pressure gradient

that results from this should be associated with a northward geostrophic flow in the

Makassar Strait surface layer, but not in the thermocline, which is below the sill

depth of Java Sea [Gibbons et al., in revision]. Regardless of mechanism, the South

China Sea inflow has a profound affect on the net volume and heat transport of the

Makassar Strait, and contributes to the fresh nature of the ITF [Gordon, 2005].

The extent to which this thermocline dominated flow in the Makassar Strait

contributes to characteristics of the ITF is a topic of investigation. It has been

proposed that the thermocline dominated flow of the Makassar Strait reduces the

transport-averaged temperature of the Makassar Strait by 2"C [Tozuka et al., 2007]

and has the net effect of cooling the Indian Ocean [Gordon, 2005]. Evidence that the

ITF cools comes from the subsurface temperature of the Indian Ocean. The ITF can

be identified as a cool tongue at -200m depth that stretches across the equatorial

Indian Ocean [Gordon, 2005]. However, it has been shown recently that surface

water from the Java Sea is a source of heat to the ITF [Fang et al., 2010], which likely

compensates for the decreased surface heat transport through the Makassar Strait.

The apparently cool nature of the ITF is more likely due to the intense upwelling in

the Banda Sea, which brings cool deep water to the surface [Gibbons et al., in

revision; Koch-Larrouy et al., 2008].
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Much of the shallow Java Sea was exposed during the Last Glacial Maximum

(LGM), which prevented South China Sea waters from entering the ITF. The early

Holocene, therefore, represents a unique opportunity to evaluate whether and how

the inflow from the South China Sea influences the ITF, and in turn, the influence of

the ITF on the region's salinity and temperature distribution. A recent study

documented a relative freshening (lighter 6180 of seawater) in the surface of the

southern Makassar Strait relative to the Western Pacific Warm Pool when the

connection between the South China Sea and the Makassar Strait was established at

-9-10 kyrBP [Linsley et al., 2010]. Initial work suggested that the flooding of the

Sunda Shelf did not affect regional sea surface temperature (SST) gradients [Xu et

al., 2008; Xu et al., 2010]. More recent work has shown a distinct warming in the

Makassar Strait at the time of the flooding of the Sunda Shelf, but not in the outflow

passages, suggesting that the opening of the Java Sea between the South China Sea

and the ITF inhibited surface flow through the Makassar Strait, trapping heat that

was previously exported [Gibbons et al., in revision]. Furthermore, it has been

suggested that the flooding of the Sunda Shelf cooled thermocline temperatures and

intensified thermocline flow [Xu etal., 2008], a hypothesis we examine in this study.

Here, we present 6 180calcite, Mg/Ca-based temperature, and 6 18 0seawater of P.

obliquiloculata from coretops and downcore records throughout the IndoPacific

Warm Pool. These new records, in conjunction with published data from the mixed

layer dweller G. ruber from the same cores [Gibbons et al., in revision; Linsley et al.,

2010; Rosenthal et al., 2003], and published surface and thermocline records from a
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single Timor Sea core [Xu et al., 2008] (Table 1) allow us to examine regional

changes in thermocline structure that occurred throughout the last deglaciation.

2. Materials and Methods

All samples for the coretop study were taken with a multi-coring device, on

three cruises in the Indonesian Throughflow region and the Eastern Indian Ocean

(Figure 1, dots). We develop downcore P. obliquiloculata records from the Makassar

Strait (BJ8-03 70GGC and 23GGC), the Ombai Strait (GeoB10069-3), the Flores Sea

(BJ8-03 136GGC), and the Sulu Sea (MD97-2141). These core locations are

indicated by diamonds in Figure 1.

The core sites are influenced to varying degree by monsoon winds. SSTs in

the Makassar Strait, Flores Sea, and Savu Basin are highest in winter and coldest in

summer, reflecting the influence of the monsoon winds on upwelling. Maximum

SSTs are -3 1'C at 70GGC on the Sulawesi margin, -31'C at 69-3 in the Savu Basin,

and -1'C cooler at 23GGC in the south central Makassar Strait and 136GGC in the

Flores Sea. Minimum SSTs are -28'C at 70GGC, 27"C at 23GGC and 136GGC, and

26*C at 69-3. The mixed layer is -50m deep in the Makassar Strait (23GGC and

70GGC) and Flores Sea (136GGC) [Wyrtki, 1961]. The Savu Sea (69-3) has a very

steep thermocline and a mixed layer that is no more than 20m deep [Molcard et al.,

2001; Wyrtki, 1961]. MD41, in the Sulu Sea, is the only sediment core in this study

from the northern hemisphere. SSTs at MD41 peak during summer (-30"C) and

reach a minimum of -27*C during the winter. The mixed layer is -30 m deep

[Wyrtki, 1961].
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Approximately, 20 P. obliquiloculata (355-425Rm) were used for Mg/Ca

analysis. Samples were gently crushed prior to cleaning in order to open the

chambers. Approximately 40-70 [tg was set aside for stable isotope analysis

(described below). Samples were cleaned using a full trace metal cleaning method,

including oxidative and reductive cleaning steps [modified from Boyle and Keigwin,

1985/6; Rosenthal et al., 1999] and run on an Element XR ICP-MS at Rutgers

University or an Element 2 ICP-MS at the Woods Hole Oceanographic Institution

(WHOI). To construct downcore records, Mg/Ca data were converted to

temperatures using the Anand [2003] multispecies equation, modified to account

for cleaning technique [Gibbons et al, in revision]:

Anand multispecies equation: Mg/Ca = 0.38exp(O.090T)

Modified Anand equation: Mg/Ca = 0.345exp(O.090T)

We note that there is a wide discrepancy in temperature reconstructions

depending on the temperature calibration used. Others have suggested that the

equation Mg/Ca =0.78xp(0.052T) [Cleroux et al., 2008; Mohtadi et al., 2011a] is

more appropriate for P. obliquiloculata. This issue is discussed below.

Stable isotope measurements were made at WHOI on a Finnigan MAT253.

Long-term precision Of 6 180calcite measurements is 0.0 7 %o, based on repeated

measurements of a suite of standards.

All age models are based on radiocarbon dates from planktic foraminifera.

Radiocarbon years were covered to calendar ages using Calib 6.0 and Marine09

[Reimer et al., 2009]. Age models are based on linearly interpreting between

radiocarbon dates (23GGC, 70GGC, 136GGC, and 69-3), a linear fit through the
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radiocarbon dates (MD78), or a polynomial fit (MD41). Details of the age model

construction and original dates for 23GGC, 136GGC, 70GGC and 69-3 can be found in

Gibbons et al. [in revision]. See Sarnthein et al. [2011] (MD78) and de Garidel-

Thoron et al. [2001] (MD41) for the rest of the radiocarbon dates.

We explored the potential for an age bias between radiocarbon dates from

surface dwelling foraminifera (a mix of G. ruber and G. saccuhfer) and P.

obliquiloculata, as there has been a documented age offset between dissolution

prone (G. sacculhfer) and dissolution-resistant (such as P. obliquiloculata or N.

dutertrei) species [Barker et al., 2007; Broecker and Clark, 2011]. We selected

several depth intervals from 70GGC and 69-3 to compare the radiocarbon ages of

these species. In all cases we examined, the offset between species was small (Table

2). These results support the conclusion of Broecker and Clark [2011] that there is

minimal age offset in high sedimentation rate cores. We therefore applied no offset

for our age models and used only the radiocarbon values that were measured on G.

ruber and G. sacculifer, and not on P. obliquiloculata.

3. Results

3.1 Coretop results

We reconstructed the Mg/Ca-based temperature [Anand et al., 2003; Gibbons

et al., in revision] of P. obliquiloculata from 22 coretops from throughout the ITF

region and the Eastern Indian Ocean. We estimated depth habitats by comparing

our Mg/Ca based temperature estimates with the CTD data collected on the coring

cruises. These cruises were all during the upwelling season, and the CTD data only
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provide us with a snapshot of subsurface temperature conditions. However, the

paucity of subsurface data in the World Ocean Atlas in the ITF and the Eastern

Indian Ocean could make CTD data the most reliable estimate of subsurface

temperature. The depth habitat estimates suggest that P. obliquiloculata calcifies

within the upper thermocline, at approximately 80-100 m depth (Fig 2). Core-top P.

obliquiloculata temperature estimates at 23GGC, 70GGC, and 69-3 are also

consistent with an 80-100 m depth habitat.

3.2 Downcore Results

The downcore P. obliquiloculata S180cacite records are shown in Figure 3-7. At

69-3 (Fig 3) the glacial 5 18 0calcite values were approximately O%o. The deglacial

decrease in 6 l80calcite began at -19 kyr BP, with a plateau from approximately 14 kyr

BP to 11 kyr BP. The 6180calcite continued to decrease until -8 kyr BP, reaching -

1.6%o, and then remained approximately constant until the late Holocene. The

70GGC core (Fig 4) did not reach the LGM and so the record begins during the

deglacial. There is no change in the 6180calcite from the start of the record at 14 kyr

BP until -11.5 kyr BP; during this period 6180cacite was -- 0.5%o. After 11.5 kyr BP,

the 6 18 0calcite continued to decrease until -7 kyr BP, reaching a value of -2%o, where

it remained for the rest of the Holocene. The 23GGC record (Fig 5) spans 10 kyr BP

to the late Holocene and 6180calcite values were very similar to 70GGC. The 6 180cacite

record of MD41 (Fig 6) shows considerable variability, likely due to the low

sampling resolution, from 22 kyr BP until 12 kyr BP, with an average value of -

0.5%o. 6 180calcite values reached a minimum of approximately -2%o at 7 kyr BP and
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then increased by over 1%o by 4 kyr BP (the top of the core). At 136GGC (Fig 7)

6180calcite values were approximately O%o from 22 kyr BP until 16 kyrBP. 18 Ocalcite

then decreased to -2%o by 10 kyr BP, and remained constant until modern.

Our downcore records of Mg/Ca-based temperature estimates are shown in

Figures 3-7. Generally, thermocline temperatures were nearly as warm during the

LGM as in the late Holocene. Thermocline temperatures peaked at -10.5 ky BP in

the Makassar Strait (23GGC and 70GGC) (Fig 4 and 5) and Flores Sea (136GGC) (Fig

7), remained warm until 5.5 ky BP, and then gradually cooled by -1*C. In the Savu

Basin (69-3) (Fig 3), where glacial and interglacial thermocline temperatures were

similar, temperatures peaked at 10.5 ky BP, but the cooling trend began earlier and

was approximately 1*C larger than in the Makassar Strait. The temperature trends

from the Sulu Sea (MD41) (Fig 6) are similar to those observed in the Savu Sea.

Thermocline temperatures peak at 10.5 kyr BP and cool by ~ C until 4.3 kyr BP,

when the record ends.

4. Discussion

4.1 Geochemistry of P. obliquiloculata as a thermocline indicator

Numerous lines of evidence, including data from plankton tows [Fairbanks et

aL, 1982], sediment traps [Anand et aL, 2003; Mohtadi et aL, 2009], and coretops

[Anand et aL, 2003; Sadekov et al., 2009; Xu et aL, 2006; Xu et aL, 2008; Zuraida et aL.,

2009], suggest that within the modern tropics, P. obliquiloculata has an upper

thermocline depth habitat. Our data are consistent with these studies.
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An issue that requires exploration is the use of the difference between the

Mg/Ca-based temperature of G. ruber and P. obliquiloculata in order to derive a

thermal gradient. Previous studies have interpreted this difference in opposite

ways. Xu et al. [2008] suggest that a small thermal gradient is indicative of a deep

thermocline. Using data from the same core, Sarnthein et al. [2011] claim that a

small thermal gradient indicates a shallow thermocline with more intense

upwelling. Steinke et al. [2010] interpret a large difference to indicate a smaller

mixed layer depth, which is qualitatively equivalent to the Xu et al. [2008]

interpretation. While it is difficult to determine thermocline structure with only two

points, we suggest that the coretop data can guide us to the appropriate

interpretation. In upwelling regions, such as along the southern coast of Java, our

coretop data show a larger difference between the Mg/Ca derived temperature of G.

ruber and P. obliquiloculata (Fig 2). To highlight this, we combine our data with the

extensive coretop work of Mohtadi et al. [2011a] and bin all data into regional

averages (Fig 8). Thus, coretop evidence strongly suggests that the most valid

interpretation of the reconstructed thermal gradient is consistent with that of Xu et

aL [2008] and Steinke et aL. [2010], and is not consistent with Sarnthein et aL.

[2011]. A larger difference between the temperature of G. ruber and P.

obliquiloculata is found in areas of upwelling, while a smaller thermal gradient is

found in areas with a more stratified water column.

Previous work has examined the relationship of the difference in 6 18 0calcite

between G. ruber and P. obliquiloculata to infer upper water column structure.

Consistent with the Mg/Ca-based temperature difference described above, coretop
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results from the South China Sea suggest that a larger difference between G. ruber

and P. obliquiloculata occurs in areas with more upwelling [Tian et aL, 2005]. This

result has also been generally found when comparing the 618 0calcite of other surface

and thermocline dwelling foraminifera [Mohtadi et aL, 2011a; Ravelo and Fairbanks,

1992; Ravelo and Andreasen, 1999].

Although the coretop Mg/Ca and 6 18 0calcite differences between G. ruber and

P. obliquiloculata are consistent in the water column structure they suggest (Fig 8),

if we attribute the 6 8 Ocalcite changes entirely to temperature, the results are

quantitatively different. We use pooled Eastern Indian Ocean data from this paper,

Mohtadi et al. [20 11a] and Gibbons et al. [in revision], to examine the predicted

water column structure difference between an area of intense upwelling (the Java

Basin or JB in Fig 8) and an area with a stratified water column (the Nias Basin or

NB). The G. ruber - P. obliquiloculata Mg/Ca-based temperature in the Java Basin is

8.4*C and at the Nias basin it is 6.2*C. The G. ruber - P. obliquiloculata difference in

6 180calicite is -1.4%o at the Java Basin and -0.7%o at the Nias basin. If we convert the

6 180caicite difference to temperature (using the low-light 0. universa equation from

Bemis et al. [1998]) this is equivalent to a 6.7*C temperature difference in the Java

Basin and a 3.4*C temperature difference in the Nias Basin. In order to reconcile

these differences, the subsurface water must have more depleted 6 180seawater values

than the surface waters. Modern observations indicate that the subsurface water in

the Eastern Indian Ocean is saltier than the surface water (eg. WOA05 [Antonov et

al., 2006]). Thus if subsurface waters actually have more depleted 5 18 0seawater, lower
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6 180seawater values are associated with saltier conditions. Generally, however, salinity

and 8 18 0seawater are positively correlated [LeGrande and Schmidt, 2006].

Due to the scarcity of 8180seawater measurements in the region, particularly at

the subsurface, we cannot directly examine whether 6 18 0seawater values are more

depleted with depth in the region. We examine this problem indirectly by utilizing

the conservative nature of 6 18 0seawater and taking advantage of the relative

abundance of surface 5 180seawater measurements compared to subsurface 6 18 0seawater

measurements. At several core sites in the IndoPacific Warm Pool, we use the Total

Matrix Intercomparison method developed by Gebbie and Huybers [2010]. Total

Matrix Intercomparison uses six water properties to trace back the surface source

region(s) of a water parcel. This method allows for multiple source regions to

contribute to each water parcel. We identify the major source regions at each

location and use an average 818 0seawater surface value from the gridded data of

LeGrande and Schmidt [2006] to predicted the 5 18 0seawater at varying depths in the

IndoPacific Warm Pool. This approach suggests that 5 180seawater does become more

depleted with depth in this region, with an approximate change of -0.06%o per

100m. While this may contribute to the difference between the 6 18 0calcite and Mg/Ca-

based temperature gradients, it is not large enough to resolve the discrepancy

between the thermal gradient based on Mg/Ca versus 6 18 0calcite.

Previous authors [Steinke et aL., 2010] have noted the apparent difficulty in

reconciling the 6 18 0calcite difference of G. ruber - P. obliquiloculata and the Mg/Ca-

based temperature difference. While Steinke et aL. [2010] attributed this to the local

hydrology of the South China Sea, our data suggest this discrepancy may be
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widespread. Others [Clerouxetal., 2008; Mohtadi etal., 2011a] have used the

predicted temperature based on modern oceanographic data and an assumed

6 180seawater/salinity relationship to recalculate the Mg/Ca-temperature relationship.

This approach forces a reconciliation of the Mg/Ca-based temperature and 5 18 0caicite

and suggests that the sensitivity of the Mg/Ca of P. obliquiloculata to temperature

change is approximately half that found by other studies in areas where the

oceanographic conditions, including the 6 180seawater/salinity relationship were better

known [Anand et al., 2003]. Further work, specifically on the modern S 18 0seawater

relationship to water mass properties, the depth habitat of P. obliquiloculata via

plankton tows, and the sensitivity of P. obliquiloculata Mg/Ca and 61 80cacite to

temperature changes via culturing work are required to clarify the situation.

4.2 Changes in the upper water column - The LGM and deglacial

We interpret our downcore data assuming that our temperature estimates

using Mg/Ca and the modified Anand et al. [2003] multispecies calibration are

correct. This allows us to compare our results with previous work that used the

Mg/Ca of G. ruber and P. obliquiloculata to infer changes in thermocline structure.

We compare these interpretations to the thermocline structure derived from the

6180calcite. Finally, we examine possible reasons for the discrepancy between these

two methods.

4.2.1 The LGM and deglacial - climatic implications based on Mg/Ca
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70GGC and 23GGC do not contain LGM sediment, but in all our cores that

have data from the LGM, reconstructed thermocline temperatures are no more than

1C cooler than modern. This is a striking regional feature that is observed in the

Sulu Sea (MD41, Fig 6), the Flores Sea (136GG, Fig 7), and the Savu Basin (69-3, Fig

3). It has also been documented in the Timor Sea [Xu et al., 2008], the Timor Strait

[Holbourn et al., 2011], and the South China Sea [Steinke et aL, 2010; Yang and

ZhiMin, 2009]. The only Mg/Ca-based P. obliquiloculata record that shows a larger

cooling (nearly 2'C) is MD67 from the Mindanao dome [Bolliet et al., 2011].

The warm LGM thermocline temperatures create a smaller vertical thermal

gradient between the surface and the thermocline (Fig 9), which our coretop data

suggest indicate more stratified oceanic conditions (Fig 8). Greater LGM

stratification is consistent with previous work from the Western Pacific Warm Pool.

Planktic foraminifera abundances suggest that the thermocline was deeper

throughout the Western Pacific Warm Pool at the LGM [Andreasen and Ravelo,

1997]. Using a combination of Mg/Ca-based SST reconstruction (using G. ruber),

alkenone (Uk' 3 7), and foraminferal transfer functions, de Garidel-Thoron et al.

[2007] suggest LGM SSTs were -2.5*C cooler and subsurface temperatures were

1.8"C cooler, again implying more stratified conditions.

Andreasen and Ravelo [1997] and de Garidel-Thoron [2007] suggest their

data are consistent with an enhanced Walker circulation at the LGM. Support for this

mechanism comes from a compilation of six LGM modeling simulations, four of

which show an enhanced Walker Circulation. In these four glacial simulations, the

upper water column is more stratified, and thermocline temperatures show less
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cooling than surface temperatures [DiNezio et aL, 2011]. Less cooling in the glacial

thermocline compared to the surface is also simulated in the eastern equatorial

Indian Ocean [Otto-Bliesner et aL, 2009]. The large regional extent of the relatively

warm glacial thermocline in these models is consistent with our proxy data.

However, we note our proxy data show yet warmer thermocline temperatures than

suggested by the average of the modeling simulations.

4.2.2 The LGM and deglacial - climatic implications based on 6 18 0calcite

Though the G. ruber - P. obliquiloculata Mg/Ca-based temperature

differences suggest a deeper thermocline (smaller thermal gradient) at the LGM,

these results are inconsistent with the 6 180calcite results. In most continuous records

(MD41, 69-3, MD90 [Steinke et al., 2010], and MD67 [Bolliet et al., 2011], the

6180cacite difference between G. ruber and P. obliquiloculata is approximately the

same at the LGM as it is at the modern (within 0.3%o or approximately 1C if

attributed to temperature), suggesting either no change or a slightly less stratified

IndoPacific Warm Pool at the LGM. This is in contrast to the Mg/Ca-based

temperature reconstructions which suggest a more stratified LGM, with the

temperature gradient approximately 2*C smaller than modern. MD94 [Yang and

ZhiMin, 2009] in the South China Sea is the only record in which the 6180cacite

gradient and the Mg/Ca-based temperature gradient show the same trend; the

5 18 0calcite records suggest a modest deepening of the thermocline at the LGM, though

still less than based on the Mg/Ca-based temperature.
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As discussed above, this apparent inconsistency between the Mg/Ca-based

temperature and 6'80caicite-based temperature gradients may result from more

depleted 8 18 0seawater in the thermocline than surface. In this case, a deeper

thermocline would bathe P. obliquiloculata in waters that were both warmer and

had a higher 6 180seawater value. Even with a deepening of the thermocline, there

could be no change in the 8180calcite of P. obliquiloculata as the warming and higher

8180seawater values could offset each other.

4.2.3 The LGM and deglacial - potential biases: is there a thermal limit to P.

obliquiloculata or is salinity influencing our Mg/Ca-based temperature

estimates?

We examine two potential sources of bias in our records: firstly, whether the

lower thermal limit for P. obliquiloculata is approached during the LGM, shifting P.

obliquiloculata towards warmer conditions and secondly, whether the generally

saltier conditions of the LGM could raise Mg/Ca ratios independent of temperature

[Arbuszewski et al., 2010; Mathien-Blard and Bassinot, 2009]. We explore each of

these possibilities below.

In the modern oceans P. obliquiloculata is an abundant species in the

IndoPacific, but abundances quickly decline in cooler waters [Bd and Hutson, 1977;

Cullen and Prell, 1984; Martinez et al., 1998; Ujiie and Ujiie, 2000]. The relatively

warm Mg/Ca-based thermocline temperatures at most locations during the LGM as

described above could be due to P. obliquiloculata migrating upward in the water
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column, switching its growth to the warm season or only growing during warm

years.

Support for a thermal limit come from regional abundance records. Within

the South China Sea, P. obliquiloculata disappears almost entirely during Heinrich

Event 1 [Yang and ZhiMin, 2009]. In the Sulu Sea P. obliquiloculata disappears

during the last glacial period, even while G. ruber abundance remains high [Linsley

and Thunell, 1990], suggesting that P. obliquiloculata has a narrower optimal habitat

than G. ruber. Abundance counts from within the Makassar Strait [Ding et al., 2006]

show similar results to Linsley and Thunell [1990] suggesting that even within the

heart of the IndoPacific Warm Pool, the lower thermal limit for P. obliquiloculata

was approached during glacial conditions. If we attribute changes in the 6 180cacite

records primarily to temperature, these data suggest P. obliquiloculata is not biased

by cold temperatures, but as discussed above, the uncertainty in interpreting past

(or present) 6 18 0seawater values make it difficult to rule out a thermal limit.

Another possibility is that our warm glacial thermocline reconstructions are

due to the influence of salinity on Mg/Ca. Evidence is increasing that at high

salinities, Mg/Ca values are elevated in G. ruber [Arbuszewski et al., 2010; Mathien-

Blard and Bassinot, 2009]. Even though there is some debate as to the exact

mechanisms of salinity influence on Mg/Ca, it appears that at salinities below 35

[Arbuszewski et al., 2010] or 36 [Gibbons et al., in revision], the effect is negligible.

CTD data (not shown) and World Ocean Atlas 05 data [Antonov et al., 2006] suggest

salinities at 100 m at our core sites are less than 35. The mean ocean was -1 saltier

at the LGM [Adkins et al., 2002], leaving thermocline salinities at our sites still below
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the likely threshold for a salinity influence on Mg/Ca if this was the only factor

affecting salinity. However, within the ITF, the thermocline was likely even saltier

due to the absence of freshwater from the Java Sea [Linsley et al., 2010], which

freshens the thermocline today [Gordon, 2005]. Thus, it is possible that thermocline

salinities exceeded 36, and contributed to the high Mg/Ca during the LGM in our ITF

sites (136GGC, and 69-3). Moreover, the effect of salinity on the Mg/Ca of P.

obliquiloculata is not established.

We can test whether the salinity effect is a reasonable explanation for our

warm LGM temperatures. We first assume that there was no change in the thermal

gradient at our sites. In other words, G. ruber and P. obliquiloculata should have both

been cooler by the same amount at the LGM. We use the difference in our Mg/Ca-

based G. ruber temperatures between 20-18 kyr BP and 2-0 kyr BP to assign the

magnitude of thermocline cooling at the LGM. We subtract this cooling from our

"modern" P. obliquiloculata temperature, to estimate P. obliquiloculata's LGM

temperature. We then calculate predicted Mg/Ca values based on these estimated

LGM values and the modified Anand [2003] multispecies calibration. We subtract

this predicted Mg/Ca from our measured Mg/Ca, and use this value in a similar

manner to the "excess Mg/Ca" explored by Arbuszewski et al. [2010]. We can use

the dataset of excess Mg/Ca and salinity compiled by Gibbons et al. [in revision] to

predict the salinity associated with an excess Mg/Ca value (Fig 10). At salinities

above 36, the relationship between excess-Mg/Ca and salinity can be described by:

Excess Mg/Ca = 1.4018*salinity - 50.449
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If we assume, instead the critical threshold for salinity is 35, the relationship

changes only slightly:

Excess Mg/Ca = 1.1032*salinity - 39.456

Using our excess Mg/Ca values, we solve for salinity. The salinities required

to produce the LGM excess Mg/Ca are 36.2 at 136GGC and 69-3 and 36.4 at MD78

using the first equation and 36.0 at 136GGC and 69-3 and 36.2 at MD78 using the

second equation. The relatively modest increase in salinity required to affect Mg/Ca-

based temperature estimates suggests this is a potential concern for the use of P.

obliquiloculata at the LGM, especially as the sensitivity of Mg/Ca in P. obliquiloculata

to salinity is unknown.

4.3 Changes in the upper water column during the Holocene - The flooding of

the Sunda Shelf

We suggest that during the Holocene, the Mg/Ca-based temperature of P.

obliquiloculata is a reliable proxy for thermocline temperature. P. obliquiloculata is

relatively abundant [Ding et al., 2006; Linsley and Thunell, 1990], suggesting it is

well within its prime habitat, and after the disintegration of the ice sheets [Clark and

Mix, 2002] salinities in the IndoPacific Warm Pool are likely low enough where

Mg/Ca is primarily dependent on temperature.

Previous work has suggested that the flooding of the Sunda Shelf that

occurred at 10 kyr BP cooled the thermocline of the ITF outflow passages [Holbourn

et al., 2011; Xu et al., 2008; Xu et al., 2010]. This hypothesis is based on the idea that

there is a reduction of warm surface waters that pass through the Makassar Strait
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when the Sunda Shelf floods. By contrast, others have argued based on modern data

[Fang et al., 2010; Qu et al., 2006] and paleo reconstructions [Gibbons et al., in

revision] that the decreased heat flow through the Makassar Strait would be

balanced by heat from the Java Sea. As a result, there would be no net change in heat

transport or thermocline stratification as a result of the flooding of the Sunda Shelf.

We test whether the flooding of the Sunda Shelf changed the thermocline

thermal gradient of either the Makassar Strait or the outflow passages by computing

the Kendall - coefficient [Kendall and Gibbons, 1990] for each core. The Kendall t

coefficient is a nonparamentric measure of trend, which can range from -1 to 1. It is

robust against both outliers and inaccuracies in chronology. In neither 69-3 (-= -

0.18; p = 0.13), nor MD78 (T= -0.20; p = 0.12) is there a significant increase in

thermal gradient from 10-6 kyr BP, which suggests that the flooding of the Sunda

Shelf did not change the thermal structure of the outflow passages.

We note that the finding of no change in the thermal gradient due to the

flooding of the Sunda Shelf is sensitive to the Mg/Ca temperature equation used. If

we instead use the equation suggested by Cleroux et al. [2008] and Mohtadi et al.

[2011a], there is a dramatic increase in the thermal gradient at 69-3 (T= -0.27; p =

0.02) from 10-6kyrBP. The increase in thermal gradient at MD78 is also larger,

though there is still no significant trend at MD78 (-r = -0.19; p = 0.12). In light of the

relatively modest Holocene temperature variation in the surface waters (Fig 3

shows a 2*C cooling), the extremely large Holocene thermocline temperature

variation produced by this equation (a Holocene cooling of 4.5"C in 69-3), suggests

that this calibration may overestimate past temperature changes. Using this
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equation, the thermal gradient during the early Holocene is only 2.50C, suggesting

extremely stratified conditions at 69-3. This is difficult to reconcile with strong

evidence of a northerly displaced ITCZ [Yuan et aL., 2004] and increased monsoon

upwelling [Mohtadi et aL., 2011b], which would extend the upwelling season at 69-3.

Nevertheless, the considerable uncertainty in the Mg/Ca-temperature calibration of

P. obliquiloculata requires further work.

Regardless of the calibration, however, the data support a previously noted

larger Holocene than glacial vertical thermal gradient (a shoaling thermocline) in

the outflow passages, previously attributed to the flooding of the Sunda Shelf [Xu et

aL, 2008; Xu et aL., 2010]. However, our records demonstrate that the change in

thermocline structure was not uniquely associated with the flooding of the Sunda

Shelf at -10 kyr BP but instead occurs as a gradual trend that began at the LGM and

continued until modern (Fig 4). Moreover, MD41, from the Sulu Sea, should not have

been directly affected by the flooding of the Sunda Shelf [Sathiamurthy and Voris,

2006] yet it has a similar change in thermal gradient to the other cores. The

observation that the increase in thermal gradient is both long in duration and

widespread in occurrence suggests that it cannot be explained due to a change in

thermocline temperature resulting from the flooding of the Sunda Shelf.

Conclusion:

More work remains before we can confidently use the geochemistry of P.

obliquiloculata as a robust indicator of thermocline conditions. In both our coretop

and downcore records, it is difficult to reconcile the trends from the Mg/Ca-based
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temperature with the 61 8Ocalcite. If we assume, as previous studies have, that the

Mg/Ca-based temperature gradient between G. ruber and P. obliquiloculata is an

indicator of thermocline structure, our results suggest that thermocline

temperatures were warm at the LGM relative to surface water, and gradually

increased to a peak in the early Holocene. These data are consistent with an

enhanced in the Walker Circulation during the LGM [DiNezio et al., 2011]. Our data

are inconsistent with the hypothesis that the flooding of the Sunda Shelf caused a

cooling in the thermocline as inferred from the Mg/Ca-based temperature difference

of G. ruber and P. obliquiloculata. The increase in thermal gradient occurs

throughout the deglacial and is observed in a core that is not located in an outflow

passage of the ITF (MD41).
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Table 1 - Core locations and depths.
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Core ID in Water depth
Core ID, location text Lat./Long. (m)

7* 24'S, 115*
BJ8-03 13GGC, Flores Sea 13GGC 13'E 594

5* 12'S, 117*
BJ8-03 23GGC, S Makassar Strait 23GGC 29'E 1189
BJ8-03 70GGC, SW Sulawesi, Makassar 3* 34'S, 119'
Strait 70GGC 23'E 482

5* 56'S, 120*
BJ8-03 136GGC, Flores Sea 136GGC 14'E 526

9' 36'S, 120*
GeoB10069-3 Savu Sea 69-3 55'E 1,250

8' 47'N, 121'
MD97-2141, Sulu Sea MD41 17'E 3,633



G.
ruber/sac G. P. obliq P. obliq

C-14 ruber/sac C-14 calendar Age
Depth Age calendar Depth Age age difference

Core (cm) (yrs) age (yrs) (cm) (yrs) (yrs) (yrs)
69-3 88 1970 1525 88 1910 1453 72

468 7328
69-3 (478) 6800 (7566) 478 6830 7353 (213)

70GGC 64 1310 853 64.5 1310 853 0
70GGC 321 7190 7653 320.5 7270 7731 -78
70GGC 362 10250 11223 361.5 10100 11132 91

Table 2 - Difference in radiocarbon dates between G. ruberIG. sacculifer and P.
obliquiloculata. Dissolution-prone foraminifera have approximately the same age
as the dissolution-resistant foraminifera P. obliquiloculata. Due to a mismatch in
depth intervals, the 69-3 P. obliquiloculata date from 478 cm was compared to the
predicted G. ruber/sacculifer age at 478 cm based on the age model. The predicted
value is listed in parentheses.
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Figure 1 - Map of study location. Dots indicate locations of multicores used in
coretop study. Diamonds are the location of cores with new P. obliquiloculata
downcore records. The square symbol is MD78 [Xu et aL, 2008]. Boxes indicated
regional groupings for Figure 3 (from north to south SB: Simeulue Basin; NB: Nias
Basin; NMB: Northern Mentawai Bain; SMB: Southern Mentawai Basin; JB: Java
Basin; LB: Lombok Basin) and core 69-3 is located in the Savu Sea. Dashed arrow
indicates path of freshwater from the South China Sea into the Indonesian
Throughflow.
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Figure 2 - Core top results. The Mg/Ca based temperature estimates of G. ruber
[Gibbons et aL, in revision] (blue triangles) and P. obliquiloculata (purple squares).
Coretop data are plotted against CTD data from the coring cruises. Dashed line is
satellite derived mean annual SST (http://reason.gsfc.nasa.gov/Giovanni/).
Temperatures (both CTD and Mg/Ca based) are plotted on the Y-axis. Isodepth lines
are plotted through temperature data. The Mg/Ca-based temperature of P.
obliquiloculata is consistent with temperatures found between 80-100m.
Additionally, in areas of more upwelling, such as more eastern Indian Ocean sites,
the reconstructed temperature difference between G. ruber and P. obliquiloculata is
larger.
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Figure 3 - Downcore records from 69-3 (Savu Sea). G. ruber (red) [Gibbons et al.,
in revision] and P. obliquiloculata (blue) 6 18 0calcite, Mg/Ca-based temperature
estimates, and 6 1 80seawater estimates. Note the inverted axes for 6180. Gradients are
G. ruber - P. obliquiloculata with the axes orientation as in Figure 3 (gradients
corresponding to upwelling conditions in the coretop data are up). Axes are scaled
so that 1%o 6180 corresponds to 4*C.
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Conclusions

This work has provided insight into the dynamics of the hydrology and

oceanography of the Indonesian Throughflow. The data presented here strongly

suggest that the Java Sea inflow does not have a cooling effect on the outflow of the

Indonesian Throughflow. The appearance of a cool tongue of Indonesian water in

the equatorial Indian Ocean is more likely due to the vigorous upwelling in the

Banda Sea. This work also shows that the Intertropical Convergence Zone migrates

in concert with high latitude Northern Hemisphere cooling events, possibly in

response to the decreased interhemispheric temperature gradient. Additionally, the

continued need for ongoing proxy development work is clearly demonstrated. I

show the tremendous difficulty in reconciling the 6 18 0calicte and Mg/Ca of P.

obliquiloculata data variations, despite these proxies being in widespread use.

There are several ways to move this work forward. Of upmost importance is

the need for more 6 180seawater measurements, particularly in the subsurface. Not only

would this aid our understanding of modern hydrology in the region, it is vital for

our interpretation of thermocline (and benthic) records.

Additionally, more work on the geochemistry of P. obliquiloculata is required.

Perhaps there is a species-specific Mg/Ca or 6180 temperature relationship that is
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more suitable. Given the difficulty in simultaneously assessing depth habitat and

geochemical sensitivity to temperature, culturing work would yield the most

straightforward answer.

There is more work to be done on constraining the migration of the

Intertropical Convergence Zone. Within the IndoPacific Warm Pool, the data show a

clear band of no temporal change in 6 18 0seawater over the past 20,000 years. I

speculate that during high latitude Northern Hemisphere coolings these locations

experience an increase in boreal summer precipitation and a decrease in boreal

winter precipitation. The geographic coverage of the records I use allows me to

constrain the migration of the Intertropical Convergence Zone. In the Eastern

Equatorial Pacific, the southern most 6 18 0seawater record in this study is from a core

retrieved from 1*S. If we could reconstruct 6 18Oseawater at cores farther south, I would

expect to find a location where 5 1 8Oseawater does not change during times of high

latitude Northern Hemisphere cold events. Even farther south, I would expect to see

depleted 5 18 0seawater values. These findings would confirm an ITCZ mechanism, as

we currently cannot rule out that changes in the Eastern Equatorial Pacific are due

to variations in moisture transport across the Isthmus of Panama.

We can also test whether changes in the interhemispheric temperature

gradient consistently respond to hydrologic changes. Our longest record (69-3)

shows a drying event that is possibly consistent with Heinrich Event 3, but no

expression of Heinrich Event 2. If this finding holds with increased sampling

resolution and better dating, then it would suggest that changes in the
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interhemispheric temperature gradient did not always occur during Heinrich

Events. This is a hypothesis that can likely be explored using existing data.

Finally, the mechanisms I propose for temperature controls in the Indonesian

Throughflow can be more thoroughly examined. My hypothesis requires

intermediate-depth water temperature changes to resemble Antarctic air

temperature changes. By deriving temperatures from benthic foraminifera from

thermocline and intermediate water depth cores in the region, this oceanic

transport mechanism can be tested.

Most importantly, as we move forward and generate new observational and

paleo data from the Indonesian Throughflow, we should be prepared to reevaluate

our current hypotheses for both modern oceanography and past variations.
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Appendix A: All radiocarbon dates generated for this thesis.

Depth C-14 Age
(cm) (yr BP)Core

BJ8-03
13GGC

BJ8-03
23GGC

BJ8-03
70GGC

BJ8-03
136GGC

GeoB10
069-3

32
100
272
408
505

7
73

169
329
409

64
104
176
202
242
280
321
331
341
351
362
394
406

3
169
185
205
249
313
401

8
65
88

107

Calendar age
(median
probability)

Error (yr) (yr BP)

925
2190
5050
8220
9610

30
2040
3780
7160
9730

1310
2750
4240
4850
5410
6160
7190
8080
8700
9210

10250
12550
12900

485
7440
8230
9740

14000
29000
37700

755
1680
1970
2260

30
30
40
45
60

25
30
35
45
70

30
50
50
40
35
60
45
40
45
45
40
50
45

25
35
35
50
55

210
290

35
30
35
30
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526
1786
5398
8738

10474

30
1607
3723
7627

10592

853
2472
4341
5155
5789
6594
7653
8538
9380

10030
11223
13990
14649

92
7903
8752

10594
16758
33006
42063

396
1241
1525
1867

Lower cal
range (1
sigma
(yr)

547
1831
5447
8840

10546

1657
3792
7665

10662

901
2540
4413
5245
5847
6666
7695
8589
9438

10124
11251
14064
14934

135
7943
8842

10643
16859
33358
42299

449
1278
1584
1907

upper cal
range (1
sigma)
(yr)

497
1735
5330
8631

10415

1557
3672
7581

10516

816
2352
4269
5079
5737
6513
7598
8481
9325
9954

11187
13898
14257

1
7863
8657

10539
16675
32688
41822

336
1213
1477
1821



122
188
268
378
468
593
644
693
724
753
786
818
894
953

2360
2910
3950
5140
6800
9450

10600
11700
13200
16050
19050
21900
27100
31000

30
35
35
35
45
65
50
55
75
75
90

110
160
240

1982
2698
3939
5511
7328

10307
11882
13194
15215
18789
22267
25723
31177
35043

2032
2738
3990
5557
7380

10378
11970
13250
15481
18867
22391
25968
31268
35228

1931
2670
3872
5473
7279

10221
11747
13132
15007
18701
22159
25524
31085
34766

144



Appendix B: Coretop data generated for this thesis.

Sediment water Mg/Ca 6 Mg/Ca
core Latitude Longitude depth ruber ruber obliq 680 obliq

[*N] [0E] [im] [mmol/mol] [%o PDB] [mmol/mol] [%o PDB]
GeoB
114 MC 3.49 95.33 1535 4.88 2.40
118 MC 3.52 96.31 804 5.21 3.01
89 MC 2.78 96.42 916 4.86 3.08
139 MC 1.76 96.77 1854 5.30 2.84
60 MC 1.45 98.05 551 4.92 3.10
147 MC -0.69 98.07 1052 5.07 3.11
41 MC 0.34 98.13 674 4.79 3.29
10027-3 -0.81 99.65 875 5.48 -3.13 2.66 -2.31
31 MC -1.30 99.72 1734 4.59 2.08
10033-3 -1.56 99.95 1756 4.96 -3.18 -2.34
10029-3 -1.50 100.13 974 5.31 -3.27 2.51 -2.46
10034-3 -4.16 101.50 995 4.67 -3.00 2.40 -2.14
03 MC -4.70 101.96 1707 4.64
02 MC -5.48 103.01 1972 4.90 1.97
10041-3 -6.27 103.09 1540 4.69 -2.68 2.61 -2.15
10038-3 -5.94 103.25 1891 4.96 -3.01 -2.18
10039-3 -5.87 103.29 1799 5.03 -3.19 2.23 -2.34
10036-3 -5.34 103.66 1502 5.10 -3.23 2.32 -2.35
10042-2 -7.11 104.64 2457 4.43 -3.19 -2.34
10049-5 -8.78 110.50 1288 4.55 -2.87 1.82 -2.03
10058-1 -8.68 112.64 1103 4.44 -3.09 2.04 -1.85
10065-9 -9.22 118.89 1284 4.37 -2.91 2.31 -1.62
10069-4 -9.60 120.92 1249 4.34 -2.92 1.92 -2.17
BJ8-03
MC16 -7.32 115.18 409 5.06 -2.87 2.55 -1.96
MC11 -7.39 115.21 590 4.89 -2.87 2.86 -1.67
MC84 -1.40 117.53 401 5.27 -3.17 2.79
MC31 -3.88 119.45 459 5.14 -2.78 2.80 -2.27
MC125 -5.89 120.29 427 4.94 -2.81 3.15 -1.85
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Appendix C: Downcore data generated for this thesis.

GeoB10069-3

Depth (cm)
3
8

13
18
23
28
33
38
43
48
53
58
63
68
73
78
83
88
93
98
103
108
113
118
123
128
133
138
143
148
153
158
163
168
173
178
183
188
193
198
203
208
213
218

G. ruber
Mg/Ca

(mmol/mol)
4.10
4.68
3.84
3.72
3.85
3.83
3.77
4.28
3.81
3.99
3.93
4.04
4.36
3.93
4.07
4.03
4.09
3.70
3.83
3.89
4.12
4.01
4.10
4.17
3.99
4.28
4.11
4.27
3.81
4.16
3.93
3.87
4.12
3.84
3.87
3.81
3.84
4.28
4.13
3.90
3.95
4.11
3.86
4.26

Depth
(cm)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

o1sO

%o PDB
-2.760
-2.870
-2.990
-1.920
-3.160
-2.930
-2.770
-2.690
-2.980
-2.360
-2.690
-2.580
-2.760
-2.880
-2.600
-2.780
-2.880
-2.790
-2.760
-2.850
-2.720
-2.810
-2.540
-2.790
-2.870
-2.860
-2.730
-2.790
-2.460
-2.660
-2.500
-2.610
-2.650
-2.750
-2.760
-2.690
-2.700
-2.710
-2.540
-2.740
-2.720
-2.610
-2.710
-2.610
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223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338
343
348
353
358
363
368
373
378
383
388
393
398
403
408
413
418
423
428
433
438
443
449
453
458
463

4.34
3.83
4.06
3.96
4.02
4.08
4.13
4.21
3.89
3.93
4.16
4.00
4.09
4.29
4.39
4.17
4.19
3.83
4.23
3.83
4.12
4.32
4.09
4.13
4.16
4.24
4.29
4.19
4.18
4.36
4.20
4.18
4.07
4.02
4.19
4.36
4.13
4.21
4.43
4.20
4.16
4.49
4.31
4.19
4.17
4.52
4.17
4.33
4.09

-2.680
-2.620
-2.580
-2.710
-2.710
-2.720
-2.720
-2.740
-2.600
-2.780
-2.610
-2.510
-2.890
-2.830
-2.730
-2.740
-2.770
-2.630
-2.720
-2.580
-2.670
-2.870
-2.660
-2.660
-2.690
-2.420
-2.640
-2.280
-2.610
-2.690
-2.580
-2.560
-2.640
-2.820
-2.870
-2.580
-2.740
-2.790
-2.620
-2.660
-2.580
-2.570
-2.640
-2.640
-2.770
-2.800
-2.710
-2.670
-2.960

148



468
473
478
483
488
493
498
503
508
513
518
523
528
533
538
543
548
553
557
563
568
573
578
583
588
593
598
602
603
603
604
606
608
608
610
612
613
613
614
616
618
618
620
622
623
623
624
626
628

4.27
4.22
4.16
4.34
4.29
4.18
3.93
4.15
4.28
4.40
4.34
4.14
4.14
4.43
4.16
4.14
4.31
4.31
4.40
4.35
4.43
4.39
4.37
4.65
4.72
4.16
4.84
4.52
4.59
4.51
4.35
4.25
4.28
4.73
4.76
4.22
4.63
4.69
4.11
4.48
4.65
4.21
4.33
4.29
4.35
4.44
4.17
4.29
4.34

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
138
143
148
153
158
163
168
173

-2.560
-2.880
-2.660
-2.520
-2.680
-2.410
-2.710
-2.730
-2.820
-2.710
-2.310
-2.630
-2.730
-2.770
-2.500
-2.790
-2.700
-2.460
-2.590
-2.750
-2.620
-2.880
-2.560
-2.920
-2.610
-2.640
-2.730
-2.540
-2.580
-2.660
-2.640
-2.680
-2.560
-2.800
-2.830
-2.920
-2.940
-2.670
-2.770
-2.540
-2.720
-2.610
-2.520
-2.630
-2.570
-2.840
-2.620
-2.540
-2.770
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628
630
632
633
633
634
636
638
638
640
642
643
643
644
646
648
650
652
653
654
656
658
660
662
663
664
666
668
670
672
673
674
676
678
680
682
683
684
686
688
692
693
694
696
698
700
702
703
704

4.10
4.47
4.43
4.29
4.41
4.49
4.70
4.30
4.52
4.42
4.66
4.51
4.28
4.16
4.32
4.16
4.39
4.11
4.08
4.61
4.29
3.93
3.94
4.57
3.80
3.91
3.99
3.74
4.20
3.81
3.86
4.13
4.09
3.89
4.38
3.90
3.95
4.17
3.91
4.00
3.92
3.73
3.84
4.03
4.18
3.94
3.99
4.05
3.76

178
183
188
193
198
203
208
218
223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338
343
348
353
358
363
368
373
378
383
388
393
398
403
408
413
418
423

-2.630
-2.660
-2.450
-2.740
-2.710
-2.630
-2.780
-2.730
-2.590
-2.500
-2.810
-2.650
-2.670
-2.830
-2.420
-2.820
-2.730
-2.860
-2.590
-2.790
-2.670
-2.690
-2.670
-2.780
-2.670
-2.930
-2.670
-2.900
-2.740
-2.810
-3.050
-2.790
-2.730
-2.730
-2.830
-2.610
-2.640
-2.700
-2.640
-2.390
-2.610
-2.660
-2.600
-2.570
-2.880
-2.830
-2.740
-2.780
-2.600
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706
708
710
712
713
714
716
718
720
722
723
724
726
728
730
732
733
734
736
738
740
742
743
744
746
748
750
752
753
754
756
758
760
762
763
764
766
768
770
772
773
774
776
780
782
783
783
784
786

3.80
3.90
3.87
3.82
3.83
3.67
3.90
3.70
3.70
3.66
3.93
3.78
3.71
3.94
3.49
3.55
3.57
3.92
3.80
4.01
3.72
3.76
3.41
3.67
3.50
3.41
3.61
3.74
3.34
3.38
3.53
3.55
3.71
3.54
3.63
3.41
3.53
3.32
3.66
3.54
3.39
3.34
3.21
3.41
3.65
3.15
3.48
3.34
3.70

428
433
438
443
448
453
458
463
468
473
478
483
488
493
498
503
508
513
518
523
528
533
538
543
548
553
558
563
568
573
578
583
588
593
598
602
603
604
606
608
610
612
613
614
616
618
620
622
623

-2.730
-2.660
-2.830
-2.600
-2.740
-2.610
-2.520
-2.590
-2.530
-3.020
-2.920
-2.520
-2.620
-2.430
-2.290
-2.930
-2.870
-2.560
-2.580
-2.650
-2.610
-2.550
-2.480
-2.610
-2.320
-2.870
-2.600
-2.380
-2.440
-2.430
-2.560
-2.500
-2.350
-2.640
-2.300
-2.340
-2.510
-2.340
-2.260
-2.350
-2.230
-2.320
-2.440
-2.130
-2.130
-2.090
-2.190
-2.320
-2.160
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788
790
792
793
794
796
798
800
802
803
804
806
808
810
812
813
814
816
818
820
822
823
824
826
828
830
832
833
834
836
838
840
842
843
844
846
848
850
852
853
854
856
858
860
862
863
864
866
868

3.44
3.56
3.57
3.47
3.57
3.51
3.29
3.45
3.42
3.14
3.60
3.51
3.40
3.40
3.62
3.56
3.61
3.57
3.63
3.58
3.74
3.42
3.74
3.34
3.39
3.86
3.62
3.37
3.26
3.42
3.18
3.38
3.47
3.33
3.37
3.24
3.49
3.33
3.57
3.56
3.60
3.43
3.69
3.48
3.19
3.49
3.22
3.26
3.44

624
626
628
630
632
633
634
636
638
640
642
643
644
646
648
650
652
653
654
656
658
660
662
663
664
666
668
670
672
673
674
676
678
680
682
683
684
686
688
690
692
693
694
696
698
700
702
703
704

-2.140
-2.160
-2.100
-2.150
-2.260
-1.900
-2.020
-2.110
-1.730
-2.030
-1.900
-1.900
-1.870
-1.960
-1.870
-1.720
-1.700
-1.720
-1.770
-1.660
-1.520
-1.530
-1.670
-1.630
-1.910
-1.630
-1.740
-1.920
-1.840
-1.770
-1.940
-1.920
-1.660
-1.620
-1.720
-1.660
-1.660
-1.430
-1.550
-1.570
-1.890
-1.780
-1.620
-2.020
-1.440
-1.700
-1.830
-1.580
-1.810
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870
872
873
874
876
878
880
882
883
884
888
890
892
893
894
896
898
900
902
903
904
906
908
910
912
913
914
916
918
920
922
923
924
926
928
930
932
933
934
936
938
940
942
943
944
946
948
950
952

3.48
3.63
3.60
3.51
3.52
3.55
3.54
3.48
3.56
3.36
3.51
3.34
3.40
3.28
3.44
3.48
3.63
3.44
3.39
3.54
3.52
3.33
3.26
3.62
3.51
3.51
3.34
3.37
3.34
3.49
3.36
3.34
3.45
3.09
3.34
3.59
3.57
3.35
3.47
3.25
3.48
3.26
3.13
3.43
3.28
3.43
3.63
3.45
3.51

706
708
710
712
713
714
716
718
720
722
723
724
726
728
730
732
733
734
736
738
740
742
743
744
746
748
750
752
753
754
756
758
760
762
763
764
766
768
770
772
773
774
776
778
780
782
783
784
786

-1.750
-1.510
-1.800
-1.420
-1.650
-1.350
-1.500
-1.360
-1.420
-1.360
-1.620
-1.560
-1.360
-1.310
-1.070
-0.960
-1.200
-1.240
-1.480
-1.210
-1.140
-1.070
-1.100
-1.120
-1.060
-0.930
-1.070
-0.950
-0.950
-0.990
-0.800
-1.020
-0.820
-1.220
-1.170
-1.100
-1.050
-1.110
-0.840
-1.220
-1.310
-1.480
-0.930
-1.330
-1.100
-1.240
-1.010
-1.340
-1.200
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953
954
956

3.49
3.81
3.56

788
790
792
793
794
796
798
800
802
803
804
806
808
810
812
813
814
816
818
822
823
824
826
828
830
832
833
834
836
838
840
842
843
844
846
848
850
852
853
854
856
858
860
862
863
864
866
868
870

-0.930
-1.400
-1.010
-1.120
-0.990
-1.040
-1.040
-1.190
-1.060
-1.060
-1.170
-1.100
-1.240
-1.220
-1.090
-0.880
-1.420
-1.250
-1.410
-1.220
-1.230
-0.910
-1.250
-1.550
-0.900
-0.850
-1.080
-1.260
-1.210
-1.210
-1.140
-1.040
-1.440
-1.130
-1.230
-1.150
-1.150
-1.190
-0.980
-1.090
-1.320
-1.150
-1.370
-1.430
-1.380
-1.280
-1.360
-1.200
-1.440
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872
873
874
876
878
880
882
883
884
886
888
890
892
893
894
896
898
900
902
903
904
906
908
910
912
913
914
916
918
920
922
923
924
926
928
930
932
933
934
936
938
940
942
943
944
946
948
950
952

-1.360
-1.330
-1.360
-1.500
-1.340
-1.540
-0.980
-1.330
-1.370
-1.380
-1.420
-1.370
-1.250
-1.400
-1.210
-1.350
-1.140
-1.130
-1.230
-0.900
-1.190
-1.130
-1.210
-1.350
-1.100
-1.320
-1.120
-1.100
-1.390
-1.600
-1.320
-1.460
-1.460
-1.340
-1.260
-1.350
-1.330
-1.470
-1.260
-1.500
-1.300
-1.570
-1.320
-1.410
-1.350
-1.330
-1.610
-1.660
-1.370
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GeoB10069-3

Depth (cm)
3
8
13
18
23
28
33
38
43
48
53
58
63
68
73
78
83
88
93
98
103
108
113
118
123
128
133
138
143
148
153
158
163
173
178
183
188
193
198
203
208

P. obliquiloculata
Mg/Ca

(mmol/mol)
4.10
4.68
3.84
3.72
3.85
3.83
3.77
4.28
3.81
3.99
3.93
4.04
4.36
3.93
4.07
4.03
4.09
3.70
3.83
3.89
4.12
4.01
4.10
4.17
3.99
4.28
4.11
4.27
3.81
4.16
3.93
3.87
4.12
3.87
3.81
3.84
4.28
4.13
3.90
3.95
4.11

953
954
956

Depth
(cm)

1
2
3
4
6
7
8
9
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
40
41
42
43
45
46

-1.630
-1.280
-1.450

6180

%o PDB
-2.037
-1.691
-1.977
-1.847
-2.061
-1.548
-1.935
-1.666
-1.727
-1.779
-1.388
-1.956
-1.934
-1.879
-1.864
-1.748
-2.506
-1.413
-1.531
-1.990
-1.825
-1.426
-1.647
-1.530
-1.558
-1.563
-1.331
-1.378
-1.817
-1.375
-1.516
-1.000
-1.434
-1.229
-1.717
-1.227
-1.533
-1.311
-1.386
-1.216
-0.724
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213
218
223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338
343
348
353
358
363
368
373
378
383
388
393
398
403
408
413
418
423
428
433
438
443
449
453

3.86
4.26
4.34
3.83
4.06
3.96
4.02
4.08
4.13
4.21
3.89
3.93
4.16
4.00
4.09
4.29
4.39
4.17
4.19
3.83
4.23
3.83
4.12
4.32
4.09
4.13
4.16
4.24
4.29
4.19
4.18
4.36
4.20
4.18
4.07
4.02
4.19
4.36
4.13
4.21
4.43
4.20
4.16
4.49
4.31
4.19
4.17
4.52
4.17

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
65
67
68
70
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

-1.165
-1.586
-1.379
-1.327
-1.404
-1.503
-1.265
-1.413
-1.414
-2.154
-0.862
-2.047
-1.570
-1.312
-2.136
-1.694
-1.725
-1.464
-1.441
-1.729
-1.379
-1.388
-1.467
-1.447
-1.784
-1.746
-1.553
-2.040
-1.584
-2.094
-1.629
-1.730
-1.454
-1.705
-1.671
-1.785
-1.635
-1.879
-1.611
-1.484
-1.214
-1.954
-1.349
-1.501
-1.623
-1.848
-1.679
-1.453
-1.651
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458
463
468
473
478
483
488
493
498
503
508
513
518
523
528
533
538
543
548
553
563
568
573
578
583
588
593
598
602
603
604
606
610
612
613
614
616
618
620
622
623
624
626
628
630
632
633
634
636

4.33
4.09
4.27
4.22
4.16
4.34
4.29
4.18
3.93
4.15
4.28
4.40
4.34
4.14
4.14
4.43
4.16
4.14
4.31
4.31
4.35
4.43
4.39
4.37
4.65
4.72
4.16
4.84
4.52
4.55
4.35
4.25
4.76
4.22
4.66
4.11
4.48
4.43
4.33
4.29
4.40
4.17
4.29
4.22
4.47
4.43
4.35
4.49
4.70

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
138
143
148
153
158
163
168
173
178
183
188
193
198

-1.757
-1.385
-1.738
-1.473
-1.521
-1.475
-1.798
-1.949
-1.563
-1.842
-1.815
-1.794
-1.758
-1.378
-1.806
-1.931
-1.725
-1.588
-2.145
-1.510
-1.975
-1.979
-1.824
-1.569
-2.015
-1.925
-2.134
-2.053
-1.812
-1.629
-1.815
-1.797
-2.265
-1.962
-1.823
-1.856
-1.812
-1.542
-1.549
-1.583
-1.662
-1.790
-1.266
-1.528
-1.650
-1.589
-1.672
-1.553
-1.674
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638
640
642
643
644
646
648
650
652
653
654
656
658
660
662
663
664
666
668
670
672
673
674
676
678
680
682
683
684
686
688
692
693
694
696
698
700
702
703
704
706
708
710
712
713
714
716
718
720

4.41
4.42
4.66
4.40
4.16
4.32
4.16
4.39
4.11
4.08
4.61
4.29
3.93
3.94
4.57
3.80
3.91
3.99
3.74
4.20
3.81
3.86
4.13
4.09
3.89
4.38
3.90
3.95
4.17
3.91
4.00
3.92
3.73
3.84
4.03
4.18
3.94
3.99
4.05
3.76
3.80
3.90
3.87
3.82
3.83
3.67
3.90
3.70
3.70

203
208
213
218
223
228
233
238
243
248
253
258
263
268
273
278
283
288
293
298
303
308
313
318
323
328
333
338
343
348
353
358
363
368
373
378
383
388
393
398
403
408
413
418
423
428
433
438
443

-1.494
-1.657
-1.518
-1.536
-1.641
-1.590
-1.558
-1.147
-1.443
-1.315
-1.603
-1.511
-1.420
-1.547
-1.786
-1.765
-1.569
-1.423
-1.448
-1.355
-1.551
-1.161
-1.687
-2.002
-1.488
-1.467
-1.721
-1.806
-1.699
-1.763
-1.933
-1.591
-1.831
-1.642
-1.385
-1.285
-1.298
-1.801
-1.549
-1.658
-1.365
-1.584
-1.892
-1.576
-1.518
-1.517
-1.709
-1.719
-1.482
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722
723
724
726
728
730
732
733
734
736
738
740
742
743
744
746
748
750
752
753
754
756
758
760
762
763
764
766
768
770
772
773
774
776
780
782
783
783
784
786
788
790
792
793
794
796
798
800
802

3.66
3.93
3.78
3.71
3.94
3.49
3.55
3.57
3.92
3.80
4.01
3.72
3.76
3.41
3.67
3.50
3.41
3.61
3.74
3.34
3.38
3.53
3.55
3.71
3.54
3.63
3.41
3.53
3.32
3.66
3.54
3.39
3.34
3.21
3.41
3.65
3.15
3.48
3.34
3.70
3.44
3.56
3.57
3.47
3.57
3.51
3.29
3.45
3.42

449
453
458
463
468
473
478
483
488
493
498
503
508
513
518
523
528
533
538
543
548
553
557
563
568
573
578
583
588
593
598
602
603
604
606
608
610
612
613
614
616
618
620
622
623
626
628
630
632

-1.830
-1.757
-1.523
-1.592
-1.647
-1.562
-1.977
-1.700
-1.449
-1.461
-1.545
-1.460
-1.446
-1.558
-1.455
-1.473
-1.721
-1.523
-1.349
-1.617
-1.426
-1.403
-1.390
-1.032
-1.321
-1.359
-1.601
-1.203
-1.325
-1.516
-1.144
-0.958
-0.938
-0.906
-1.033
-1.177
-1.154
-0.990
-1.061
-0.784
-1.115
-0.931
-1.228
-0.760
-0.879
-1.095
-0.597
-1.003
-0.794
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803
804
806
808
810
812
813
814
816
818
820
822
823
824
826
828
830
832
833
834
836
838
840
842
843
844
846
848
850
852
853
854
856
858
860
862
863
864
866
868
870
872
873
874
876
878
880
882
883

3.14
3.60
3.51
3.40
3.40
3.62
3.56
3.61
3.57
3.63
3.58
3.74
3.42
3.74
3.34
3.39
3.86
3.62
3.37
3.26
3.42
3.18
3.38
3.47
3.33
3.37
3.24
3.49
3.33
3.57
3.56
3.60
3.43
3.69
3.48
3.19
3.49
3.22
3.26
3.44
3.48
3.63
3.60
3.51
3.52
3.55
3.54
3.48
3.56

633
634
636
638
640
642
643
644
646
648
650
652
653
654
656
658
660
662
663
664
666
668
670
672
673
674
676
678
683
688
693
698
703
708
713
716
718
720
722
723
724
728
730
732
733
734
738
740
742

-0.625
-0.675
-0.743
-0.710
-0.208
-0.322
-0.185
-0.253
-0.711
-0.246
-0.086
-0.278
-0.025
-0.252
-0.226
-0.411
-0.056
-0.262
-0.018
-0.155
-0.216
-0.310
-0.212
-0.419
-0.225
-0.134
-0.522
-0.291
-0.172
-0.174
-0.361
-0.448
-0.212
0.345
-0.011
-0.345
0.148
0.080
-0.074
0.102
0.104
0.239
-0.163
0.118
0.031
0.299
0.242
0.090
-0.164
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884
888
890
892
893
894
896
898
900
902
903
904
906
908
910
912
913
914
916
918
920
922
923
928
933
938
943
948
953

3.36
3.51
3.34
3.40
3.28
3.44
3.48
3.63
3.44
3.39
3.54
3.52
3.33
3.26
3.62
3.51
3.51
3.34
3.37
3.34
3.49
3.36
3.34
3.34
3.35
3.48
3.43
3.63
3.49

743
744
746
748
750
752
753
754
756
758
760
762
763
764
768
773
783
783
788
793
798
803
808
813
818
823
828
833
838
843
848
853
858
863
868
873
878
883
888
893
898
903
908
913
918
923
928
933
938

0.285
0.351

-0.306
-0.114
0.353
0.501
0.469
0.258
0.181
0.283
0.199
0.213
-0.062
-0.025
0.158
-0.065
0.001
-0.116
0.167
-0.030
0.003
-0.153
-0.009
0.103
-0.051
-0.121
0.151
-0.069
0.117
0.296
0.121
0.247
0.020
-0.205
-0.250
-0.052
-0.148
0.300
-0.069
-0.049
0.124
0.211
-0.162
-0.030
-0.015
-0.198
-0.129
-0.083
-0.006
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BJ8-03
70GGC

Depth (cm)
7.5
9.5
13.5
15.5
17.5
21.5
23.5
24.5
25.5
29.5
31.5
32.5
33.5
37.5
39.5
41.5
45.5
47.5
48.5
49.5
53.5
56.5
57.5
61.5
65.5
69.5
72.5
73.5
77.5
80.5
81.5
85.5
88.5
89.5
93.5
97.5
101.5
105.5
109.5
113.5
117.5

P.
obliquiloculata

Mg/Ca
(mmol/mol)

2.51
2.98
2.85
2.37
2.75
2.37
2.56
2.97
2.44
3.08
2.75
2.37
2.91
2.60
2.65
2.75
2.78
2.72
2.68
2.60
2.86
2.89
2.77
2.80
2.67
2.59
2.49
2.62
2.35
2.94
2.89
2.62
2.45
3.18
2.77
2.55
2.54
2.73
2.83
2.84
2.83

943
948
953

Depth
(cm)

7.5
8.5
13.5
21.5
29.5
15.5
23.5
24.5
31.5
32.5
37.5
39.5
45.5
47.5
48.5
53.5
56.5
61.5
69.5
72.5
77.5
80.5
85.5
88.5
93.5
101.5
109.5
125.5
133.5
136.5
141.5
144.5
149.5
152.5
157.5
160.5
165.5
168.5
173.5
181.5
189.5

-0.140
-0.365
0.046

S180

%o PDB

-2.168
-1.746
-1.992
-2.143
-1.987
-1.969
-1.953
-2.269
-2.172
-1.948
-2.365
-2.043
-2.291
-2.244
-2.137
-2.070
-1.869
-1.267
-2.025
-2.019
-2.210
-2.148
-2.053
-2.091
-1.923
-1.933
-1.724
-1.572
-2.028
-2.068
-1.854
-2.096
-1.912
-1.726
-2.153
-2.016
-2.124
-1.922
-1.939
-1.985
-2.083
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121.5
125.5
129.5
133.5
136.5
137.5
141.5
144.5
145.5
149.5
152.5
153.5
157.5
160.5
161.5
165.5
168.5
169.5
173.5
177.5
181.5
185.5
189.5
192.5
193.5
197.5
201.5
205.5
208.5
209.5
213.5
217.5
221.5
225.5
229.5
232.5
233.5
237.5
240.5
245.5
248.5
249.5
253.5
256.5
257.5
261.5
264.5
265.5
269.5

2.55
2.73
2.49
2.80
2.82
2.80
2.74
2.70
2.73
3.38
2.73
2.81
2.87
2.65
2.67
2.97
2.90
2.68
2.93
2.73
2.66
3.00
2.82
2.63
2.90
2.60
3.06
2.70
2.69
2.93
3.18
2.93
2.72
3.11
2.95
2.98
2.93
2.93
2.57
2.64
2.80
2.83
2.71
2.80
3.38
2.60
2.88
3.11
2.86

192.5
197.5
205.5
208.5
213.5
221.5
229.5
232.5
237.5
240.5
245.5
248.5
253.5
256.5
261.5
264.5
269.5
272.5
277.5
285.5
288.5
293.5
296.5
300.5
301.5
302.5
303.5
306.5
307.5
308.5
310.5
311.5
314.5
315.5
316.5
318.5
319.5
322.5
323.5
324.5
326.5
327.5
330.5
331.5
332.5
334.5
335.5
338.5
339.5

-1.848
-1.642
-1.989
-1.854
-2.036
-1.677
-1.999
-1.991
-1.735
-1.765
-2.102
-1.914
-1.962
-1.643
-1.864
-1.969
-2.125
-1.926
-2.064
-2.096
-1.889
-1.946
-1.803
-1.826
-2.008
-2.007
-1.791
-1.824
-1.715
-1.790
-1.609
-1.904
-1.682
-1.715
-1.699
-1.628
-1.891
-1.895
-1.829
-1.666
-2.090
-1.676
-1.814
-1.714
-1.718
-1.668
-1.684
-1.724
-1.456
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272.5
273.5
277.5
281.5
285.5
288.5
289.5
293.5
296.5
297.5
300.5
301.5
302.5
303.5
305

306.5
307.5
308.5
310.5
311.5
314.5
315.5
316.5
318.5
319.5
322.5
323.5
324.5
326.5
327.5
329.5
330.5
331.5
332.5
334.5
335.5
336.5
338.5
339.5
340.5
342.5
343.5
344.5
345.5
346.5
347.5
348.5
349.5
351.5

2.74
2.85
2.71
2.77
2.71
2.44
2.90
2.86
2.71
3.13
2.75
2.73
2.92
2.91
3.02
2.78
2.73
2.88
2.63
2.77
2.86
2.80
2.88
3.02
2.98
2.69
2.70
2.84
2.86
3.11
2.88
2.78
2.61
2.74
2.82
2.88
2.89
2.89
2.89
2.68
2.80
2.74
3.00
2.94
2.81
2.90
2.90
3.01
2.91

340.5
342.5
343.5
344.5
346.5
347.5
348.5
349.5
351.5
352.5
354.5
355.5
356.5
358.5
359.5
360.5
362.5
363.5
364.5
366.5
367.5
368.5
370.5
371.5
372.5
374.5
375.5
376.5
377.5
379.5
380.5
382.5
383.5
384.5
386.5
387.5
388.5
389.5
391.5
392.5
394.5
395.5
346.5
398.5
399.5
400.5
402.5
403.5
404.5

-1.388
-1.599
-1.520
-1.533
-1.520
-1.821
-1.418
-1.443
-1.782
-1.564
-1.256
-1.225
-0.805
-1.432
-1.122
-1.005
-1.042
-1.109
-1.037
-0.968
-0.840
-0.748
-0.645
-0.606
-0.605
-0.597
-0.510
-0.399
-0.613
-0.791
-0.683
-0.649
-0.769
-0.620
-0.559
-0.504
-0.476
-0.636
-0.516
-0.360
-0.450
-0.365
-0.439
-0.443
-0.352
-0.583
-0.459
-0.321
-0.545
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352.5 2.75
353.5 3.20
354.5 2.93
355.5 2.98
356.5 2.83
358.5 2.97
359.5 2.92
360.5 2.71
361.5 2.80
362.5 2.60
366.5 2.50
367.5 2.82
368.5 2.70
369.5 2.50
370.5 2.71
371.5 2.28
372.5 2.40
374.5 2.69
375.5 2.55
376.5 2.44
377.5 2.41
377.5 2.82
379.5 2.67
380.5 2.35
382.5 2.72
383.5 2.84
384.5 2.63
385.5 2.62
386.5 2.56
387.5 2.50
388.5 2.45
389.5 2.49
391.5 2.41
392.5 2.43
393.5 2.73
394.5 2.36
395.5 2.34
396.5 2.49
398.5 2.79
399.5 2.56
400.5 2.46
401.5 2.48
402.5 2.45
403.5 2.69
404.5 2.37
406.5 2.38

BJ8-03
23GGC G. ruber
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Depth (cm)
5.5
8.5

24.5
40.5
56.5
72.5
88.5

104.5
120.5
136.5
152.5
168.5
200.5
216.5
232.5
248.5
264.5
280.5
296.5
312.5
328.5
344.5
360.5
376.5
392.5
408.5

Mg/Ca
(mmol/mol)

4.78
4.38
4.46
4.68
4.68
4.56
4.48
4.58
4.71
4.69
4.58
4.43
4.50
4.57
4.55
4.80
4.66
4.67
4.61
4.69
5.11
4.70
4.57
4.87
4.69
4.60

Depth
(cm)
5.5
5.5
6.5
6.5
8.5
8.5
16.5
16.5
24.5
24.5
32.5
32.5
40.5
40.5
48.5
48.5
56.5
56.5
64.5
64.5
72.5
72.5
80.5
80.5
88.5
88.5
96.5
96.5
104.5
104.5
112.5
112.5
120.5
120.5
128.5
128.5
136.5
136.5
144.5
144.5
152.5
152.5
160.5
160.5
168.5
168.5
176.5

a180

%o PDB

-3.392
-3.477
-3.049
-3.149
-3.316
-3.281
-3.143
-3.154
-3.030
-2.915
-3.053
-3.142
-2.761
-2.901
-3.075
-3.217
-3.178
-3.058
-2.787
-3.025
-3.240
-3.188
-3.179
-3.275
-3.019
-3.031
-3.019
-3.141
-3.058
-3.108
-3.062
-3.232
-3.004
-3.270
-3.053
-2.710
-3.082
-3.238
-3.043
-3.047
-3.074
-3.412
-3.263
-3.409
-2.890
-2.883
-3.289
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176.5
184.5
184.5
192.5
192.5
200.5
200.5
208.5
208.5
216.5
216.5
224.5
224.5
232.5
232.5
240.5
240.5
248.5
248.5
256.5
256.5
264.5
264.5
272.5
272.5
280.5
280.5
288.5
288.5
296.5
296.5
304.5
304.5
312.5
312.5
324
324

328.5
328.5
336.5
336.5
344.5
344.5
352.5
352.5
360.5
360.5
368.5
368.5

-2.899
-2.868
-3.174
-3.216
-2.976
-2.996
-3.243
-3.184
-3.302
-2.888
-3.291
-3.363
-3.197
-3.228
-3.089
-2.941
-3.241
-3.196
-3.325
-3.294
-2.965
-2.988
-3.139
-3.346
-3.040
-3.172
-3.080
-3.023
-2.961
-3.098
-2.659
-3.068
-3.031
-3.150
-2.835
-2.832
-2.853
-2.941
-2.841
-2.895
-3.168
-3.017
-2.717
-2.827
-2.711
-2.953
-2.601
-3.120
-3.251
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BJ8-03
23GGC

Depth (cm)
16.5
24.5
32.5
40.5
48.5
56.5
64.5
72.5
80.5
88.5
96.5
104.5
120.5
128.5
144.5
152.5
160.5
168.5
176.5
184.5
192.5
200.5
208.5
216.5
224.5
232.5
240.5
248.5
264.5
272.5
280.5
288.5
296.5
304.5

P.
obliquiloculata

Mg/Ca
(mmol/mol)

2.95
2.93
2.66
2.45
2.97
2.60
2.59
2.67
2.79
2.79
2.72
2.76
2.61
2.64
2.78
2.69
2.89
2.63
2.82
3.27
2.66
2.77
2.63
2.68
2.71
2.90
2.82
2.72
2.80
2.54
2.89
2.82
2.69
2.74

376.5
376.5
384.5
384.5
392.5
392.5
400.5
400.5
408.5
408.5
416.5
416.5

Depth
(cm)
8.5

16.5
24.5
32.5
40.5
48.5
56.5
64.5
72.5
80.5
88.5
96.5

104.5
112.5
120.5
128.5
136.5
144.5
152.5
160.5
168.5
176.5
184.5
192.5
200.5
208.5
216.5
224.5
232.5
240.5
248.5
256.5
264.5
272.5

-2.676
-2.763
-2.779
-2.608
-2.617
-2.927
-2.603
-2.919
-2.398
-2.753
-2.498
-2.432

6180
/o PDB

-2.497
-2.394
-2.004
-2.268
-2.237
-2.088
-2.125
-2.492
-2.353
-2.418
-1.938
-2.028
-2.144
-2.119
-2.021
-1.958
-2.103
-2.023
-1.941
-2.060
-1.923
-1.905
-2.243
-1.966
-2.019
-2.014
-2.509
-2.128
-2.118
-2.162
-1.601
-2.206
-1.819
-2.206
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312.5
320.5
328.5
336.5
344.5
360.5
368.5
384.5
392.5
400.5
408.5
416.5

MD97-2141

Depth (cm)
0.5
20
40
60
80
100
121
140
144
145
151
155
160
165
170
180
200
220
250
260
290
299
320
329
340
349
360
371

2.90
2.93
3.91
2.99
2.61
2.67
2.69
2.78
2.78
2.96
2.86
3.16

P.
obliquiloculata

Mg/Ca
(mmol/mol)

2.32
2.24
2.30
2.58
2.65
2.55
2.86
2.87
2.87
2.76
2.53
2.45
2.38
2.56
2.66
2.80
2.68
2.55
2.24
2.99
2.35
2.46
2.66
2.29
2.53
2.02
2.16
2.33

280.5
288.5
296.5
304.5
312.5
328.5
336.5
344.5
352.5
360.5
368.5
376.5
384.5
392.5
400.5
408.5
416.5

Depth
(cm)

0.5
20
40
51
60
80
100
110
121
140
144
145
151
155
160
165
168
170
180
200
220
230
240
245
250
260
265
280

-2.759
-2.097
-2.091
-1.734
-1.754
-1.795
-1.985
-1.896
-1.772
-1.514
-1.897
-2.034
-1.448
-1.724
-1.346
-1.458
-1.355

8 180

%o PDB

-0.671
-1.533
-1.883
-1.623
-1.881
-1.427
-1.484
-1.361
-1.171
-0.896
-1.234
-1.148
-0.910
-0.978
-1.353
-1.204
-1.045
-1.091
-0.472
-0.560
-0.632
-1.462
-0.123
-0.290
-0.888
-0.367
-0.064
-1.426
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380
401
419
430
441
450
460

BJ8-03
136GGC

Depth (cm)
2.5
3.5
6.5
8.5
10.5
12.5
14.5
16.5
18.5
20.5
22.5
24.5
26.5
28.5
32.5
34.5
36.5
38.5
40.5
42.5
44.5
46.5
48.5
50.5
56.5
64.5
66.5
68.5
70.5
80.5

2.05
2.73
2.55
2.28
2.55
2.26
2.48

G. ruber
Mg/Ca

(mmol/mol)
4.94
4.66
5.59
4.54
4.47
5.26
4.83
4.49
4.55
4.67
4.88
4.70
4.52
4.65
4.66
4.70
4.61
4.32
4.76
4.62
4.85
4.60
4.62
4.76
4.57
4.43
4.62
4.67
4.41
4.49

290
299
320
329
340
349
360
371
380
401
419
430
441
450
460

Depth
(cm)
2.5
3.5
8.5
16.5
24.5
32.5
40.5
48.5
56.5
64.5
72.5
80.5
88.5
96.5
104.5
112.5
120.5
128.5
136.5
144.5
152.5
160.5
168.5
176.5
184.5
192.5
200.5
208.5
216.5
224.5

-0.248
-0.333
-0.921
-0.180
-0.248
-0.519
-0.292
-1.058
-1.173
-0.348
-0.488
-0.323
-0.463
-0.582
-2.210

6180
0/o0 PDB
-2.886
-2.939
-2.798
-2.825
-2.777
-2.851
-2.898
-2.636
-3.059
-2.885
-3.217
-3.253
-3.243
-2.821
-3.105
-3.118
-2.921
-3.045
-2.958
-3.229
-3.132
-2.986
-3.283
-3.157
-2.762
-2.736
-2.404
-2.378
-2.174
-1.432
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88.5
96.5
104.5
112.5
120.5
128.5
132.5
134.5
136.5
138.5
140.5
142.5
144.5
146.5
148.5
150.5
152.5
154.5
156.5
158.5
160.5
162.5
164.5
166.5
168.5
170.5
172.5
174.5
176.5
178.5
180.5
182.5
184.5
186.5
188.5
190.5
192.5
194.5
196.5
198.5
200.5
202.5
204.5
206.5
208.5
210.5
212.5
216.5
218.5

4.76
4.29
4.65
4.19
4.68
4.34
4.45
4.49
3.95
4.64
4.50
4.50
4.74
4.55
4.35
4.51
4.53
4.73
4.30
4.50
4.38
4.55
4.44
4.40
4.34
4.21
4.87
4.62
4.26
4.86
4.81
4.49
4.98
4.62
4.72
4.61
4.36
4.21
4.42
4.08
4.62
4.20
4.47
4.14
4.33
4.44
4.63
4.21
4.30

232.5
240.5
248.5
256.5
264.5
272.5
280.5
288.5
296.5
304.5
312.5
320.5
328.5
336.5
344.5
352.5
360.5
368.5
376.5
384.5
392.5
400.5

-2.093
-1.712
-1.502
-1.363
-1.524
-1.461
-1.719
-1.590
-2.050
-1.744
-1.625
-1.736
-1.809
-1.694
-1.643
-1.490
-1.695
-1.917
-1.562
-1.442
-1.263
-1.991
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220.5
222.5
226.5
228.5
230.5
232.5
234.5
236.5
238.5
240.5
242.5
244.5
246.5
250.5
252.5
256.5
264.5
272.5
280.5
286.5
296.5
304.5
312.5
320.5
328.5
336.5
344.5
352.5
360.5
368.5
376.5
384.5
392.5
400.5

BJ8-03
136GGC

Depth (cm)
2.5
3.5

14.5
18.5
20.5
22.5
34.5
38.5
40.5
56.5
64.5

3.89
4.10
4.06
4.08
4.11
3.98
4.18
4.11
3.91
3.87
3.75
3.67
3.58
4.03
3.84
3.81
3.71
3.78
3.48
3.45
3.57
3.44
3.64
3.66
3.34
3.69
3.63
3.50
3.76
3.56
3.39
3.43
3.31
3.10

P.
obliquiloculata

Mg/Ca
(mmol/mol)

3.47
2.98
2.54
2.61
2.43
2.52
2.47
2.70
2.65
3.07
3.09

Depth
(cm)
3.5
8.5

16.5
18.5
20.5
22.5
24.5
32.5
34.5
38.5
40.5

6180

0/o0 PDB

-2.286
-2.313
-2.443
-2.591
-2.592
-2.315
-2.247
-2.093
-2.429
-2.563
-2.032
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66.5
68.5
70.5
72.5
80.5
88.5
96.5

104.5
136.5
144.5
152.5
160.5
168.5
184.5
188.5
190.5
194.5
196.5
198.5
202.5
204.5
206.5
208.5
210.5
212.5
214.5
216.5
218.5
220.5
222.5
224.5
226.5
228.5
230.5
232.5
234.5
236.5
242.5
244.5
246.5
248.5
250.5
252.5
254.5
258.5
258.5
260.5
262.5
264.5

2.54
2.61
2.82
2.66
2.60
2.70
2.75
2.85
2.82
3.05
3.09
3.29
3.22
2.73
2.64
2.97
2.46
2.30
2.40
3.09
2.72
2.58
2.71
2.71
2.65
2.71
2.94
2.51
2.39
2.57
3.09
2.05
2.46
2.45
2.74
2.27
2.26
2.54
2.33
2.34
2.55
2.50
2.89
2.43
2.32
2.13
2.75
2.29
2.28

48.5
56.5
64.5
68.5
70.5
72.5
80.5
88.5
96.5
104.5
112.5
120.5
128.5
136.5
144.5
152.5
160.5
168.5
176.5
188.5
190.5
192.5
196.5
198.5
200.5
202.5
204.5
206.5
208.5
210.5
212.5
214.5
216.5
218.5
220.5
222.5
224.5
226.5
228.5
230.5
234.5
236.5
240.5
242.5
244.5
246.5
248.5
250.5
252.5

-1.947
-2.064
-2.065
-2.526
-2.113
-2.189
-1.827
-1.509
-1.805
-2.319
-2.190
-2.100
-1.818
-1.406
-1.684
-2.264
-1.501
-2.298
-2.063
-2.254
-1.916
-1.440
-1.353
-1.315
-1.925
-1.424
-1.420
-1.342
-1.586
-0.863
-1.727
-1.408
-0.998
-0.625
-0.533
-1.547
-0.731
-1.137
-1.715
-1.538
-1.026
-0.631
-0.230
-0.383
-0.057
-0.276
0.026
-0.417
0.029
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266.5
268.5

2.57
2.47

254.5
256.5
258.5
260.5
262.5
264.5
266.5
268.5
272.5

-0.395
0.204
-0.190
-0.162
0.235
0.127
-0.322
-0.019
-0.009
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