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Hydroclimate variability of the Indian monsoon during contemporary and mid-Holocene

periods

Thesis directed by Dr. Rajagopalan Balaji

Although model projections suggest an intensified Indian summer monsoon under a

warmer climate, the monsoon has remained below average in recent decades despite strong

warming trends. An understanding of Indian summer monsoon variability in past climate

might provide clues for the future. Paleoclimate proxies suggest that parts of India were

wetter during the early- to mid-Holocene period (∼ 10 to 6 thousand years ago, ka), a

period that was warmer than present day due to increased summer insolation. Enhanced

wetness has been attributed to land heating, a key ingredient of a strong summer mon-

soon. Recent paleoclimate proxy evidence, however, suggests that the tropical Pacific was

in a cooler (La Niña) state, which guarantees a strong monsoon in present day. This thesis

advances the hypothesis that the El Niño Southern Oscillation (ENSO) could explain the

aridification of India since 10 ka. To test this hypothesis, modern-day spatial and temporal

monsoon-ENSO teleconnections are used to reconstruct Holocene Indian monsoon hydro-

climate variability. Specifically, this dissertation asks: (1) What is the present day signature

of ENSO on the Indian summer monsoon?; (2) Could the wet mid-Holocene India be ex-

plained by teleconnections from a cooler Pacific?; and (3) How much wetter was it during the

early- to mid-Holocene? Some key findings include: (1) present-day ENSO writes a distinct

spatial signature over India whereby a 1◦C cooling of the equatorial Pacific can contribute

30-100% greater monsoon precipitation; (2) maximum cold sea surface temperatures (SSTs)

and zonal wind anomalies occurred at 10 ka across the equatorial Pacific, and maximum

zonal SST differences at 10 and 6 ka, as revealed by a multi-proxy reduced dimension field

reconstruction; (3) maximum winds and 40-60% greater precipitation over the core monsoon
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region occurred at 10 ka, which have both decreased to present day; and (4) lakes in the

northwestern region of India, which is currently desert, would require 40-65% greater pre-

cipitation than present day, based on the results of a hydrological water balance lake model.

These findings provide the basis for research extensions that have the potential to improve

seasonal monsoon forecasting efforts and to provide mechanistic insights into future monsoon

variability.
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Chapter 1

Introduction

Abstract

Paleo-proxies that reconstruct temperature, precipitation, and winds across the mon-

soonal region suggest that the early- to mid-Holocene (∼ 10 to 6 thousand years ago, ka)

India was wetter than present day. The paleo evidence in support of a wetter India during

this period includes, but is not limited to: (1) sediment records that suggest the existence

of lakes in present-day northwestern desert of India; (2) marine isotope records that imply

lower salinity at the mouths of India’s major river systems (Ganges, Godavari, Indus Valley),

and thus, greater precipitation over their respective basins; (3) cave speleothems in Oman

and Yemen that reconstruct enhanced precipitation, and; (4) biological productivity records

from the western Arabian Sea that suggest greater upwelling and stronger monsoon winds

during this time.

The predominantly cited hypothesis suggests that greater insolation during summer

months, due to the precessional cycle, warmed the Indian subcontinent, which strengthened

the land-ocean temperature gradient and enhanced monsoon precipitation. This dissertation

investigates the plausibility of an alternative hypothesis: teleconnections from an enhanced

La Niña-like sea surface temperatures (SSTs) in the tropical Pacific helped maintain wetter

conditions over India.

To test whether the Pacific could write a wetter signature on the Indian subcontinent

during the early- to mid-Holocene, this collection of studies was designed to: (1) define the
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present day signature of the El Niño Southern Oscillation (ENSO) on the Indian summer

monsoon, (2) use modern day patterns of variability, along with paleo-proxy SST records,

to reconstruct full fields of early- to mid-Holocene tropical Pacific SSTs and zonal winds,

(3) use paleo-proxy SST records from across the Indo-Pacific region to reconstruct fields of

summer winds over the monsoon region and Indian rainfall, and (4) build a hydrological lake

model to quantitatively assess how much rain was necessary to fill lakes in the northwestern

India during the early- to mid-Holocene time.

1.1 The Indian Summer Monsoon

Each year, the majority of India receives upward of 70% of its annual average precipi-

tation from the Indian summer monsoon, which is most active from the months of June to

September (Figure 1.1). Low thermal heat capacity of land, as compared to that of water,

creates a large temperature difference between India and the surrounding ocean. Hot air rises

and develops a low pressure zone over the Indian subcontinent that contrasts high pressure

over the southern Indian Ocean. This sets up a system of surface-level moist winds blowing

off the Indian Ocean. These winds, which constitute what is known as the Somali Jet (or

monsoon jet), originate as southeasterlies in the southern Hemisphere, but upon crossing

the equator, are deflected by the Coriolis effect and become south-westerlies that follow the

African coastline northward to Oman and cross the Arabian Sea toward India. The produc-

tivity of the monsoon each year has been shown to be tied to the strength of these winds,

which are typically modulated by two main mechanisms: (1) the intensity of land-warming

during the pre-monsoon months; and (2) teleconnections from the tropical Pacific.

Temperatures over the Himalayan-Eurasian region during the spring have been shown

to play an important role in the strength of the monsoon. Specifically, heating of the at-

mosphere over Tibet strengthens the land-ocean temperature gradient, allowing for stronger

winds and greater convection over the Indian subcontinent (e.g. Flohn, 1957, 1968; Yanai

et al., 1992; Yanai and Wu, 2006). Although some studies have minimized the role of heating
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Figure 1.1: Percentage of total annual rainfall (averaged from 1901-2004 from Rajeevan et al.
(2006)) that India receives between the months of June and September.

over Tibet (e.g. Boos and Emanuel, 2009; Boos and Kuang, 2010), Rajagopalan and Mol-

nar (2013) show that heating does correlate with early and late monsoon rainfall, which

constitutes as much as 30% of total monsoon rainfall.

An earlier study by Walker (1928) noted a reduction in strength of monsoon winds

during anomalously high pressure over the western equatorial Pacific (El Niño conditions).

Many studies since then have corroborated this dynamical link, or “teleconnection,” between

ENSO and the South Asian monsoon (e.g. Krishna Kumar et al., 1995; Parthasarathy and

Pant, 1985; Shukla, 1987; Shukla and Paolino, 1983; Webster , 1987; Webster et al., 1998),

in that a cooler eastern equatorial Pacific (La Niña conditions) favors a strong monsoon

but a warmer Pacific (El Niño conditions) favors a weak monsoon. Under normal Pacific
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SST conditions, the eastern equatorial Pacific off the coast of Peru is cooler than the western

equatorial Pacific near the Maritime Continent. The Pacific portion of the Walker Circulation

consists of low-level easterlies and upper-level westerlies that are connected by a zone of

subsidence and high pressure over the cooler SSTs in the east, and a zone of convection and

low pressure over the warmer SSTs in the west. This zone of ascent over the western Pacific

leads to compensating descent over the western Indian Ocean as well. India lies on the

margin of the western Pacific zone of convection and can be affected by shifts in this large

circulation cell. During La Niña, the zone of convection shifts westward, as does the zone of

descent over the Indian Ocean and this, favors a strong monsoon. During El Niño events,

however, the Walker Circulation shifts eastward, which shifts the zone of descent over the

Indian subcontinent. Subsiding air inhibits convection and weakens the monsoon.

Krishna Kumar et al. (2006) note an asymmetry in the monsoon-ENSO teleconnection:

although La Niña conditions guarantee a strong monsoon, El Niño conditions do not always

guarantee drought. This can be observed by a simple scatterplot (Figure 1.2) of June-

September (JJAS) All-India Summer Monsoon Rainfall (AISMR), a country-wide average

rainfall dataset (Sontakke et al., 1993), versus anomalous sea surface temperatures (SSTs) in

the NINO3.4 region (Kaplan et al., 1998). Note that from 1901-2012, drought ocurred during

La Niña (NINO3.4 ≤ -0.75) only once. During El Niño years (NINO3.4 ≥ +0.75), however,

monsoon rainfall is usually below (AISMR ≤ -1) or at normal levels, but can also be above

(AISMR ≥ +1). Krishna Kumar et al. (2006) attribute this asymmetry to the location of the

locus of ascent in the equatorial Pacific. When El Niño-related warming is concentrated in

the central Pacific, the zone of descent falls directly over India, which competes with normal

monsoon convection and weakens the monsoon. If the warming, however, is concentrated in

the eastern equatorial Pacific, the zone of ascent moves sufficiently eastward, as does the zone

of descent over the monsoon region. In this case, the eastward shift of the zone of descent

away from India allows normal convection over India and normal rainfall levels despite the

existence of an El Niño.
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Figure 1.2: Plot of 1901-2012 standardized, All-India Summer Monsoon Rainfall (AISMR)
anomalies and NINO3.4 SST anomalies for June to September (JJAS). Severe monsoon
drought (JJAS AISMR ≤ -1), regardless of NINO3.4 index, is shown in red. Remaining La
Niñas (NINO3.4 ≤ -0.75) and El Ninos (NINO3.4 ≥ +0.75) are shown in blue, and gold,
respectively. AISMR and NINO3.4 anomalies are obtained from (Sontakke et al., 1993) and
(Kaplan et al., 1998), respectively. This figure is adapted from Figure 1 of Krishna Kumar
et al. (2006).

Under a warmer climate, model projections show increased monsoon rainfall for the

upcoming century (e.g. Hsu et al., 2013; Islam et al., 2013; Jourdain et al., 2013; Sperber

et al., 2013; Zhou et al., 2009), but show difficulty in simulating the monsoon realistically.

Additionally, simulations disagree on how ENSO will respond to a warming climate with some

favoring a weakened zonal gradient and more El Niño-like SSTs (e.g. Vecchi et al., 2006),

but others favoring the opposite (.e.g Cane et al., 1997; Clement et al., 1996). Observations

of surface temperature and monsoon rainfall over the late 20th century reveal that despite
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strong warming trends, the Indian summer monsoon has weakened (Krishna Kumar et al.,

2011). Therefore, although it is generally agreed upon that both land-warming and ENSO

would be affected by future climate warming, the way in which each would respond and

interact with the monsoon is still debated.

1.2 Early- to Mid-Holocene India

To look at how the monsoon responded to warming in the past, this dissertation focuses

on the early- to mid-Holocene period (∼10 to 6 thousand years ago, ka) during which the

northern hemisphere was presumably warmer due to greater summer insolation as a result

of the precessional cycle. Precession, one of the Milankovitch Cycles, is the slow change

in the orientation of the Earth’s axis with a 23,000 year periodicity. Today, in its slightly

asymmetric elliptical orbit, Earth is closest to the sun (“at perihelion”) during northern

hemisphere winter and farthest from the sun (“at aphelion”) during northern hemisphere

summer. At 9 ka, however, northern hemisphere summer occured at perihelion, providing

an additional 8% (∼40 W m-2) greater summer insolation to latitudes around 30◦N (Berger

and Loutre, 1991), which aligns with the northern part of India.

Continental and marine climate proxies from the monsoonal region that span the past

10,000 years provide evidence that suggests aridification associated with a weakening of the

Indian summer monsoon since the early- to mid-Holocene. These proxy records include

pollen, lake level, precipitation, discharge, salinity, and biological productivity reconstruc-

tions that are scattered from Oman to the Bay of Bengal (Figure 1.3). Cave speleothems

from the Hoti Cave (Neff et al., 2001; Fleitmann et al., 2007), Qunf Cave (Fleitmann et al.,

2003, 2007) and Defore Cave (Fleitmann et al., 2007) in Oman imply greater precipitation

during the early Holocene than present day. These align with the timing of records from the

western Arabian Sea that measure upwelling through biological productivity and thus, imply

wind strength (Gupta et al., 2003; Ivanochko et al., 2005). In conjunction with speleothems,

these records suggest a stronger Somali jet during early- to mid-Holocene time, and thus, a
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stronger Indian monsoon.

On the Indian subcontinent, many studies have identified dry lake beds in the north-

western desert region of India (see blue dots on 1.3) that have been dated back to the early-

to mid-Holocene (Achyuthan et al., 2007; Bryson and Swain, 1981; Deotare et al., 2004; Enzel

et al., 1999; Kajale and Deotare, 1997; Swain et al., 1983; Singh et al., 1972, 1973, 1974, 1990;

Prasad et al., 1997; Wasson et al., 1984). Additionally, marine records from the Arabian Sea

(63KA and 3268G5 on 1.3) and the Bay of Bengal (16A and 126KL on 1.3) are strategically

located at the mouths of India’s largest rivers, and suggest greater river discharge during the
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Figure 1.3: This map provides a partial summary of the locations of different types of proxy
records that have been reconstructed through the past 10 ka, and suggest enhanced wetness
over India during the early- to mid-Holocene and aridification during the late Holocene. This
figure and these proxies are described further in Chapter 4.
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early- to mid-Holocene (Kudrass et al., 2001; Ponton et al., 2012; Staubwasser et al., 2003;

Sarkar et al., 2000). These records are discussed in further detail in Chapter 4.

1.3 Hypotheses of Holocene Monsoon Variability

The early- to mid-Holocene wetness has primarily been explained as being a conse-

quence of a stronger land-ocean temperature gradient. The logic follows that due to in-

creased summer insolation the continent was warmer during the pre-monsoon than it is

during present day,. GCM simulations have displayed this mechnism (e.g. Kutzbach, 1981;

Kutzbach and Otto-Bliesner , 1982; Liu et al., 2000, 2003): greater heating of the Indian

subcontinent creates a stronger land-ocean temperature and pressure gradient, which results

in a stronger monsoon.

In the recent period, however, strong warming trends have been observed over India,

but the Indian monsoon has remained remained below average (Krishna Kumar et al., 2011),

which suggests that other mechanisms are important.

This dissertation advances an alternative hypothesis to explain a wetter India during

the early- to mid-Holocene. Recall that in present day, La Niñas almost guarantee a strong

monsoon. Recent marine records from the equatorial Pacific that reconstruct past SSTs have

suggested a shift from a more La Nina-like state during the early- to mid-Holocene to a more

El Nino-like state during the late Holocene (e.g. Conroy et al., 2008; Koutavas et al., 2002,

2006; Leduc et al., 2007, 2010; Pahnke et al., 2007; Stott et al., 2002, 2004). In addition,

sediment records from Ecuador and Peru suggest a return of ENSO variability after the

mid-Holocene (e.g. Chazen et al., 2009; Moy et al., 2002; Riedinger et al., 2002; Rein et al.,

2005; Rodbell et al., 1999; Sandweiss et al., 1996, 2001). With the contemporary relation-

ship between a cooler Pacific and a strong Indian monsoon, combined with the paleo-proxy

evidence of a cooler Pacific during the mid-Holocene, this dissertation seeks to investigate

whether teleconnections from the tropical Pacific could explain the increased wetness over

India during the early- to mid-Holocene.
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1.4 Motivating Research Questions

The overarching goal of this dissertation is use the present-day relationship between

Pacific SSTs and the Indian summer monsoon, in order to reconstruct ENSO variability and

monsoon hydro-climate fields during the previous 10 ka. Specifically, I ask:

(1) In present day, what spatial signature does ENSO write on the Indian summer

monsoon, and how does this signature shift sub-seasonally? (Chapter 2)

(2) What were the dominant spatial patterns of SSTs and zonal winds across the equa-

torial Pacific throughout the past 10,000 years? (Chapter 3)

(3) Could the wetter early- to mid-Holocene over the Indian subcontinent be a result of

teleconnections from a cooler equatorial Pacific? If so, how big of a signal could the

tropical Pacific write on rainfall spatially over India? (Chapter 4)

(4) What magnitude of precipitation increase is necessary to sustain lakes in northwest

India during the early- to mid-Holocene? (Chapter 5)

1.5 Dissertation Research Plan

In Sub-Seasonal Variations in Spatial Signatures of ENSO on the Indian Summer Mon-

soon from 1901-2009 (Chapter 2), a high-resolution (1◦ by 1◦) daily gridded dataset along

with monthly SST anomalies from the NINO3.4 region (120◦W - 170◦W and 5◦S-5◦N) is

used to investige the present-day role of Pacific SSTs on the Indian summer monsoon over

the full peak season (June, July, August and September), as well as over three sub-seasons:

early (June), middle (July and August), and late (September). In addition to highlighting

the evolution of the ENSO-monsoon relationship throughout the monsoon season, this study

also addresses asymmetries between the respective signatures of La Niña and El Niño on the

Indian summer monsoon.
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The next two chapters exploit paleo-SST proxy records from the Indo-Pacific region

in reduced-dimension reconstruction methodologies that recreate annual Pacific SST, Indo-

Pacific summer winds, and Indian summer monsoon rainfall fields over the past 10 ka. In

Multi-Proxy Reconstruction of the Equatorial Pacific SST and Zonal Wind Fields of the past

10,000 Years using Mg/Ca and Alkenone Records (Chapter 3), I use sparsely distributed SST

proxy records from the western and eastern equatorial Pacific to reconstruct the dominant

patterns of variability in 1,000-year snapshots for the past 10 ka. Two slightly different

reduced-dimension reconstruction methodologies are used: a Principal Component Analysis

(PCA)-based method to reconstruct SSTs and a Canonical Correlation Analysis (CCA)-

based method for reconstructing zonal winds. The significance of this study is two-fold, in

that it allows us to: (1) identify the patterns common across the multi-proxy field to make

sense of seemingly contradictory proxy records, and (2) make inferences about the central

Pacific, which would otherwise be impossible as there are no existing proxy records covering

the early- to mid-Holocene from that region.

Multi-Proxy Reconstruction of Indian Summer Monsoon Winds and Precipitation of

the past 10,000 Years using Mg/Ca and Alkenone Records (Chapter 4), makes use of the

same proxy SST records from Chapter 3 along with others from the Arabian Sea and Bay

of Bengal, to obtain spatial coverage of the entire Indo-Pacific. Using a similar CCA-based

reconstruction method, we reconstruct the fields of summer wind stress curl over the Arabian

Sea, and Indian summer monsoon rainfall. We quantify the percentage increase in mean daily

summer monsoon rainfall for various regions of India, and compare those to paleoclimatic

evidence that extends across the subcontinent. This reconstruction allows us to test the

hypothesis that cooling of the tropical Pacific could have been responsible for a wetter early-

to mid-Holocene India.

An Assessment of the Mean Annual Precipitation Needed to Sustain Lake Sambhar in

Rajasthan, India during Mid-Holocene Time (Chapter 5), shifts the focus to a single location

in Rajasthan, a region of northwestern India that is desert in present day. Sedimentology
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studies that date isotopes from dry lakebeds of this region suggest that most of these were full

to some extent during early- to mid-Holocene. Pollen reconstructions also suggest a vastly

different vegetation regime, citing the presence of plant species that require more water than

the present day annual average of Rajasthan. Lake Sambhar is a closed-basin lake in this

region that fills only slightly during the monsoon season, but remains dry for the rest of the

year. This lake bed, however, provides a unique opportunity to hydrologically model how

much excess precipitation is necessary to keep this lake full. In this chapter, I build a lake

model built on the principles of a water-balance, that runs on a daily timescale and provides

quantitative bounds on the amount of precipitation necessary to keep this lake full during

the early- to mid-Holocene.

Lastly, Chapter 6 provides a summary of the key findings of this dissertation.



Chapter 2

Sub-Seasonal Variations in Spatial Signatures of ENSO on the Indian Summer
Monsoon from 1901-2009

Abstract Correlations of 1◦ by 1◦ seasonal rainfall with Pacific sea-surface temper-

atures (SSTs) reveal spatially distinct teleconnections between El Niño-Southern Oscillation

(ENSO) and Indian summer monsoon rainfall over the full monsoon season, as well as three

sub-seasons. Over the full season (June-September), Pacific SSTs correlate with rainfall in

western India more than that in eastern India. This spatial signature shifts as the mon-

soon progresses through early (June), middle or peak (July-August) and late (September)

sub-seasons. Specifically, a 1◦C cooling of the central equatorial Pacific (i.e. La Niña con-

ditions) can result in: ∼ 70-100% increase in precipitation in north-central Indian and the

Indo-Gangetic Plains during the early season, ∼ 30-80% increase in peak season precipita-

tion in south-central India, and northwestern Rajasthan, and ∼ 60-100% increase in late

season precipitation in northern, north-western, and central India. Furthermore, the spatial

signatures between La Niña and El Niño are asymmetric in that for a particular location, the

enhancement and suppression of rainfall associated with La Niña and El Niño conditions,

respectively, are not equal. El Niño suppresses peak season rainfall in the south-central

and northwestern Rajasthan regions more than La Niña enhances it, but, the opposite oc-

curs during the late-season in northern, northwestern, and central India. Additionally, the

correspondence of minima (maxima) in anomalies of velocity potential aloft with maxima

(minima) at 925 mb and with positive (negative) surface pressure anomalies suggest that
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anomalous subsidence (ascent) occurs in July, August, and September during El Niño (La

Niña) times. In the early season, however, patterns of velocity potential composites suggest

a region of descent (ascent) over the western equatorial Indian Ocean, along with a region of

ascent (descent) over the Indian subcontinent that exists only during the early season, but

not during the peak or late season. These patterns are consistent with the hypothesis that

local Hadley cell circulation affects pressure, and thus, rainfall during the early season, but

that a larger scale mechanism, such as eastward or westward shifts in the Walker circulation,

may be more responsible for teleconnections seen throughout the remainder of the season.

These findings indicate that focusing monsoon forecasting efforts on these regions and on

sub-seasonal periods while incorporating ENSO asymmetries will yield useful and skillful

regional forecasts, compared to the declining utility and skill of All-India summer monsoon

rainfall (AISMR).

2.1 Background

The El Niño Southern Oscillation (ENSO), which manifests as recurring variations of

sea-surface temperatures in the equatorial Pacific, is one of the main sources of regional

climate variability around the world and plays a major role in predictions of monsoonal

rainfall over India (e.g. Shukla and Mooley, 1987; Webster et al., 1998). During normal

conditions, the eastern equatorial Pacific is cool and the western equatorial Pacific is warm.

During the cold phase of ENSO (La Niña) the western warm pool warms by a small amount,

and the eastern cold tongue extends westward, resulting in an enhanced zonal temperature

gradient across the equatorial Pacific. Due to this modest change in SSTs, La Niña is often

considered an enhancement of normal conditions, which includes not only a strengthened

Walker circulation but also stronger south Asian monsoonal rainfall. During the warm phase

of ENSO (El Niño), anomalously warm water extends into the central Pacific, and into the

eastern Pacific as well during major El Niño events. Moreover, during El Niño events the

locus of rainfall and ascent through the troposphere moves eastward.
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Since Walker (1924, 1928) first recognized the relationship between El Niño (La Niña)

and weak (strong) Indian monsoon rainfall, a number of hypotheses responsible for this

teleconnection have been proposed. During El Niño years, ascent in the eastern equatorial

Pacific Ocean is enhanced and that over the western equatorial Pacific and Southeast Asia

is reduced, which has been shown by numerical stimulations (Keshavamurty, 1982; Palmer

et al., 1992; Shukla and Wallace, 1983; Soman and Slingo, 1997). The entire Walker Circu-

lation, with ascent over the Maritime Continent, and descent over the central Pacific and

the western Indian Ocean, shifts eastward during El Niño, and slightly westward during La

Niña. This has led to the widely cited hypothesis that during El Niño the descending branch

of the Walker circulation over the western Indian Ocean shifts eastward to overlie the Indian

subcontinent, which helps suppress monsoon rainfall during the warm ENSO phase (e.g.

Krishna Kumar et al., 1999, 2006; Palmer et al., 1992).

Others have argued that the descending branch of the Walker circulation does not

directly suppress monsoon rainfall during El Niño, but rather that the shifted Walker cir-

culation enhances local Hadley cell descent over the Indian subcontinent and the Indian

Ocean to its south (e.g. Goswami, 1998; Ju and Slingo, 1995; Lau and Wu, 2001; Slingo

and Annamalai, 2000). Goswami (1998) note that under normal Pacific SST conditions, the

descending branch of the Walker circulation sits over the Indian Ocean, which limits convec-

tion from the equator and allows the ITCZ to overlie land for the majority of the monsoon

season. Anomalous warming of the eastern Pacific during El Niño shifts the ascending and

descending branches of the Walker circulation so that warming occurs over the equatorial

Indian Ocean. It is postulated that this enhances low-level convergence, and thus precipi-

tation, over the equatorial warm waters of the Indian Ocean, and consequently, enhanced

subsidence from the descending branch of the Hadley cell (and, thus, lower precipitation)

occurs over the Indian subcontinent.

As an added nuance to this hypothesis, Soman and Slingo (1997) highlight the impor-

tance of the western equatorial Pacific. During La Niña events, modulation of the Walker
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circulation is not the dominant mechanism responsible for a stronger monsoon; instead

warm, western equatorial Pacific SST anomalies enhance the northward transition of a land-

based ITCZ, which results in earlier monsoon onset and stronger rainfall. During El Niño

events, modulation of the Walker circulation is the dominant mechanism for weaker mon-

soons. They add, however, that cooler, western equatorial Pacific SST anomalies delay the

northward transition of the ITCZ over India, which, in addition to modulation of the Walker

circulation, results in a generally weaker monsoon. In fact, Soman and Slingo (1997) note

that, despite being an El Niño year, the 1994 Indian monsoon maintained high rainfall due

to anomalous warming in the western equatorial Pacific.

Despite disagreement over the mechanism responsible, there exists a distinct asymme-

try in the response of mean south Asian monsoon rainfall to equatorial Pacific sea surface

temperatures (SSTs): although La Niña SSTs, which are atypically cool in the central Pa-

cific, consistently imply a strong monsoon, El Niño SSTs, which are atypically warm in the

central and east Pacific, do not assure a weak monsoon (Krishna Kumar et al., 2006). As

shown by the scatterplot (Figure 2.1a) of average monsoon-season (Jun-Sep) All-India Sum-

mer Monsoon Rainfall (AISMR) anomalies versus the widely used NINO3.4 index for ENSO

(average SSTs in the 120◦W-170◦W and 5◦N-5◦S region), for a cooler NINO3.4 index (i.e.

La Niña conditions), rainfall is consistently higher than normal, and variability is relatively

small (σ2 = 0.45). For a warm NINO3.4 index (i.e. El Niño conditions), however, rainfall is

sometimes low, but sometimes normal or even above-normal, maintaining greater variability

(σ2 = 1.04) than during La Niña. Ihara et al. (2008c) attribute the asymmetry to the tim-

ing of the evolution of warm SSTs in the eastern Pacific. They found that when warming

begins to evolve in the spring prior to the monsoon season, the western-central Pacific and

Indian Oceans remain cold and AISMR is below-average, but if the warming begins in the

winter prior to the monsoon season, the western and central Pacific are warmer than normal

during the monsoon, and AISMR can be normal. In addition to the AISMR dataset, the

asymmetry between La Niña and El Niño monsoon rainfall has been demonstrated over five
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Figure 2.1: Scatterplots of NINO3.4 anomalies with AISMR standardized total rainfall
anomalies for the (a) full, (b) early, (c) middle and (d) late seasons. The blue line plots
the SMA regression trend through the points. The correlation between the two time series is
marked in red in the upper right corner of each plot. NINO3.4 SST anomalies are provided
from Kaplan et al. (1998). Standardized AISMR anomalies are created by subtracting the
mean, µ, from the AISMR time series and dividing by the standard deviation, σ, for each of
the four season definitions (µa = 8432 mm, σa = 810 mm; µb = 1600 mm, σb = 354 mm; µc =
5139 mm, σc = 531 mm; µa = 1692 mm, σa = 363 mm). The variance of rainfall associated
with strong La Niñas (scaled NINO3.4 ≤ -0.75) and strong El Niños (scaled NINO3.4 ≥
0.75) is displayed on the lower left and right sides, respectively, of the sub-plots.

homogeneous rainfall regions (e.g. northwest, west-central, central-northeast, northeast, and

peninsular) of India for the full monsoon season (Parthasarathy et al., 1994).

Krishna Kumar et al. (2006) found that monsoonal rainfall during El Niño has a strong

dependence on the location of anomalous warming, whether it extends into the east, or is
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confined to the central part of the Pacific. The latter is sometimes referred to as an “El Niño

modoki” event (Ashok et al., 2007; Ashok and Yamagata, 2009; Weng et al., 2007; Ratnam

et al., 2010). Subsidence over India inhibits monsoonal rainfall most when El Niño warming

is concentrated in the central equatorial Pacific (Krishna Kumar et al., 2006), as has been

shown to be the cause of the 2009 failure in the Indian summer monsoon (Ratnam et al.,

2010). Keeping these asymmetries in mind, we consider how both the warm and cold phases

of ENSO manifest as spatially and sub-seasonally distinct rainfall patterns over India.

Analyses of the monsoon-ENSO teleconnection comparing rainfall across sub-divisional

boundaries (Singh, 2001), and variously defined rainfall regions over India (Cash et al.,

2015; Ihara et al., 2008a; Kane, 2000; Krishnamurthy and Shukla, 2000; Parthasarathy et al.,

1996; Vecchi and Harrison, 2004) and the Bay of Bengal (Cash et al., 2015) have revealed

that the strength of the relationship varies spatially across the monsoon region. Other

studies have noted intra-seasonal variability by looking at the behavior of the monsoon-ENSO

teleconnection month-to-month (Kane, 2000; Ju and Slingo, 1995; Pattanaik, 2012; Singh,

2001) and during active and break periods (Annamalai and Slingo, 2001; Krishnamurthy

and Shukla, 2000, 2007). Ju and Slingo (1995) reported that the biggest difference between

monsoonal strength of La Niña versus El Niño years is limited to the onset of the monsoon,

but negligible during the remainder of the monsoon season. Rajagopalan and Molnar (2012,

2014), however, have emphasized the correlation between monsoon rainfall and ENSO during

both early and late seasons.

Regional analyses of the monsoon-ENSO teleconnection have been limited to a few sub-

divisional or homogeneous rainfall zones. To our knowledge, analyses of the anti-symmetry in

the effects of the warm and cold phases of ENSO on monsoon rainfall have considered only the

full monsoon season, not sub-seasons. We attempt a more spatially (1◦ x 1◦ resolution) and

temporally (1901-2009) complete regional analysis of the monsoon-ENSO teleconnection that

specifically addresses the signature of ENSO on monsoon rainfall as well as anti-symmetric

behavior over the full and sub-seasons. Specifically, we ask the following questions:
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(1) what is the spatial signature of monsoon-ENSO teleconnections over India and does

it change as the monsoon season progresses through early (June), middle or peak

(July-August), and late (September) sub-seasons?;

(2) how do the asymmetries that exist in La Niña versus El Niño monsoon variability

manifest themselves spatially over India?; and

(3) by what mechinisms does ENSO affect monsoon rainfall?

2.2 Data

We used the Indian Institute of Tropical Meteorology All India Summer Monsoon

Rainfall (AISMR) based on the monthly precipitation dataset that spans 1871-2012 and has

been constructed by weighting station data to create a single representative series for the

entire country (Parthasarathy et al., 1994). To analyze spatial differences in Indian rainfall,

we merged two Indian Meteorological Department’s 1◦ by 1◦ daily rainfall data sets (1901-

2004 and 1951-2009) to create a 109-year record of rainfall for each of 357 grid-cells over

India (Rajeevan et al., 2006). We then obtained daily average rates (mm d−1) for each grid-

cell during four monsoon seasons defined as: full (1 Jun to 30 Sep), early (1 Jun to 30 Jun),

middle (1 Jul to 31 Aug), and late (1 Sep to 30 Sep).

Monthly average Pacific sea surface temperature (SST) anomalies were obtained for

1901-2009 from three NINO indices (Kaplan et al., 1998): NINO4 (average SSTs in the

western region of 150◦W-160◦E and 5◦N-5◦S), NINO3.4 (average SSTs in the central region

of 120◦W-170◦W and 5◦N-5◦S) and NINO3 (average SSTs in the eastern region of 90◦W-

150◦W and 5◦N-5◦S). SSTs from the NINO3.4 region are used in this analysis, but results

using SSTs from the NINO4 and NINO3 are shown in Appendix A (Figures A.1 and A.2).

Gridded SSTs (5◦ by 5◦) for the region of 30◦E - 80◦W and 40◦S - 40◦N were obtained from

Kaplan et al. (1998) as well.

Monthly gridded (2.5◦ x 2.5◦) atmospheric variables were obtained from the NOAA
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NCEP-NCAR CDAS-1 Reanalysis for the period of 1949-2012 (Kalnay et al., 1996). These

include yearly anomalies of 200 mb and 925 mb velocity potential (m2 s−1 10−6), 850 mb

geopotential height (gpm), 850 mb zonal and meridional winds (m s−1), and total column

precipitable water (kg m−2).

2.3 Spatial signature of monsoon-ENSO teleconnection

We start with the traditional correlation between AISMR and the NINO3.4 index. Typ-

ically, AISMR is used in monsoon-ENSO diagnostics and forecasting efforts (Krishna Kumar

et al., 1995) due to its correlation over the entire period of record with Pacific SSTs during

the full monsoon season. During the full season, AISMR correlations with NINO4, NINO3.4,

and NINO3 are -0.46, -0.57, and -0.55, respectively. The correlation between NINO3.4 SSTs

and AISMR is greatest for the entire season (-0.57), and notably weaker during the early

(-0.29) and middle part (-0.38) of the season, increasing to -0.45 in the late season (Figure

2.1). Much of the seasonal monsoon-ENSO correlation is contributed by September rainfall.

ENSO establishes itself firmly from September onwards, which explains the higher correla-

tion. The AISMR, however, does not provide insights into the spatial signature of ENSO on

rainfall, which is important for societal applications. Correlations with the NINO3 (-0.55,

-0.30, -0.39, and -0.42 for full, early, middle and late seasons, respectively) and NINO4 (-

0.46, -0.31, -0.22, and -0.47 for full, early, middle and late seasons, respectively) indices are

similar. Given the similarities, but slightly larger full season correlations for NINO3.4 than

the others, we present correlations and regressions only with the NINO3.4 index but include

regression results for NINO4 and NINO3 in Appendix A.

We investigated the spatial signature of monsoon-ENSO teleconnection by utilizing

gridded rainfall data over India. Figure 2.2 shows the gridded mean daily rainfall, along

with the standard deviation and coefficient of variation (standard deviation divided by the

mean). The majority of monsoon rainfall falls during the peak monsoon season with the

coast and northeastern parts of India receiving the highest amount of rainfall. A given
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location can receive anywhere between 20-60% of its total monsoon rainfall from the early

and late season combined.
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Figure 2.2: Mean (blue) and standard deviation (red) of Rajeevan et al. (2006) average daily
rainfall (mm d-1 over the (a) full monsoon season and three defined sub-seasons (a - early,
b - middle, and c - late). The third column provides the coefficient of variation (standard
deviation divided by the mean).
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For each grid-cell, a standard major axis (SMA) regression, also known as a reduced

major axis regression or model 2 regression, was performed between the NINO index and

average daily precipitation over the full season and three sub-seasons. An SMA regression

(Sprent and Dolby, 1980) has the form,

y = b0 + b1x (2.1)

where (xi, yi) are a random sample from a bivariate distribution, b1 is the slope, and b0 is

the y-intercept. In our case, x represents the SST anomaly (◦C), and y the daily average

rainfall (mm d−1). The slope (mm d−1 ◦C−1) is given by,

b1 = ±σy
σx

(2.2)

where σx and σy represent the standard deviations of the variables. The sign of the slope is

determined by using the sign of the correlation coefficient. The y-intercept is given by,

b0 = ȳ − b1x̄ (2.3)

which follows that for least-squares regression, where ȳ and x̄ are the mean of y and x,

respectively. An SMA regression accounts for uncertainty in both axes by minimizing the

errors in both directions and is thereby preferable in scenarios when both variables are

uncertain. The squared correlation coefficients R2 and the analysis of variance, however, are

similar to the standard least squares regression.

Figure 2.3 plots the slopes (mm d−1 ◦C−1) and R2 values of this relationship between

average daily precipitation and the NINO3.4 across the full season and the three sub-seasons.

Values are plotted only where the SMA regression is at least 95% significant. Obviously,

rainfall over India is negatively correlated to central Pacific SSTs, in that a cooler central

Pacific results in higher monsoon rainfall. Over the full monsoon season (Figure 2.3a), there

are regions of India that are not correlated to Pacific SSTs, such as northeastern and south

India. Furthermore, a 1◦C decrease in NINO3.4 over the full season does not uniformly
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increase precipitation over India. Instead, some regions of India prove more sensitive to

Pacific SST anomalies, as indicated by the magnitudes of negative slopes.

Separating the season into sub-seasons reveals that the relationship between rainfall

and Pacific SSTs is also not constant as the monsoon season progresses. The relationship

between early season average daily rainfall and NINO3.4 SSTs (Figure 2.3b) is greatest in

central India and the Indo-Gangetic Plains. Average daily rainfall during the middle season

(Figure 2.3c), however, in Rajasthan (northwestern India) and the northern Himalaya, as

well as the south-central India, maintain a significant correlation with Pacific SSTs. Rainfall

in the coastal regions seems to be most related to ENSO during the early (Figure 2.3b) and

late (Figure 2.3d) seasons. Although during early and peak monsoon seasons AISMR shows a

relatively low correlation (Figure 2.1), the spatial analysis shows a teleconnection mosaic with

distinct regions (e.g. south central, northwestern, and Indo-Gangetic Plains) that exhibit

larger correlations with ENSO (Figure 2.3c-d). The results of the SMA regression analysis

with NINO4 (Figure A.1) and NINO3 (Figure A.2) reveal similar patterns throughout the

monsoon season and are provided in Appendix A.

These findings bear on forecasting efforts in two ways. First, using ENSO as a predictor

in forecasting rainfall over a given region of India may be appropriate only during certain sub-

seasons. For example, rainfall in Rajasthan during the full season (Figure 2.3a) is correlated

to Pacific SSTs, but accounts for most of the correlated rainfall during the peak and late

sub-seasons only. Second, many of the regions highlighted as having rainfall correlated

to Pacific SSTs are agriculturally productive (e.g. Andhra Pradesh, Gujarat, Karnataka,

Kerala, Madhya Pradesh, Maharashtra, Punjab, Rajasthan, Tamil Nadu, Telangana, Uttar

Pradesh, and West Bengal, see Fig. 2.4 for a state map) and thereby rely on a strong

monsoon each year for good crop yield. Using the SMA regression slopes, we calculate that

a June-September average decrease of 1◦C in the NINO3.4 index leads to a 20-60% increase

in full season (June-September) average monsoon rainfall over many agricultural regions

(Figure 2.4a). To refine this relationship, we show how a 1◦C cooling of the NINO3.4 region
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Figure 2.3: Slopes of SMA regression between average daily rainfall (Rajeevan et al., 2006)
and NINO3.4 SSTs from 1901-2009 (Kaplan et al., 1998) for the full (a - June to September),
early (b - June), middle (c - July and August), and late (d - September) seasons. The first
and second columns show the slopes (mm d−1 ◦C−1) and R2 values of the SMA regressions,
respectively. Colored regions show values at least 95% significant.
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would affect rainfall in the differing seasons. First, early season rainfall in the Indo-Gangetic

Plains, which occupy the states of Punjab, Haryana, Uttarakhand, Uttar Pradesh, and Bihar,

as well as parts of Madhya Pradesh and Chhattisgarh (Figure 2.4b) would increase by 70-

100%. Second, peak season rainfall would increase by 30-80% throughout Rajasthan and the

Godavari River basin, which includes parts of Maharashtra, Andhra Pradesh, and Karnataka

(Figure 2.4c). Third, late season rainfall in central India as well as Punjab, Rajasthan,

Madhya Pradesh, Maharashtra, and Telangana would increase by 60-100% (Figure 2.4d).

These results suggest that forecasts, particularly for agricultural regions that depend on

skillful prediction of the monsoon, could be more useful if they were issued sub-seasonally

and considered smaller regions of India rather than the entire country or political districts.

2.4 Asymmetries between La Niña and El Niño teleconnections

Using the average gridded daily 1901-2009 precipitation data of Rajeevan et al. (2006)

we produced composite rainfall maps of standardized anomalies for strong La Niña and strong

El Niño years for the full monsoon season (Figure 2.5a) and the three sub-seasons (Figure

2.5b-d). Strong La Niña and El Niño years for each period are defined as those for which the

standardized SST anomalies from the NINO3.4 index were ≤ -0.75 and ≥ +0.75, respectively,

during the respective periods of the monsoon season (years used in each are provided in a

Table 2.1). In this method, the subset of years differs for each sub-seasonal composite map.

For example, La Niña conditions might characterize the early, but not late season. Because

the monsoon responds dynamically to the evolving ENSO conditions and teleconnections

are rapid, it is important to consider warming or cooling events during each sub-season

separately, regardless of whether they persist for the entire season or not. As an example,

consider ENSO conditions of 2014. A strong El Niño event was forecasted for the summer,

which was expected to suppress the Indian monsoon. Consistent with these predictions,

June NINO3.4 anomalies were + 0.8◦C and monsoon rains were delayed and weak. In July

and August, however, warming dissipated to +0.3◦C and +0.2◦C, respectively, and monsoon
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rains returned to make up a substantial part of the deficit. The season as a whole ended

with a rainfall deficit (-12.5%), which is slightly below the -10% threshold used by Indian

Meteorological Department (IMD) to categorize as deficit monsoon year. Furthermore, the

seasonal rainfall deficit was much lower than the initial forecast of drought, owing in large

measure to the evolving monsoon-ENSO teleconnection within the season. Moreover, 2014

was not exceptional, for there have been several such years in recent history. It should also

be noted that we do not explicitly consider “modoki” events. If we considered modoki versus

non-modoki events, as well as sub-seasonal differences, we would be forced to split our subset

of years into smaller samples. To avoid this, we count +0.75◦C anomalies in the NINO3.4

region as strong El Niño seasons, regardless of whether it is modoki or not. We also do not

consider the state of the Indian Ocean Dipole (IOD) in selection of La Niña or El Niño years

(see Appendix A for an explanation).
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Figure 2.5: Composite maps of standardized anomalies of rainfall This figure uses Rajeevan
et al. (2006) rainfall to plot the composite of standardized anomalies during strong La Niña
(scaled NINO3.4 ≤ -0.75) and strong El Niño (scaled NINO3.4 ≥ 0.75) conditions for during
the (a) full, (b) early, (c) middle and (d) late seasons. The third column provides the sum
of the first two columns. Linear trends over the entire 109-year period have been removed
from each grid cell. Stippling indicates regions where mean rainfall anomalies between La
Niña and El Niño are significantly different by at least 95%. Table 2.1 provides the years
used in the composites for La Niña and El Niño.
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iñ
o

co
nd

iti
on

s
di

d
no

t
pe

rs
ist

fo
r

th
e

fu
ll

m
on

so
on

se
as

on
.



29

As expected, strong La Niña (El Niño) conditions typically result in positive (negative)

rainfall anomalies. In general, the spatial distribution of rainfall anomalies between the

cold and warm phases of ENSO are opposite in their signs, in that regions of India that

see positive rainfall anomalies during La Niña tend to see negative anomalies during El

Niño. Asymmetries in the monsoon-ENSO teleconnection, however, are apparent in the

magnitudes of positive and negative anomalies between La Niña and El Niño (Figure 2.5, left

and middle column), respectively. To illustrate this asymmetry, we sum anomalies associated

with La Niña composites and anomalies associated with El Niño composites (Figure 2.5,

right column). During the full season (Figure 2.5a), the negative rainfall anomalies in the

summation composite reveal that El Niño suppresses rainfall more than La Niña enhances it,

which also characterizes northwest and south-central India during the peak season (Figure

2.5c). The opposite, however, holds during the late season (Figure 2.5d): La Niña enhances

rainfall more than El Niño suppresses it.

Composites SST anomalies of strong La Niña years and strong El Niño years for each

sub-season reveal that the patterns in SSTs compared across the two modes are generally

symmetric in the eastern equatorial Pacific and to some extent in the central Pacific, with

cooling (warming) of the eastern equatorial Pacific during La Niña (El Niño) events. This is

associated with warming (cooling) of the west Pacific and cooling (warming) in the Indian

Ocean (Figure 2.6), but the patterns are not symmetric. Furthermore, warming during El

Niño seasons, exceeds one standard deviation in some parts of the eastern equatorial Pacific,

which is greater in magnitude than the cooling associated with La Niña.

During the full monsoon season and all three sub-seasons, low (high) pressure anomalies

during La Niña (El Niño) suggest convergence and ascent (divergence and subsidence) across

much, but not all of India, which are consistent with more (less) precipitation. This is

demonstrated by the similarity of the difference in geopotential height anomalies (Figure 2.7,

third column) with the difference in rainfall anomalies (Figure 2.7, fourth column) between

La Niña and El Niño. During the early season, the biggest difference in pressure between the
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Figure 2.6: Composites maps of SST anomalies (Kaplan et al., 1998) in the Indo-Pacific
region for strong La Niña years (left column) and strong El Niño years (right column) for
the (a) full, (b) early, (c) middle and (d) late seasons. Stippling indicates regions where
mean SST anomalies between La Niña and El Niño are significantly different by at least
95%. Table 2.1 provides the years used in the composites for La Niña and El Niño.

two ENSO modes occurs in north-central India and the Indo-Gangetic Plains (Figure 2.7b,

third column), which are the same regions that see the biggest difference in rainfall (Figure

2.7b, fourth column). During the middle (peak) season, significant differences in pressure

are limited to south-central India and along its west coast (Figure 2.7c, third column), and

they align with parts of India that have the biggest difference in rainfall (Figure 2.7c, fourth
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column). The late season has the largest pressure anomalies of the three sub-seasons, with

large low (Figure 2.7d, first column) and high (Figure 2.7d, second column) pressure systems

concentrated in the west-central part of India, but significant differences between La Niña

and El Niño spanning the entire country (Figure 2.7d, third column). We suspect that

pressure anomalies are greatest during September, because ENSO is firmly developed at

that time compared to early and peak season.

Composite analyses for the total atmospheric water vapor available in a column of

air (Figure 2.8) and 850 mb wind anomalies reveal positive (negative) precipitable water

anomalies during La Niña (El Niño). This pattern is consistent with the pressure anomaly

composites in Figure 2.7, in that we would expect greater precipitable water over regions of

low pressure where convergence and ascent of moist air should occur. During early-season

La Niñas, high pressure off the southern tip of India is geostrophically balanced in part by

southwesterly winds from over the Indian Ocean onto the Indian subcontinent, which deliver

moisture to north-central India and the Indo-Gangetic Plains. The opposite pattern occurs

during El Niños. During middle-season La Niñas, winds from the Bay of Bengal are strongest

which presumably helps to deliver rain to northwest Rajasthan (Joseph, 2012). In the late

season, cyclonic and anti-cyclonic wind patterns for La Niña and El Niño, respectively, are

consistent with the large low- and high-pressure systems that form over west-central India.

To understand large-scale climate features that accompany this SST distribution and

the associated rainfall signature, we composite 200 mb and 925 mb velocity potential anoma-

lies (Figures 2.9 and 2.10, respectively) as a surrogate for regional convergence and divergence

both aloft and at the surface during strong La Niña and strong El Niño seasons. Because

ageostrophic winds vary with the horizontal gradient of velocity potential, to a first ap-

proximation positive (negative) velocity potential represents convergence (divergence) and

presumably descent (ascent). Perhaps not surprisingly, positive (negative) anomalies at 200

mb overlie regions with negative (positive) anomalies at 925 mb. At 200 mb, across all four

seasons, cooler SSTs in the central and eastern Pacific during La Niña are accompanied by
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Figure 2.7: Composite maps of 850 mb geopotential height anomalies and 850 mb wind
anomalies from the NCEP-NCAR Reanalysis (Kalnay et al., 1996) for strong La Niña years
(first column), strong El Niño years (second column) and the difference between the two
(third column) for the (a) full, (b) early, (c) middle and (d) late seasons. Contours are
plotted at an interval of two meters. The fourth column provides the difference in mean
rainfall anomalies between La Niña and El Niño years for the four seasons. Stippling indicates
regions where mean rainfall anomalies between La Niña and El Niño are significantly different
by at least 95%. Table 2.1 provides the years used in the composites for La Niña and El
Niño. Areas that lie above the 850 mb level have been omitted from shading.
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Figure 2.8: Composites of precipitable water anomalies and 850 mb wind anomaly from the
NCEP-NCAR Reanalysis (Kalnay et al., 1996) for strong La Niña years (left column) and
strong El Niño years (right column) for the full (a - June to September), early (b - June),
middle (c - July and August), and late (d - September). Shading is provided where the mean
precipitable water anomalies between La Niña and El Niño were significantly different by at
least 95%. Bold arrow at bottom-right of each sub-plot scales to 1 m s−1. Table 2.1 provides
the years used in the composites for La Niña and El Niño.
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negative velocity potential anomalies aloft over the Indian Ocean region, and positive anoma-

lies over the eastern equatorial Pacific, which strengthen as the monsoon season progresses.

The opposite characterizes El Niño seasons. Note, however, that during El Niño seasons,

maximum velocity potential anomalies aloft the tropical Pacific occur during the middle

season instead of the late season. The opposite signs of velocity potential anomalies aloft

and near the surface concur with the simple interpretation that such pairs reflect anomalies

in ascent or descent through the troposphere.

As we would expect under the shifted Walker Circulation hypothesis (Shukla and Wal-

lace, 1983; Palmer et al., 1992), a zone of ascent (descent) overlies the south-Asian and

Indian region during all four La Niña (El Niño) seasons. Note, however, the zone of positive

(negative) velocity potential anomalies over the western equatorial Indian Ocean during early

season of La Niña (El Niño) that does not exist in any of the other seasons. This is consis-

tent with the hypothesis that during the early season, a shifted Walker Circulation affects

the local Hadley cell (Goswami, 1998; Ju and Slingo, 1995; Lau and Wu, 2001; Slingo and

Annamalai, 2000), such that during the early season of El Niño, the ascending branch of the

Hadley cell is located at the equator, as suggested by regions of divergence at 200 mb (Figure

2.9b, right) and convergence at 925 mb (Figure 2.10b, right). This anomalous ascent on the

equator results in anomalous subsidence over the Indian subcontinent. By contrast, during

the early season of La Niña, negative velocity potential anomalies overlie the Indian subcon-

tinent while the descending branch over the western equatorial Indian Ocean is strengthened,

as shown by regions of convergence at 200 mb (Figure 2.9b, right) and divergence at 925

mb (Figure 2.10b, right). Patterns consistent with local Hadley cell modulation disappear

throughout the remainder of the season, suggesting a larger-scale mechanism, such as a

strengthened and shifted Walker circulation, is responsible for the rainfall signature during

the middle and late seasons.
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Figure 2.9: Composites maps of 200 mb velocity potential (m2 s−1 10−6) anomalies from
NCEP-NCAR Reanalysis (Kalnay et al., 1996) for strong La Niña years (left column) and
strong El Niño years (right column) for the (a) full, (b) early, (c) middle and (d) late seasons.
Stippling indicates regions where mean rainfall between La Niña and El Niño are significantly
different by at least 95%. Table 2.1 provides the years used in the composites for La Niña
and El Niño.

2.5 Discussion

The monsoon-ENSO teleconnection varies throughout the summer season over In-

dia (Figure 2.3a). This finding, while consistent with previous studies that have looked

at regional differences (Cash et al., 2015; Kane, 2000; Krishnamurthy and Shukla, 2000;
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Figure 2.10: Same as Figure 2.9 but for 925 mb velocity potential (m2 s−1 10−6) anomalies.

Parthasarathy et al., 1996; Singh, 2001), provides insights into the spatial signature of the

monsoon-ENSO teleconnection on a finer spatial scale and over a longer time period than

done before. We find that as the season progresses through early (June), peak (July-August)

and late (September) sub-seasons, ENSO’s spatial signature shifts (Figure 2.3b-d). Con-

sequently, the correlations of different region’s rainfall to Pacific SSTs evolve differently

throughout the monsoon season. Rainfall over northwestern India is sensitive to NINO3.4

SSTs during the peak and late season, but not the early season. Rainfall over most of the
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Indo-Gangetic Plains and west-central India is sensitive to SSTs only during the early and

late seasons, respectively. Parts of northern India remain sensitive throughout the entire

season. These differences emphasize the importance of examining the monsoon on a sub-

seasonal timescale, which has been acknowledged in other recent studies (Singh et al., 2014;

Pattanaik, 2012; Rajagopalan and Molnar , 2014).

The spatial and temporal differences in rainfall over India also highlight the inherent

asymmetry in the monsoon-ENSO teleconnection: La Niña and El Niño rainfall composites

are not equal and opposite across all of India (Figure 2.5). Although this asymmetry has been

cited before in regards to AISMR data during the entire monsoon season (Krishna Kumar

et al., 2006), we show that the asymmetry varies spatially across India, and that it evolves

through the monsoon season. For example, El Niño conditions suppress rainfall more during

the peak season than La Niña enhances it, but La Niña seems to enhance rainfall more during

the late season than El Niño suppresses it. We infer that during the peak monsoon season,

when conditions are favorable for rainfall, La Niña must be very strong in order to enhance

rainfall. On the other hand, even a modest El Niño, which counters the climatological

conditions, can effect a conspicuous reduction in rainfall. These sub-seasonal differences

suggest a regionally important nuance in the use of ENSO forecasts applied to monsoon

rainfall.

Composites of velocity potential at 200 and 925 mb show an anomaly over the western

Indian Ocean, south of India consistent with local Hadley cell modulation in the early season

that ceases to exist during the middle and late season (Goswami, 1998; Lau and Wu, 2001;

Slingo and Annamalai, 2000). Ju and Slingo (1995), in particular, recognized that this role

of a local Hadley cell occurs only in the early season. We presume that as SST anomalies

intensify in the central and eastern Pacific towards the end of the monsoon season, the

strengthening anomalous Walker circulation writes a stronger signature on the monsoon

rainfall than the local Hadley circulation does.

The following suggestions emerge from this research that might improve monsoon fore-
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cast skills of socio-economic benefit: (i) AISMR forecast is of limited utility especially in

light of declining ENSO teleconnections (e.g. Krishna Kumar et al., 1999); (ii) sub-seasonal

forecast of spatial regions with strong ENSO teleconnections appears to be promising avenue

for increasing forecast skill; and (iii) forecasting strategies should be different for El Niño

and La Niña events and should incorporate the distinct circulation features associated with

them, including Indian Ocean temperatures.



Chapter 3

Multi-Proxy Reconstruction of Equatorial Pacific SST and Zonal Wind Fields
of the past 10,000 years using Mg/Ca and Alkenone Records

Abstract

A multi-proxy, reduced-dimension methodology blends magnesium-calcium (Mg/Ca)

and alkenone (Uk′
37) paleo sea surface temperature (SST) records from the eastern and western

equatorial Pacific, to recreate snapshots of full field SSTs and zonal winds from 10 to 2 ka

BP in two-thousand year increments. In the multi-proxy reconstruction, the coldest SST

anomalies of ∼ -1◦C occur at 10 ka in the eastern equatorial Pacific with concurrent easterly

maximum wind anomalies of ∼ 8 m s−1 throughout the central Pacific. The largest zonal

temperature anomaly differences (average east Pacific SST minus average west Pacific SST)

are -0.36◦C and -0.33◦C, which occur at 6 and 10 ka, respectively. The eastern equatorial

Pacific warms and central Pacific easterly winds weaken gradually from 10 to 2 ka, but

western Pacific SSTs fluctuate throughout the period. Although both Mg/Ca and Uk′
37 act

as SST proxies, comparisons of the single proxy SST field reconstructions (Mg/Ca-only

versus Uk′
37-only) reveal differences in the timing and duration of maximum cooling across

the equatorial Pacific. Due to this, the multi-proxy approach is beneficial in revealing the

common patterns of variability between the two different SST proxies.
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3.1 Background

Paleoclimatic proxy records spanning the early- to mid-Holocene (∼ 10-6 thousand

years ago, ka) suggest that the equatorial Pacific was in an “enhanced La Niña-like state”

during this time, consistent with reduced El Niño - Southern Oscillation (ENSO) variability

due to a cooler eastern (e.g. Koutavas et al., 2006) and perhaps a slightly warmer western (e.g.

Stott et al., 2004) Pacific. Not all paleo records show reduced ENSO variability Cobb et al.

(2013), and those that do tend to disagree on timing and duration. Clastic sediment records

from lakes in the Andes (Moy et al., 2002; Rodbell et al., 1999) and marine records (Koutavas

et al., 2006; Tudhope et al., 2001) show reduced ENSO variability around 6 ka, which agrees

with GCM simulations (Liu et al., 2000; Otto-Bliesner et al., 2003; Timmermann et al., 2007;

Zheng et al., 2008) and has been theorized to be tied to orbital forcing (Clement et al., 1999;

Luan et al., 2012; Zheng et al., 2008). From pollen, Shulmeister and Lees (1995) inferred

a drying of Australia at ∼ 4 ka, which they attributed to an onset of modern-like ENSO

conditions. Other more recent marine records (Carré et al., 2014; McGregor et al., 2013)

have challenged the timing of these results and suggest that ENSO variability was at its

lowest around 4-5 ka.

Paleoclimatic proxy data are intrinsically point measurements, and therefore associat-

ing one paleoclimate time series with a process that reaches over a huge area takes a risk.

Moreover, because of dissolution of carbonate tests and low sedimentation rates at great

depth, useful cores for SSTs proxy records (Tables 3.1 and 3.2, Figures 3.1 and 3.2) are com-

monly limited to regions of relatively shallow depth, near coasts, from aseismic ridges, or over

young oceanic crust. As a result, the absence of long-term records from the central Pacific

makes it difficult to draw conclusions about large-scale spatial patterns of ENSO-relevant

SST fields over paleoclimatic timescales. The records that exist along the ocean margins

are often irregularly sampled (spatially and temporally), and different proxies from the same

core can sometimes yield contradictory inferences. With these limitations in mind, we use
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all available SST information at various points from the east and west Pacific in order to

reconstruct the full field of tropical Pacific SSTs and zonal winds (10◦S to 10◦N and 100◦E

to 60◦W) over the past 10 ka.
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Previous studies have used paleo-proxy data with various statistical approaches to

reconstruct full fields (e.g. Cook et al., 1999; Kaplan et al., 1998; Luterbacher et al., 2004;

Mann et al., 1998, 2008; Tingley and Huybers, 2010) or time-series (e.g. Kaufman et al.,

2009; Lee et al., 2008; Li et al., 2010; Mann et al., 2008; Moberg et al., 2005) of climate

variables. We use reduced-dimension reconstruction approaches, in which contemporary

patterns of variability are related to a sparse sampling of points to resolve full fields or time-

series of climate variables. Reduced-dimension approaches have been used to reconstruct

surface temperature (e.g. Luterbacher et al., 2004; Mann et al., 1998; Rutherford et al.,

2005), pressure (e.g. Luterbacher et al., 2002), and drought (e.g. Cook et al., 1999; Zhang

et al., 2004). Evans et al. (2002) provide an example of a reduced-dimension SST field

reconstruction using δ18O proxy records from coral.

3.2 Data

Contemporary (1854-2013) gridded (2◦ by 2◦) monthly SSTs were obtained from the

NOAA NCDC Extended Reconstruction Sea Surface Temperature (ERSST) version 3b

dataset (Smith et al., 2008). Contemporary (1949-2013) gridded (2.5◦ by 2.5◦) monthly

zonal winds were obtained from NOAA NCEP-NCAR CDAS-1 Global Reanalysis (Kalnay

et al., 1996). Monthly anomalies were calculated for each dataset using 1981-2010 climatol-

ogy. Monthly anomalies for SSTs and winds were then converted into annual averages by

averaging from May to the following April in order to capture the annual ENSO cycle.

Two common proxies for paleothermometry in the Pacific exploit magnesium-calcium

(Mg/Ca) ratios from foraminifera shells and alkenones (Uk′
37) from coccolithophores to in-

fer SSTs. Numerous Mg/Ca and Uk′
37 proxy records have been reported for the east and

west Pacific (see Leduc et al. (2010) for a review). At high temperatures, more Mg is in-

corporated in the shells of foraminifera, and a ratio of Mg/Ca can be used to infer SSTs

back through time (e.g. Lea et al., 1999; Nürnberg et al., 1996). Alkenones are a trans-fat

altered by cocclithophores, or algae, under various temperatures: lower temperatures lead
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Figure 3.1: Maps of western and eastern Pacific Mg/Ca based SST records. The second row
provides raw SST estimations as calibrated by original authors listed in Table 3.1. The third
row provides the records smoothed by a second order local polynomial method with a local
neighborhood of 70% nearest data points.
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Figure 3.2: Maps of western and eastern Pacific Uk′
37 based SST records. The second row

provides raw SST estimations as calibrated by original authors listed in Table 3.2. The third
row provides the records smoothed by a second order local polynomial method with a local
neighborhood of 70% nearest data points.
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to an increase in the degree of unsaturation. The ratio of di- to tri-unsaturated alkenones

is used to create an Unsaturation Index named Uk′
37 (e.g. Brassell et al., 1986; Herbert,

2003). The remains of foraminifera and coccolithophores sink to the bottom of the ocean

and are preserved in the sediment record. Mg/Ca (Table 3.1 and Figure 3.1) and Uk′
37 (Ta-

ble 3.2 and Figure 3.2) SST records (Tables 1 and 2) were obtained from the archives of

NCDC (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets) and Pan-

gaea (http://www.pangaea.de/).

Most proxy records listed in Tables 3.1 and 3.2 reach back to 10 ka, but some records

stop prior to 0 ka. All the records were generated at various resolutions of at least one

SST value per 1,000 years. In order to reconstruct 2, 4, 6, 8, and 10 ka snapshots of the

equatorial pacific SST and wind fields, each paleoceanographic record was smoothed (Figures

3.1 and 3.2) using a local polynomial method with a second order polynomial and a local

neighborhood consisting of 70% of the nearest data points (e.g. Loader et al., 1996). These

records were then converted to SST anomalies using the climatological mean temperature

from ERSST at the grid-cell closest to the location of the proxy record.

3.3 Methodology

Our work is rooted in similar methodologies and assumptions to the work of (Mann

et al., 1998) who used a multi-proxy reduced-dimension approach to combine instrumental

records with proxies from tree rings, ice cores, and corals to reconstruct global annual tem-

perature patterns over the past six centuries. We use a principal component analysis (PCA)

approach (Figure 3.3) to reconstruct SSTs and a canonical correlation analysis (CCA) ap-

proach to reconstruct winds.

3.3.1 Principal Component Analysis (PCA) Reconstruction for Pacific SST

In PCA, multivariate space-time data is decomposed into orthogonal space-time com-

ponents via eigen-decomposition of the covariance matrix. These components, also referred



48

ERSST SSTs (full field) 
 
T

(N x G) = (160 x 973)

ERSST SSTs (limited field) 
 
T†!

(N x P) = (160 x 26)

Smoothed Multi-Proxy Data 
for 10 ka 

R
(1  x P) = 1 x 26

M dominant modes of 
variability 

PCA$ PCA$

P dominant modes of 
variability 

Model of first few full field 
PCs each as a function of 
the first few limited field 

PCs 

Linear$Regression$

Eigenvalue$
Decomposi7on$

Full Field PCs at 10 ka 

Predict$

Full Field SSTs at 10 ka 

(iv)

(ii) (iii)(i)

(v)

(vi) Eigenvalue$Expansion$

Figure 3.3: Flow chart of principal component analysis approach used for the multi-proxy
SST reconstruction. The steps are given for producing SSTs representative of 10 ka. Steps
(iii− vi) are repeated for 8, 6, 4, and 2 ka.
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to as patterns or modes, are ordered based on the percentage of total variance that each

resolves. For most climatological datasets, the first few modes capture the majority of the

variance of the original data - thus, reducing the dimension of the data. Using bold-faced

uppercase variables to denote matrices, with brackets used only when specifying the dimen-

sions of the matrix, and lower-case bold-faced variables as vectors, the formulation for a

PCA is as follows:

[X]NxG = [Y ]NxG[U ]GxG (3.1)

[Y ]NxG = [X]NxG[U ]TGxG (3.2)

where X is the matrix of the original data, Y is a matrix of principal components (PCs),

and U is a matrix of eigenvectors, N is the length of data at each location (i.e. the number

of times sampled), and G is the number of grid-points. U is considered a transformation

matrix, as it transforms the correlated data X into the orthogonal Principal Component

(PC) space of Y , or transforms the PCs back into the data-space. In theory, the eigen-

vectors are obtained sequentially by solving a constrained optimization problem. The first

eigenvector, u1, is found such that ε1 = E[X −Xu1]2 is minimized and subjected to the or-

thonormality constraint of u1u
T
1 = 1. The subsequent eigenvectors are obtained to minimize

the residual mean squared errors. Thus the variance of all the PCs sum to the variance of

the original data. Von Storch and Zwiers (2001) give details of PCA and other multivariate

analysis techniques. In practice, eigenvectors are obtained simultaneously by decomposing

the covariance matrix into left-singular vectors or eigenvalues (U), right singular vectors (V )

and a diagonal matrix of singular values (λ). The application steps of this method to our

reconstruction is described below and shown as a flowchart (Figure 3.3).
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3.3.1.1 Step (i)

Let T be an NxG matrix of contemporary average annual (May-Apr) SST anomalies

composed of 160 years of data (1854-2014) at each of 973 grid-points spanning the equatorial

Pacific from 10◦S to 10◦N and 100◦E to 60◦W (300◦E). A PCA is performed on T , such that:

[T ]NxG = [Y ]NxG[U ]GxG (3.3)

T =
G∑
i=1

λiyiui (3.4)

whereby T is decomposed into G orthogonal eigenvectors, U . For each ith eigenvector or

mode, we find an G-vector empirical orthogonal function (EOF) represented by ui and

an N -vector principal component (PC) represented by yi, which respectively describe the

spatial and temporal variability of that particular eigenvector. In addition, λi is a scalar

that provides the fraction of total variance of the original data that is resolved by the ith

mode. The first four EOFs (Figure 3.4a) and PCs (Figure 3.4b) explain almost 90% of the

total variance of the full field SST data (λ1 = 0.688, λ2 = 0.111, λ3 = 0.071, λ4 = 0.025).

3.3.1.2 Step (ii)

Let T † be a matrix of contemporary SST anomalies at the locations for which we have

proxy records (referred to as the “limited field” hereafter), which makes it order NxP , where

P is 26. A PCA is performed on T †, which similarly results in P orthogonal eigenvectors

U †, each with an P -vector u†i , N -vector y†i , and a scalar λ†i .

[T †]NxP = [Y †]NxP [U †]MxP (3.5)

T † =
P∑
i=1

λ†iy
†
iu
†
i (3.6)

The first four modes (Figure 3.5) explain almost 95% of the total variance of the limited

field SST data (λ†1 = 0.782, λ†2 = 0.126, λ†3 = 0.022, λ†4 = 0.017)
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Figure 3.4: This figure provides the EOFs and PCs of the four leading modes of the PCA
performed on the full field of equatorial Pacific annually averaged (May to April) SSTs
obtained from the 1854-2013 2◦ x 2◦ ERSST dataset (Smith et al., 2008). The first four
eigenvectors account for 68.8%, 11.1%, 7.1%, and 2.5%, respectively, of the total variability
in the full field SST data.

3.3.1.3 Step (iii)

We performed the following steps for each of six reconstruction periods: 2, 4, 6, 8, and

10 ka. It should be noted that although there are 29 independent proxy records, there are

three locations at which the sediment core was analyzed for both Mg/Ca and Uk′
37. For those

three cases in the multi-proxy reconstruction, the Mg/Ca records were kept, and the Uk′
37

records were ignored to maintain equal representation from each proxy in each part of the

Pacific. When removing the Mg/Ca records and keeping the Uk′
37, however, differences in the

results were negligible. Using the smoothed proxy records, all 26 values for, say, 10 ka are

contained in matrixR of order 1 by P , where P = 26. R undergoes eigenvalue decomposition

by multiplying it with the eigenvalue transformation matrix U † obtained from the limited
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is scaled to the magnitude of the eigenvalue.



53

field PCA in Step (ii):

[Y R]1xP = [R]1xP [U †]TPxP (3.7)

where Y R represents the PCs of the proxy SST values for 10 ka.

3.3.1.4 Step (iv)

For the reconstruction model, we use a few of the PCs of the limited field as predictors

to model each of the first few full-field PCs. The decision to keep a certain number of PCs

and predictors is somewhat arbitrary, but depends on the distribution of variance resolved

across the modes. Although keeping more modes may increase the total resolved variance,

inclusion of too many PCs can introduce noise into the calculated fields. Given the eigenvalue

spectrum (EVS) of the full-field and limited-field λ-values (Figure 3.6), we were faced with

a few reasonable options in deciding how many limited-field predictor PCs to use and how

many full-field PCSs to reconstruct. First, we could limit the reconstruction to only the

dominant mode, or first PC (represented by the green points on Fig. 3.6). In this case, we

would model the first PC of the full field as a function of the first PC of the limited field. As

a second option, we could choose some percentage of resolved variance as a threshold. If we

choose PCs that resolve 10% or more of the variance, we would model the first two PCs of

the full field (green dot and orange dot in Fig. 3.6a) each as functions of the first two PCs of

the limited field (green dot and purple dot in Fig. 3.6b). If we chose 5% as a threshold, the

number of predictors would remain the same, but we would now model the first three PCs

of the full field (green, orange, and purple dots in Fig. 3.6a). A final option would be to

use the “knee” in the eigenvalue spectra as thresholds. The “knee” (purple points in Figure

3.6) of each EVS is located at the PC just before each noise floor (grey points in Figure

3.6). Coincidentally, it turns out that using either 5% or the “knee” as a threshold achieves

the same combination of PCs (first three) and predictor PCs (first two). Reconstructions

of SSTs for each of these three scenarios were considered. Using only the first PC of each
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did not reconstruct modern day SSTs well enough because it omitted other important non-

noise modes. Although the second (10% threshold) and third (5% threshold, or “knee”)

scenarios reconstructed both modern day and Holocene SSTs similarly, we chose to use the

latter to include the most possible PCs. Under this combination, the first three full-field

PCs capture 87% of the full-field variance, and the first two limited-field PCs capture 91%

of the limited-field variance.
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Figure 3.6: Eigenvalue spectrums (EVS) for the (a) full SST field (1854-2013), (b) limited
SST field (1854-2013), and (c) full zonal wind field (1949-2013). The limited SST field
consists of contemporary SSTs only at locations for which there exists either Mg/Ca or
alkenone SST records. The green points represent the variance explained by the first mode
of each field. The purple dots represent the variance explained at the âĂĲknee,âĂİ which
is the point just before the noise floor (represented by the grey dots). The orange dot on
the full field EVS represents the mode that would be included in the model if the threshold
for variance resolved was at least 10%. Description of how these are used to determine the
number of retained PCs and predictors used in the model is provided in the text under
Section 3.3.1.4.
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With this reasoning in mind, we model the first three PCs of the full field each as a

linear function of the first two PCs of the limited field:

y1 = f(y†1,y†2)y2 = f(y†1,y†2)y3 = f(y†1,y†2) (3.8)

The best linear regression model for each is identified via step-wise model selection based on

Bayesian Information Criterion.

3.3.1.5 Step (v)

We use the PCs of the proxy data Y R to reconstruct the first three PCs representative

of 10 ka (ŷ1, ŷ2, ŷ3), and similarly for other times. The remaining G minus 3 reconstructed

PCs (ŷ4...G) are the means of the PCs from the full field (y4...G).

3.3.1.6 Step (vi)

Finally, we transform the reconstructed PCs into a field of reconstructed SST anomalies

via eigenvalue expansion, by multiplying by the original eigenvalue matrix from Step (i):

[T̂ ]1xG = [Ŷ ]1xG[U ]GxG (3.9)

Since T̂ is estimated using only the first few PCs, the reconstructed SSTs represent only the

dominant signal. Steps (ii− vi) are repeated for 8, 6, 4, and 2 ka.

Standard errors from the regressions in Step (iv) are used to generate 500 ensembles

of the first three PCs. Five hundred ensembles for each of the remaining PCs were created

by bootstrapping values from the original PCs at each grid point. The standard deviation

of these ensembles provides an estimate of uncertainty. As these errors were similar across

the five reconstruction periods, we present the standard errors only from 2 ka in Figure 3.7.

Standard errors are generally between 0.1-0.2◦C throughout the central Pacific, with some

errors reaching 0.3◦C immediately along the coast of South America. Present-day variance

is concentrated in the “cold tongue” of the eastern and east-central Pacific. In most places,



56

°C 

100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0
-1
0

0
10

100 150 200 250 300

-1
0

0
10

(a) 

(b) 

100 150 200 250 300

-1
0

0
10

Figure 3.7: (a) Variance of 1854-2013 observed SSTs and (b) standard error SST map for
2 ka. The standard error map was produced by using the standard errors from the model
regression and generating 500 ensembles of the first three PCs. The remaining PCs were
bootstrapped from the original PCs to complete ensembles for each grid-point. This map is
similar to those for other time periods reconstructed.

the standard errors are only a small fraction (<10%), of the present-day variance (Figure

3.7).

3.3.2 Canonical Correlation Analysis (CCA) Reconstruction of Pacific Zonal

Winds

The CCA-reconstruction method is quite similar to the PCA-based method depicted

in Figure 3.3 and described in Section 3.1. CCA, however, is preferred over standard PCA

in a scenario such as this where the patterns of one variable, e.g. SSTs, are being used

as predictors of patterns for a related variable, e.g. winds. This method is widely used

for multi-site forecasting of precipitation (e.g. Barnston, 1994; Barnston and Smith, 1996),

temperature (e.g. Barnett and Preisendorfer , 1987; Barnston, 1994; Barnston and Smith,

1996; Mo, 2003), streamflow (e.g. Salas et al., 2010), and SSTs (e.g. Barnston and Ropelewski,

1992). See Bretherton et al. (1992), Von Storch and Zwiers (2001), and Cherry (1996) for

details on CCA. Here, we use SST patterns to reconstruct zonal winds across the equatorial
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Pacific. We choose to reconstruct zonal winds because in this region zonal winds are much

larger than meridional winds.

For the most part, the CCA method follows the PCA method described in Figure 3.3

through Steps (i − iii), and then differs from Step (iv) onward. For Steps (i) and (ii), T

becomes a matrix of 1949-2013 zonal wind anomalies, which we will call Z, and T † remains

a matrix of SST anomalies for the limited field. Since we only have 65 years of zonal wind

data, N is now 65. As before, a PCA on both of these fields results in:

[Z]NxG = [Y ]NxG[U ]GxG (3.10)

[T †]NxP = [Y †]NxP [U †]PxP (3.11)

where Y and U are the full field PCs and eigenvectors of the zonal winds (Figures 3.6c and

3.8), and Y † and U † are still the limited field PCs and eigenvectors (Figures 3.5 and 3.6b).

Step (iii) is the same: the proxy data R are decomposed into PCs, Y R, by multiplying by

the limited field eigenvalues, U †.

At this point, NPC from Y and Y † are retained. Note that the numbers of full-field

and limited-field PCs retained must be equal. It is also worth noting that since a canonical

correlation resolves the joint correlation between two PCs, it is acceptable to retain more

PCs than one typically does during a standard PCA reconstruction. In fact, for zonal winds,

keeping the first six PCs (NPC = 6), which involves keeping PCs below the “knee” in Figure

3.6c, strengthened the model statistics (Section 3.3.3.) and allowed us to account for 85% of

the full-field variance. A canonical correlation is performed between the two to resolve the

joint correlation between the two sets of PCs:

[Y ]NxNP C
= [S]NxNP C

[A]NP CxNP C
(3.12)

[Y †]NxNP C
= [S†]NxNP C

[B]NP CxNP C
(3.13)
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Figure 3.8: EOFs and PCs of the six leading modes of the PCA performed on the full field
of equatorial Pacific annually averaged (May to April) zonal winds obtained from the 1949-
2013 2.5◦ x 2.5◦ NCEP-NCAR Reanalysis (Kalnay et al., 1996). The first four eigenvectors
account for 41.3%, 28.0%, 7.0%, and 4.9%, respectively, of the total variability in the full
field zonal wind data.

where A and B are now the canonical transformation functions, S and S† are NPC pairs

of canonical components (CCs), each of which explains more of the joint variance than the

next, and all of which are uncorrelated to each other. The CC of the full-field are regressed

against the corresponding CC of the limited field, such that:

sj = âj + β̂js
†
j (3.14)

where j is 1 through NPC , and β̂ is the solution to the least squares optimization. The

first NPC reconstructed PCs of the full wind field Ŷ are obtained through expansion by
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multiplication of first NPC proxy PCs with the full-field canonical transformation matrix A

and the β̂ solution to the regression:

[Ŷ ]1xNP C
= [Y R]1xNP C

[A]NP CxNP C
[β̂]NP CxNP C

(3.15)

We calculate the remaining G−NPC PCs (ŷ7...M) by taking the means of the PCs from the

full field. Finally, we obtain the reconstructed zonal winds Ẑ by eigenvalue expansion:

[Ẑ]1xG = [Ŷ ]1xG[U ]GxG (3.16)

We repeated this process for each of the six time periods (10, 8, 6, 4, and 2 ka).

Implicit in this approach are a few assumptions. First, we assume that the calibration

equations used by the authors of each proxy record represent the “best” calibration for

that particular record. There are a number of calibration equations that can be used to

transform Mg/Ca or Uk′
37 to SST. The “best” equation is typically chosen by considering

proxy type, location, dissolution effects (in the case of Mg/Ca), and sampling method. We

do not convert all records using the same calibration equation because we assume that the

authors of each proxy record have chosen the calibration equation that is most appropriate

for their particular record. Second, we assume that spatial patterns of the proxy network are

linearly related to spatial patterns in the contemporary period. Third, we assume that the

main patterns of variability that exist in the contemporary dataset have not changed over

the past 10 ka. Molnar and Cane (2002, 2007) show that ENSO teleconnection patterns of

present-day seems to have existed as far back as the early Pliocene (∼ 5 Ma), suggesting

that the major patterns of variability have not changed significantly over the relatively short

period of time considered in this analysis.

3.3.3 Calibration and Validation

To assess the reliability of the procedure above to reproduce contemporary SSTs and

zonal winds from the limited field contemporary SST data, we use the ‘resolved variance’
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statistic β, given by:

β = 1−
∑ (y − ŷ)2∑

y2 (3.17)

where y is the contemporary data and ŷ is the reconstructed data for the full period of each

dataset (1854-2013 for SST, 1949-2013 for winds). We compute this statistic at each grid-

point over the reconstruction domain (Figure 3.9, top). For a perfect fit, one would expect β

= 1, and for two random series, one would expect β = -1. Across most of the reconstruction

region, β is greater than 0.6 for both SSTs and zonal winds. The lowest β-values are found

over the central Pacific for SSTs and over the landmasses in the west and east Pacific for

zonal winds.

We also correlated the observed and reconstructed data at each grid-point, and plot

maps of the squared correlation coefficient, R2 (Figure 3.9, bottom). For SSTs, the east and

west Pacific show the highest correlations, which we should expect, as those areas provide

the SST data for the reconstruction. The western “cold tongue” region of the east-central

Pacific, where there are no data, shows correlations greater than or equal to 0.5. The lowest

correlation region for SSTs is the west-central Pacific with values of 0.2-0.3. For zonal winds,

the R2 values are largest in the central Pacific, which is perhaps not surprising, as the central

Pacific winds depend on SSTs at either end of the Pacific. As with the β-test, the worst

performance for winds is seen over continental landmasses east and west of the Pacific.

For additional calibration, we compare the actual and reconstructed SST and zonal

wind fields for the anomalous ENSO years of 1988-1989 (strong La Niña with standardized

SST anomalies of -1.5◦C in the NINO3 index region of 150◦W - 90◦W and 5◦S - 5◦N) and

1997-1998 (strong El Niño with standardized NINO3 index SST anomalies of +2.8◦C). For

1988-1989, the model captures anomalies slightly cooler than -1◦C, which are not as cold

and do not extend as far westward as the actual anomalies seen during this particular La

Niña year (Figure 3.10, top). The reconstructed zonal wind pattern for this year follows a

similar shape to that of actual zonal winds, with strongly negative anomalies (strengthened
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Figure 3.9: Model calibration statistics for the PCA-based SST model and the CCA-based
zonal wind model showing the skill of the models in reconstructing each contemporary dataset
(1854-2013 for SSTs and 1949-2013 for zonal winds). The β-statistic represents the resolved
variance captured by the reconstructed contemporary data. The R2 provides the correlation
between the observed contemporary data and the reconstructed contemporary data.

easterlies) across the central Pacific and into the western Pacific north of the equator, with

positive anomalies over the Indonesian archipelago (Figure 3.11, top). The reconstruction

captures the two regions of highest negative anomalies (-3.5 m s-1 for the central Pacific and

-2.5 m s-1 for the western Pacific), but switches the magnitudes in the reconstruction. The

negative anomalies in winds over the far eastern Pacific off the coast of South America are

not captured by the reconstruction, which is consistent with the relatively low β- and R2-

values seen in that region (Figure 3.9).
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Figure 3.10: Actual and reconstructed SST anomalies (◦C) for 1988-1989 (a strong La Niña
year) and 1997-1998 (a strong El Niño year).

The magnitude and spatial pattern of anomalous SSTs is reconstructed better for the

strong El Niño year of 1997-1998 (Figure 3.10, bottom) than for 1988-1989. Consistent

with actual warming, the reconstructed “warm tongue” extends just west of the dateline,

the greatest magnitude of warming, which is off the coast of Peru in the far eastern Pacific,

reaches approximately +3.5◦C, and the distribution of temperatures within the reconstructed

“warm tongue” closely resemble those of the observed SSTs. It is likely that the failure of the

limited-field model to capture La Niña and El Niño SST anomalies across the entire Pacific is

due to the restricted locations of the proxy records. The cold La Niña anomaly of 1988-1989

is centered in the east-central Pacific, where there are no proxy records. The maximum warm
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Figure 3.11: Actual and reconstructed zonal wind anomalies (m s-1) for 1988-1989 (a strong
La Niña year) and 1997-1998 (a strong El Niño year).

anomaly of the 1997-1998 El Niño, however, is located in the far eastern Pacific, which the

paleoceanographic data sample well. Reconstructed winds for the El Niño year are arguably

better than those for the La Niña year as well. The spatial patterns resemble one another,

but the magnitude of the maximum reconstructed easterlies is underestimated by about 1

m s-1.

For model verification, we train the PCA and CCA models using only the most recent

data (1980-2013) and withhold the data from earlier periods (1854-1979 for SST, 1949-1979

for winds). Then, we reconstruct the fields from the earlier epoch using each respective

model. As expected, the distribution of β and R2 statistics (Figure 3.12) show smaller val-
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ues than the calibration statistics for the complete data sets (Figure 3.9), but the regions

that were reconstructed best during the calibration experiments (Figure 3.9) match those

reconstructed best in the verification test (Figure 3.12). For SSTs, the training model re-

constructs the earlier period everywhere except the west-central Pacific and areas near 10◦S

and 10◦N in the central Pacific. For zonal winds, the central Pacific is the only region that

is reconstructed using the training model. These patterns are consistent across both the β

and R2 statistics.
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Figure 3.12: Model verification performed by training the model on 1980-2013 data, and
using that model to validate SSTs and zonal winds from the period prior (1854-1979 for
SSTs and 1949-1979 for zonal winds). The β- and R2-statistics are used once again to
quantify model skill.
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3.4 Multi-proxy Reconstruction of Pacific Holocene Annual SST and Zonal
Wind Field

We reconstruct full-field SSTs and zonal winds for 10, 8, 6, 4, and 2 ka using the

multi-proxy approach described above (Figure 3.13, top). We choose not to reconstruct 0 ka

since many of the proxy records do not extend to 0 ka and extrapolation of late Holocene

SST trends introduces bias, especially in the east. Instead, we provide the mean present-day

state (1854-2013 for SSTs and 1949-2013 for zonal winds) as reconstructed using the limited-

field data (Figure 3.13). The multi-proxy SST reconstructions show the far-eastern Pacific

to have been a maximum of -1◦C cooler than today at 10 ka, along with a cooler (-0.8◦C)

“cold tongue” extending to about 140◦W at 10 ka. The western Pacific was -0.6◦C cooler for

the same time period. From 10 to 6 ka, conditions changed little, both in magnitude and

location, with the exception of a slight warming in the west and west-central Pacific. By 4

to 2 ka, the majority of the region had warmed by 0.4-0.6◦C since 10 ka. The present-day

reconstructions show small cool anomalies of 0.4◦C throughout the Pacific. Recall that

anomalies in Figure 3.13 are relative to the 1981-2010 climatology of each variable.

The multi-proxy reconstruction of winds (Figure 3.13, bottom) reveals maximum east-

erlies (large negative zonal winds) at 10 ka, which is also the period of lowest SSTs in the

eastern Pacific, consistent with increased easterlies seen during present-day La Niña events.

Consistently throughout the reconstructions, the zone of strongest easterlies is centered

around 140◦W. Easterlies are strongest at 10 ka, as much as 8 m s-1 stronger than present.

Between 8 and 2 ka, the difference between past and present winds decreases and the loca-

tion of the maximum difference moves eastward. Present-day reconstructions of zonal winds

show the weakest easterlies of the Holocene (only -1 m s-1) concentrated in the east-central

Pacific.

The zonal difference in SSTs from west to east is also of interest, as some (e.g. Koutavas

et al., 2006) have argued that an “enhanced zonal gradient” characterized the early- to mid-
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Holocene Pacific. To quantify such gradients, Table 3.3 provides various indices throughout

the Pacific (WPAC, NINO4, NINO3.4, NINO3, and NINO1+2) as well as difference indices

(TNI and WTNI). The domain used in calculating each index is depicted in Figure 3.14 and

provided in the notes of Table 3.3. The TNI index quantifies the zonal SST difference by

subtracting NINO4 from NINO1+2. NINO4, however, is farther east than all of the western

proxy records. For this reason, we also report a difference index called the WTNI, which

is calculated by subtracting the WPAC (120◦E - 180◦E and 4◦S to 4◦N) from NINO1+2.

Although the period of maximum eastern Pacific cooling was 10 ka, both 6 and 10 ka appear

to have had the largest zonal difference in SSTs with -0.36 ± 0.29◦C and -0.33 ± 0.30◦C,

respectively (Table 3.3a). The next largest zonal difference occurs at 8 ka (-0.25◦C± 0.29◦C).

From 4 to 2 ka, the zonal difference was only -15◦C ± 0.28◦C.
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Figure 3.14: Regions used for the various ENSO indices reported in Table 3.3.
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A comparison of reconstructed SST values with proxy SST anomalies from the western

(Figure 3.15) and eastern (Figure 3.16) Pacific reveals better matches at some locations than

others, which we quantify with the residual sum of squares (RSS) in the top right of each

scatterplot. Recall that the first two modes of the limited field were used as predictors of

SSTs. Eigenvalues from the first and second modes under each scatterplot help explain why

some proxy records are replicated better than others. These eigenvalues correspond to those

plotted in the first two maps of Figure 3.5. Although not always the case, high RSS values,

and hence poor fits, can often be attributed to low EOF values assigned to those locations,

which suggests that these data contributed little to the reconstructed SST fields.

For the first mode (Figure 3.5, EOF no. 1), the signal is dominated by the east Pacific,

with eigenvalues of much greater magnitude than those from the west Pacific (note the low

EOF1 values on all of the west Pacific scatterplots of Figure 3.15). Of all the locations in

the east Pacific, the three most northern records (proxy no. 11, 22, and 23) have the lowest

EOF1 values, and of these, records 11 and 23 have high RSS values. Proxy no. 22, despite

a low EOF1 value, is reconstructed quite well (RSS = 1.49◦C2). The two records with the

lowest RSS values (RSS = 0.9◦C2), proxy no. 27 and 14, have two of the highest EOF1

values.

The second mode EOF no. 2 (Figure 3.5) is dominated by records from the western

Pacific (note the low EOF2 values on the east Pacific scatterplots of Figure 3.16). It is

important to remember, however, that the second mode explains only 12.6% of the limited-

field variance (as compared to 78.2% by the first mode). Nevertheless, only 3 out of 15

reconstructions for the west Pacific show RSS values greater than 10◦C2, which suggests

that reconstructions match proxy records better in the west than in the east, for which RSS

>10◦C2 for 5 of 11 reconstructions.
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Figure 3.15: Scatterplots of each original proxy record from the western Pacific (blue) along
with the reconstructed SST values for the grid-point nearest each record (orange). A nominal
error value of ±1◦C is shaded in light blue around each proxy record. Standard errors from
the reconstruction model are plotted as orange whiskers. Proxy numbers in the upper left
correspond to the numbers in Tables 1 and 2 and Figures 3.1 and 3.2. The residual sum of
squares is provided to quantify how closely the reconstructed SSTs match the proxy SSTs.
Recall that the first two PCs of the limited field were used as predictors for the PCA-
based reconstruction model. The first two eigenvalues are written on the lower part of each
scatterplot.
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Figure 3.16: Same as Figure 3.15 but for eastern Pacific records.
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3.5 Sensitivity to Proxy Type

Although Mg/Ca and Uk′
37 both provide reconstructions of SSTs, they differ in method-

ology and calibration. Furthermore, they are produced by two different groups of organisms

that may each reflect biases related to season of production, depth habitat, water column

stratification, and preservation (Leduc et al., 2010). It is clear from Figures 3.1 and 3.2 that

for a given location, records based on different proxies are not always consistent. These

inconsistencies exist within proxy type as well. In a case for which there are many records,

a reduced-dimension reconstruction approach is particularly beneficial, assuming that biases

across the various proxy reconstructions cancel out. By combining all records, this method

extracts common features across the proxies and allows for a robust reconstruction of the

most dominant patterns of variability. Additionally, including all the proxy records together

allows for wider coverage in both space and time, than if one were to reconstruct using only

one proxy type. For these reasons, we recommend the multi-proxy approach. We recognize,

however, that comparing a reconstruction based only on Mg/Ca with one based only on Uk′
37

provides a test of the sensitivity of proxy type to the multi-proxy reconstruction. All 15

records listed in Table 3.1 were used in the Mg/Ca-only reconstruction (Figure 3.17, top),

and all 14 records listed in Table 3.2 were used in the Uk′
37-only reconstruction (Figure 3.17,

bottom).

SST reconstructions based on either Mg/Ca or Uk′
37 show negative anomalies throughout

10-2 ka, and weak negative anomalies for the present-day 1854-2013 period. They differ,

however, in magnitude and timing of cold anomalies. First, for Mg/Ca, the coldest eastern

equatorial SST anomalies occur in a well-defined “cold tongue” pattern at 6 ka, which is

also the period of largest zonal difference in SSTs of -0.77◦C ± 0.30◦C (Table 3.3b). For Uk′
37,

however, maximum eastern equatorial cooling occurs at 10 ka. The zonal difference during

this time is slightly positive, though, since larger negative anomalies are seen in the western

Pacific (Table 3.3c).
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Figure 3.17: Single proxy reconstructions of 10, 8, 6, 4, and 2 ka SSTs using only Mg/Ca
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Second, the evolution of SSTs in the west Pacific is strikingly different: In the Mg/Ca

reconstruction, the western Pacific cold anomalies are always smaller than those of the eastern

Pacific, but in the Uk′
37 reconstruction, west Pacific cold anomalies are almost always as

large as and sometimes larger than those of the eastern Pacific. This characteristic in the

Uk′
37 reconstruction is inconsistent with a typical La Niña-like SST configuration, where the

western Pacific is warmer than the eastern Pacific, and is also inconsistent with model results

for the early- to mid-Holocene (Liu et al., 2000; Otto-Bliesner et al., 2003; Zheng et al., 2008).

Lastly, only the Uk′
37 reconstruction shows warmer eastern equatorial SSTs during 2

ka than present-day. This would be consistent with marine records Koutavas et al. (2006);

Tudhope et al. (2001) and sediment records Moy et al. (2002); Rodbell et al. (1999) that

have suggested an abrupt return of ENSO variability (i.e. more El Niño’s and thus, warmer

eastern equatorial SSTs) at around 2 ka.

3.6 Discussion

We apply PCA-based and CCA-based reduced-dimension reconstructions of the full

field of SSTs and ENSO variability during the past 10 ka. Using a limited spatial field of

26 locations provides enough data to resolve the major patterns of variability for the entire

Pacific SSTs and most of the central Pacific zonal winds.

For the multi-proxy reconstruction, the period with the coolest eastern equatorial Pa-

cific (-1◦C) and strongest easterly winds (-8 m s−1) across the central Pacific occurred at 10

ka, with similar patterns, but gradually decreasing magnitudes persisting until 6 ka. By 4

to 2 ka, the Pacific remained in a state cooler than present, but with SST anomalies around

-6 to -4◦C.

Assuming decreased ENSO variability is consistent with an enhanced La Niña-like

state, the timing of maximum cooling in these findings is consistent with the timing recon-

structed by both Rodbell et al. (1999) and Moy et al. (2002), who used records of sedimenta-

tion in lakes in Ecuador to infer ENSO variability over the past 15 and 12 ka, respectively,
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and who showed an increasing occurrence of ENSO following 7 ka along with a low frequency

of ENSO events prior to that. Additionally, in a comparison of east and west Pacific proxy

SST reconstructions, Koutavas et al. (2006) claimed that the period of an enhanced zonal

gradient across the Pacific, and thus, an enhanced La Niña-like state, existed from 11 ka

until 5 ka. Clement et al. (2000), who used an orbitally forced model to reconstruct ENSO

variability during the past 12 ka, found that the amplitude of ENSO events increased from

10 ka to present, but that both the amplitude and frequency increased during the latter

half of that period. Our reconstructions are consistent with this if one assumes that in-

creased ENSO amplitude and frequency would result in warmer anomalies during the mid-

to late-Holocene.

Koutavas et al. (2006) emphasized the role of the zonal difference between the east and

west Pacific that helped create persisting La Niña conditions, and inferred that although

the enhanced zonal SST difference lasted from 11-5 ka, it was strongest at 6 ka. This calls

attention to the importance of considering not only periods of greatest cooling, but also the

periods when the SST difference between eastern and western Pacific was greatest. As noted

in Table 3.3a, the zonal difference in the multi-proxy reconstructions was largest at 6 and 10

ka. This timing coincides well with the timing suggested in the multi-proxy reconstructions:

(1) the largest zonal difference, and presumably lowest ENSO variability, occurs at 10 and

6 ka, (2) between 10 and 6 ka, the zonal difference decreases slightly, but remains ”La

Niña-like,” and (3) the late Holocene (4 to 2 ka) show only small negative zonal differences.

The PCA and CCA based methods offer several advantages: they are conceptually

simple, and have a well-developed theoretical foundation and rich history of application to

climate field reconstructions. They are, however, limiting in other ways: the reconstructions

are based on only linear projections, quantification of uncertainty in the reconstructions can

be unwieldy and, it is not straightforward to incorporate uncertainty information of the proxy

data. Emerging Bayesian Hierarchical Modeling framework offers attractive alternatives to

addressing these limitations, especially in estimating uncertainties in a robust manner by
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including data and model uncertainties.



Chapter 4

Multi-Proxy Reconstruction of Indian Summer Monsoon Winds and
Precipitation of the past 10,000 Years using Mg/Ca and Alkenone Records

Abstract

Using a multi-proxy reduced dimension methodology we reconstruct full fields of sum-

mer monsoon wind stress curl and rainfall anomalies over the Indian monsoon region since

the early-Holocene using SST proxies (Mg/Ca and alkenones) from forty locations scattered

across the Arabian Sea, the Bay of Bengal, and the east and west equatorial Pacific. Summer

wind stress curl reconstructions reveal that the greatest magnitudes of positive wind stress

curl ∼30% greater than present day off the coastlines of Oman and Yemen occurred at 10

ka, suggesting enhanced ocean upwelling and a strong monsoon jet during this time. Strong

positive anomalies in these regions continued but weakened slightly from 8 to 6 ka. By 2

to 4 ka, wind stress curl anomalies in the monsoon jet region weakened to 10-20% greater

than present day. This pattern is consistent with previous studies that use the fraction of

Globigirina bulloides to reconstruct upwelling strength in the western Arabian Sea over the

past 10 ka. Spatial rainfall reconstructions reveal the greatest difference in precipitation at

10 ka over the core monsoon region (20-60% greater than present day), and the greatest

deficit in rainfall in North East India and on the eastern side of the Western Ghats (10-30%

less than present day). Rainfall over the core monsoon region was about 30% greater than

present day from 8 to 6 ka, but decreased to not much more than 20% from 4 to 2 ka. These

findings advance the hypothesis that teleconnections from the equatorial Pacific could ex-
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plain greater early- to mid-Holocene wetness over India as recorded by various paleoclimate

proxies.

4.1 Background

Paleoclimatic evidence from climate proxy data suggests that India has aridified over

the past 10 thousand years (ka). The predominantly cited explanation rests on the idea

that greater summer insolation in early Holocene time, due to the precessional cycle, caused

greater heating of the Indian subcontinent, which increased the land-ocean temperature

gradient which created a stronger early than late Holocene monsoon (e.g. Kutzbach, 1981;

Kutzbach and Otto-Bliesner , 1982; Liu et al., 2000, 2003). This idea relies on the basic

understanding of monsoon dynamics. The monsoon begins each year in mid-May due to

the intense spring heating of the Indian subcontinent and possibly the Tibetan Plateau,

which creates a temperature, and thus, surface pressure gradient between the land and the

surrounding ocean that forces the monsoon jet (e.g. Li and Yanai, 1996; Wu et al., 2007), at

least during the early (mid-May to mid-June) and late (Sep to mid-Oct) seasons (Rajagopalan

and Molnar , 2013). In principle, over the course of the entire monsoon season, the degree

of the local land warming can modulate the strength not only of the jet strength but also

of monsoon rainfall. Therefore, a sensible hypothesis follows that enhanced land warming

during the early- to mid-Holocene contributed to greater wetness over India. Since the

mid-1990s, however, surface temperatures over India have risen dramatically while monsoon

rainfall has remained below average (Krishna Kumar et al., 2011), which suggests that other

processes also affect monsoon strength, whether measured by rainfall or wind speeds.

Teleconnections from the equatorial Pacific - El Niño Southern Oscillation (ENSO) -

also modulate the strength of the monsoon on inter-annual time scales. During La Niña (El

Niño), when central and eastern tropical Pacific SSTs are anomalously cool (warm), monsoon

rainfall commonly is strong (weak). There is an asymmetry in this relationship (See Chapter

2 and Krishna Kumar et al. (2006)) in that La Niña conditions almost always are associated
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with a strong monsoon year, but El Niño conditions have historically resulted in either

normal or weak monsoon years. Krishna Kumar et al. (2006) attribute this asymmetry

to the location of El Niño-related warming in the Pacific and explain that central Pacific

warming favors drought more than eastern Pacific warming.

Proxy records from the east and west Pacific that reconstruct SSTs throughout the

past 10 ka suggest a shift from a more La Niña-like state during the early- to mid-Holocene

to a more El Niño-like state during the late-Holocene (e.g. Conroy et al., 2008; Koutavas

et al., 2002, 2006; Leduc et al., 2007, 2010; Pahnke et al., 2007; Stott et al., 2002, 2004).

Additionally, primary productivity records from the Banda Sea (Beaufort et al., 2010) as

well as sediment records from Ecuador and Peru (e.g. Chazen et al., 2009; Moy et al., 2002;

Riedinger et al., 2002; Rein et al., 2005; Rodbell et al., 1999; Sandweiss et al., 1996, 2001) all

suggest an increase in ENSO variability after the mid-Holocene. Climate model simulations

for Holocene time also suggest a cooler equatorial Pacific and rare El Niõ events until around

6 ka (e.g. Clement et al., 1999, 2000; Emile-Geay et al., 2007).

Assuming the contemporary relationship between ENSO and the monsoon persisted

through the past 10 ka, and given the reliability of La Niña in producing strong monsoons, we

advance a second hypothesis that is independent from the land-warming hypothesis: equa-

torial Pacific cooling (i.e. La Niña-like state) during the early- to mid-Holocene contributed

to greater rainfall over India. Following similar logic, the return of ENSO variability during

the late Holocene could have contributed to aridification in late-Holocene. As these two

hypotheses (land-warming and ENSO) are not mutually exclusive, we aim not to disprove

the land-warming hypothesis, but to test the plausibility of the ENSO hypothesis.

To do so, we exploit SST proxy data from the eastern and western equatorial Pacific

(Tables 3.1 and 3.2, Figures 3.1 and 3.2), as well as the Indian Ocean (Table 4.1, Figure

4.1). In Chapter 3, we used a reduced-dimension multi-proxy reconstruction approach to

combine magnesium/calcium (Mg/Ca) and alkenone (Uk′
37) SST records from the east and

west Pacific to reconstruct full fields of tropical Pacific SSTs and zonal winds. We found
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that the coldest eastern equatorial Pacific SST anomalies occurred during the early Holocene

(10 ka), but the largest reconstructed zonal SST differences between east and west Pacific

occurred during 10 and 6 ka. The smallest zonal differences were seen from 4 to 2 ka. This

timeline is consistent with an enhanced La Niña-like state during the early- to mid-Holocene,

but not during the late Holocene.
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Figure 4.1: Maps of Indian Ocean Mg/Ca- and Uk′
37-based SST records. The second row

provides raw SST estimations as calibrated by original authors listed in Table 4.1. The third
row provides the records smoothed by a second order local polynomial method with a local
neighborhood of 70% nearest data points.
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Motivated by this hypothesis and the scattered proxy records across the Indian mon-

soon region in Figure 1.3 (explained in further detail in Section 4.2), we ask: Could the

aridification of India since 10 ka be attributed, at least in part, to teleconnections from

the Pacific? We use the same reduced-dimension multi-proxy reconstruction approach to

reconstruct full fields of summer wind stress curl over the Arabian Sea and Indian sum-

mer monsoon rainfall anomalies for the past 10 ka using only SST proxy records from the

Indo-Pacific region along with contemporary patterns of variability.

4.2 Paleoclimatic Evidence of a Wetter India

Evidence suggesting a stronger early- to mid-Holocene (∼ 10-6 ka BP) Indian sum-

mer monsoon exists as both continental and marine proxy records that extend across the

monsoonal region from southern Oman across the Bay of Bengal (Figure 1.3). Greater pre-

cipitation during the early- to mid-Holocene than late-Holocene (post 4 ka) has been inferred

(Bryson and Swain, 1981; Swain et al., 1983) from pollen reconstructions (Singh et al., 1972,

1973, 1974, 1990) and lake-bed sedimentology records (Achyuthan et al., 2007; Deotare et al.,

2004; Enzel et al., 1999; Kajale and Deotare, 1997; Prasad et al., 1997; Wasson et al., 1984)

from northwestern India. Although the lakes Bap Malar, Didwana, Kanod, Lunkaransar,

Nal Sarovar, Sambhar, Tal Chapar, and Parihara (Figure 1.3, blue) did not dry up simultane-

ously, each shows maximum wetness occurring sometime during the early- to mid-Holocene,

followed by a period of aridification during the late Holocene. Interestingly, a carbon isotope

record obtained from peat located in Nilgiri Hills region of south India (Figure 1.3, yellow)

shows an arid phase during the mid-Holocene followed by a wetter phase in the recent period

(Sukumar et al., 1993). Though opposite to those cited above for the region to the north,

his finding is actually consistent with the lake records, as this region, positioned in the rain

shadow of the Western Ghats, is typically out of phase with the rest of the sub-continent in

present-day rainfall (Gill et al., 2015).

Marine isotope records from boreholes located just south of the mouths of major Indian
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river systems that empty into the Arabian Sea and Bay of Bengal have also been exploited

to reconstruct isotope or sediment records that reflect discharge during the past 10 ka. In

the Arabian Sea, Staubwasser et al. (2003) used δ18O from the mouth of the Indus River

(Figure 1.3, 63KA) from the last 6 ka to infer a drastic reduction in discharge at 4.2 ka,

which is concurrent with the termination of the ancient Harappan civilization that inhabited

the Indus Valley. Farther south, numerous rivers drain from the Western Ghats into the

eastern Arabian Sea. Oxygen isotopes from a sediment core just off the coast (Figure 1.3,

red 3268G5) has been used to reconstruct Holocene evaporation minus precipitation, and

Sarkar et al. (2000) inferred relatively high precipitation from 10 to 6 ka, followed by an

arid episode from 3.5 to 2 ka. For the Bay of Bengal, Ponton et al. (2012) used a borehole

(NGHP-16A) located at about 16◦N (Figure 1.3, red 16A) to reconstruct Godavari River

basin vegetation changes as well as salinity changes in the Bay. They report a period of

aridity beginning at 4 ka and unprecedented high salinity from 3 ka to present-day, implying

lower precipitation and lower river discharge during the late Holocene compared to either the

early- or mid-Holocene. Farther north Kudrass et al. (2001) use alkenone temperature data

(Sonzogni et al., 1998) and δ18O data (Rostek et al., 1993) from SO93-126KL (Figure 1.3,

red 126KL) to reconstruct salinity at the mouth of the Ganges River in the northern Bay of

Bengal. They find that salinity decreased during the early Holocene, reaching a minimum at

6 ka, and subsequently increased until present-day. In the same region, Goodbred and Kuehl

(2000) analyzed over 50 borehole records scattered across the coastal region of Bangladesh

(Figure 1.3, purple box) to reconstruct sediment discharge from the Ganges and found high

sediment discharge from 11 to 7 ka. This, combined with the findings of Kudrass et al.

(2001), suggests that river discharge from the Ganges, which is reflective of precipitation

over the Indo-Gangetic Plains, was high during the early- and mid-Holocene.

Monsoon variability and strength has also been reconstructed using continental and

marine records from Oman and the western Arabian Sea, where biological productivity and

isotope proxies are used to infer ocean upwelling, wind strength, and precipitation for the past
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10 ka. Speleothem records in Oman from the Hoti Cave (Neff et al., 2001; Fleitmann et al.,

2007), Qunf Cave (Fleitmann et al., 2003, 2007) and Defore Cave (Fleitmann et al., 2007)

suggest a more intense rainfall during early Holocene but decreasing monsoon strength during

the mid- to late-Holocene (Figure 1.3, orange). When the monsoon jet sweeps across the

coastlines of Somalia and Oman, it induces upwelling, which enhances biological productivity.

G. bulloides is a planktic foraminifer that thrives in this cold nutrient-rich upwelling water

during the monsoon and acts as a proxy for wind strength (e.g. Curry et al., 1992; Prell and

Curry, 1981). A high-resolution record provided by Gupta et al. (2003) from core site ODP-

723A reveals a monotonic decrease in G. bulloides between 10 ka and 2 ka, which is inferred

to imply decreasing strength of winds during the summer monsoon. Another productivity

record (using Ba/Al ratios from N.dutertrei) off the Somali coast (NIOP-905) also implies

decreased upwelling from 10 ka to present (Ivanochko et al., 2005).

4.3 Modern Data

Contemporary (1901-2013) gridded (2◦ by 2◦) monthly SSTs were obtained from the

NOAA NCDC Extended Reconstruction Sea Surface Temperature (ERSST) version 3b

dataset (Smith et al., 2008). Contemporary monthly gridded (1.875◦ by 1.875◦) wind stress

curl (10−8 kg m−2 s−2) was calculated using NOAA NCEP-NCAR CDAS-1 zonal and merid-

ional momentum flux data for the period 1949-2013 (Kalnay et al., 1996) and masked to

include only the surface wind stress curl over Arabian Sea gridcells. Monthly anomalies were

calculated for each dataset using the 1981-2010 climatology. Monthly SST anomalies were

then converted to annual averages by averaging from May to the following April in order

to capture the annual ENSO cycle. Summer wind stress curl anomalies were calculated by

averaging June, July, August and September anomalies. Daily gridded (1◦ by 1◦) rainfall

was obtained from the India Meteorological Department (Rajeevan et al., 2006). Seasonal

average daily rainfall (mm d−1) time series were created for each grid point by averaging the

daily totals from 1 Jun to 30 Sep over the 1901-2004 period.
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Two common paleo-proxy records are used: magnesium/calcium ratios in planktonic

foraminifera (Mg/Ca) and an index of unsaturation in alkenones (Uk′
37) that formed at shallow

depths. See Chapter 3 for more information on the use of these proxies in this reconstruction

framework. Lea et al. (1999) and Nürnberg et al. (1996) summarize Mg/Ca paleothermom-

etry, and Brassell et al. (1986) and Herbert (2003) describe Uk′
37 paleothermometry.

There are 43 total SST proxy records (20 Mg/Ca and 23 Uk′
37), but for 3 sites both

types of proxy records have been obtained. In those instances, we use the Mg/Ca records

instead of the Uk′
37, as we did in Chapter 3. All 43 proxy records are listed in Tables 3.1,

3.2, and 4.1. As shown in Figures 3.1, 3.2, and 4.1, these records are sampled at various

temporal resolutions. We, therefore, smooth the raw SST records using a local polynomial

method with a second order polynomial and a local neighborhood consisting of 70% of

the nearest data points (e.g. Loader et al., 1996). These records were then converted to

SST anomalies using the climatological mean temperature from ERSST at the grid-cell

closest to the location of the proxy record. All paleo-SST records were obtained from the

archives of NCDC (http://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets)

and Pangaea (http://www.pangaea.de/).

4.4 Methodology

During summer season, SSTs over northern Indian Ocean (Arabian Sea and Bay of

Bengal) are modulated by the monsoon (Krishnamurthy and Kirtman, 2003), wherein strong

winds enable cooler SSTs from coastal upwelling and evaporative cooling. Therefore, recon-

structing the winds obviates the need for SST reconstructions. Indian Ocean SSTs exhibit

a well documented (e.g. Allan et al., 1995; Terray and Dominiak, 2005; Ihara et al., 2008b;

Roxy et al., 2014) recent warming trend largely attributed to anthropogenic sources. This

anthropogenic SST signal, which might have been imparted to the wind stress curl, must be

removed so that only the internal variability is reconstructed. To this end, first, a principal

component analysis (PCA) of 1949-2013 ERSST Indian Ocean SSTs was performed and as
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expected the first orthogonal mode accounts for nearly 70% of the total variability in the

data (Figure 4.2b), and is characterized by a strong warming trend (Figure 4.2a). Each

of the remaining modes, however, explains only a small fraction of the remaining variance

(Figure 4.2b). Then we regressed summer wind stress curl at each of the 262 grid points

over the Arabian Sea against the first Principal Component (PC). The residuals from the

regression represent the de-trended wind stress curl time series at each grid point.
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Figure 4.2: First orthogonal mode of summer (June-Sep) Indian Ocean SSTs from 1949-
2013 (Smith et al., 2008). As shown by the spatial EOF (a, top) and the PC (a, bottom),
the most dominant mode is a strong contemporary trend. The influence of this trend was
removed from summer contemporary wind data prior to paleo-reconstructions. This mode
accounts for nearly 70% of the total variance of the data, which can be seen on the eigenvalue
spectrum (right, b), which explains the resolved variance of each of the first ten modes. The
2nd and 3rd modes explain 9% and 7% of the total variance, respectively. The 4th mode, and
all modes after, each explain less than 5% of the total variance.
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Interannual variability of monsoonal winds and consequently the Indian summer rain-

fall are influenced by the Walker Circulation, which is directly affected by equatorial Pacific

SSTs (e.g. Krishna Kumar et al., 1995; Parthasarathy and Pant, 1985; Shukla and Mooley,

1987; Shukla and Paolino, 1983; Webster , 1987; Webster et al., 1998) and to a lesser ex-

tent Indian Ocean SSTs. Therefore, to reconstruct variations in monsoon strength, we use

SST proxy records from the Indian Ocean and equatorial Pacific to reconstruct anomalies

in Arabian Sea summer wind stress curl, as well as in monsoon rainfall over India. The

reconstruction methodology consists of two key steps on the contemporary fields - (i) using

PCA to isolate a small number of leading modes of variability in the contemporary limited

SST field (i.e. SSTs at the locations of the proxy data) and the contemporary full u- and

v-wind fields of the Indian Ocean, and (ii) using Canonical Correlation Analysis (CCA) to

obtain the best relationship that relates the modes of wind fields to that of SST. Then we

use these relationships along with the proxy data to reconstruct the modes of variability

of wind stress curl and consequently the spatial field. The same approach is employed for

reconstructing rainfall over the Indian subcontinent. The flowchart of this approach is shown

in Figure 4.3 and described in detail in Chapter 3 where we used this to reconstruct SSTs

and zonal winds over equatorial Pacific during the past 10,000 years. We describe steps of

the methodology briefly below and for details we refer the reader to Chapter 3.

4.4.1 Reconstruction of Summer Monsoon Wind Fields

The contemporary, de-trended, full-field summer wind stress curl obtained as described

above is organized into a matrix of dimension NxG, where N (= 65, 1949-2013) is the number

of years and G (=262) is the number of grid points.

Step (i). A Principal Component Analysis (PCA) is performed on the wind stress curl

field. The first four PCs of the wind stress curl field account for 22.1%, 10.6%, 9.7%, and

8.9%, respectively, of the total variance of the field (Figure 4.4a). The spatial and temporal

patterns of these modes are shown as empirical orthogonal functions (EOFs) and PCs for
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Figure 4.3: Flow chart of canonical correlation analysis (CCA) approach used for the multi-
proxy summer wind stress curl and rainfall reconstruction. The steps are given for producing
SSTs representative of 10 ka. Steps (iii− vi) are repeated for 8, 6, 4, and 2 ka.



90

0
20

40
60

80
10
0

Limited SST Field EVS

Modes

V
ar

ia
nc

e 
E

xp
la

in
ed

 (%
)

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10
0

Full Precip. Field EVS

Modes

V
ar

ia
nc

e 
E

xp
la

in
ed

 (%
)

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10
0

Full Curl Field EVS

Modes

V
ar

ia
nc

e 
E

xp
la

in
ed

 (%
)

1 2 3 4 5 6 7 8 9 10

Figure 4.4: Eigenvalue spectrums (EVS) for the (a) full field of Arabian Sea summer wind
stress curl (1949-2013) (Kalnay et al., 1996), (b) full field of Indian summer monsoon rainfall
(1901-2004) (Rajeevan et al., 2006), and (c) limited Indo-Pacific SST field (1949-2013) (Smith
et al., 2008). The green points represent the variance explained by the first mode of each
field. The grey dots represent all subsequent modes that each explain at least 5% of the
total variance of the respective datasets. This 5% threshold was considered in deciding how
many PCs to retain for each CCA reconstruction.

Arabian Sea wind stress curl (Figure 4.5). The first PC of the wind stress curl shows strong

eigenvalues in the monsoonal jet region over the Arabian Sea.

Step (ii). Let the contemporary limited-field SST data at the locations of paleo-proxy

data, which extend across the Indo-Pacific region (Figures 3.1, 3.2, and 4.1), be organized

as a matrix of dimension NxP . Where N is the length of the contemporary time period as

before (1949-2013 therefore N = 65) and P (= 40) is the number of paleo-proxy records . A

PCA on this limited field reveals that the first four modes of the limited Indo-Pacific SST

field account for 74.3%, 15.2%, 2.8%, and 1.8% of the limited field variance (Figure 4.4). As

seen in Figure 4.6 the first EOF is heavily weighted by changes in the eastern Pacific.

Step (iii). We retain a small number of PCs (NPC) from the contemporary full field
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Figure 4.5: First four orthogonal EOFs and PCs of Arabian Sea summer wind stress curl
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PCA (Step i) and the limited field PCA (Step ii). To determine the optimal number of PCs

to retain, we compared the calibration statistics across a number of scenarios that involved

retaining PCs that explained no less than 5% of the variance. Using this, for summer wind

stress curl, NPC = 8 (75.5% of the full field variance) was selected. A Canonical Correlation

Analysis (CCA) was performed on the eight retained PCs of wind stress curl with the first

eight PCs of the limited SST field. This results in eight pairs of canonical components (CCs),

each of which explains more of the joint variance than the next. In each pair, CCs are highly

correlated. For example, CC1 of wind stress curl is correlated to CC1 the limited SST field

with an R2 value of 0.81. Each CC of the full wind stress curl field is then linearly regressed

with the corresponding CC of the limited SST field.

Step (iv). For a given paleo time-period (e.g. 10 ka), the smoothed proxy data are

contained in a 1 xP matrix (where P is the number of proxy records that have values for the

given reconstruction period). Using the eigenvalue transformation matrix from the PCA in

Step (ii), these proxy data are transformed into PC-space.

Step (v). From Steps ii and iii, NPC canonical components were obtained. The esti-

mated components are back transformed to yield NPC reconstructed PCs. For the remaining

PCs, mean values from the contemporary period in Step i are used. This results in a vector

of PCs of wind stress curl of length G (=262), corresponding to 10 ka.

Step (vii). Finally, we obtain the reconstructed wind stress curl anomalies by back

transforming the PC vector obtained from Step (v). Steps iii-v are repeated for 8, 6, 4 and 2

ka. To avoid introducing bias, we choose not to reconstruct 0 ka, since several of the proxy

records do not extend to 0 ka. Instead, we show the average present-day (1949-2013) wind

stress curl, reconstructed as anomalies relative to the 1981-2010 climatology (Figure 4.7).

4.4.2 Reconstruction of Summer Monsoon Rainfall Fields

For rainfall, the reconstruction process follows that for wind stress curl. There is

no trend in the rainfall data that requires removal prior to the CCA-reconstruction. The
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Figure 4.7: The 1981-2010 summer wind stress curl climatology (10−8 kg m−2 s−2) over the
Arabian Sea.

seasonal average daily rainfall data is scaled (using means and standard deviations of each

grid cell) and a PCA is performed. The first four modes explain 18.3%, 7.8%, 5.9%, and

5.1% of the total-field variance (Figure 4.8). The only difference in this methodology from

that of the wind reconstruction is that N = 104 (for 1901-2004 data), G = 357 (grid cells

over India), and we choose to retain the first four PCs (NPC = 4) for the CCA, which jointly

explain 37% of the variance.

It should be underscored that this reconstruction focuses on capturing the variance

present in the leading retained modes (i.e. the dominant ‘signal’). For rainfall, this is only

∼ 37% for rainfall, which is notably less than the 80 - 90% of variance captured in the

equatorial Pacific SST reconstructions of Chapter 3. This is understandable given the highly
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Figure 4.8: Eigenvalue spectrum (left), first four EOFs (middle), and first four PCs (right)
from a PCA on 1901-2004 Rajeevan et al. (2006) rain data. The first four modes of Indian
summer monsoon rainfall account for 18.3%, 7.8%, 5.9%, and 5.1% of the full field variance.
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variable nature of rainfall.

4.4.3 Model Calibration and Verification

As mentioned above, the reconstructions recover the dominant signal in the wind stress

curl and rainfall fields, which account for a relatively small percentage of the total variance.

Thus, comparing the reconstructions to the full original data field will result in modest to

poor skills. To be consistent, we compute the calibration and validation measures on the

signal component of the original field. The signal components are obtained by projecting

the PCs on to the retained eigenvectors. For example, let X be the original data matrix

of size NxG, PC be the matrix of all the principal components also of size NxG and, ER

be the reduced eigenvector matrix of size GxG with the first NPC columns containing the

eigenvectors of the first NPC modes and zero for the rest. The signal component of the

original data (XR) is obtained by XR = [PC]ER.

Model calibration is performed on the signal components at each grid point using the

‘resolved variance’ statistic, β, given by:

β = 1−
∑ (y − ŷ)2∑

y2 (4.1)

where y is the contemporary signal data obtained in XR above, and ŷ is the reconstructed

signal data for the full period. We also compared the squared correlation, R2, between y

and ŷ at each grid point. These two statistics assess the reliability of the procedure in

reproducing the contemporary signal data (See Chapter 3 for more details). The β-statistic

serves as a measure of the resolved variance: for a perfect fit, one would expect β=1, and

for two random series, one would expect β=-1.

For wind stress curl (Figure 4.9 top left), most of the monsoon region is fairly well

reconstructed with β >0.25, with the weaker areas scattered throughout the Arabian Sea.

This is, perhaps, better observed in the R2 plot, in regions where R2 >0.25 (Figure 4.9, top

right). For rainfall (Figure 4.9, bottom), all calibration β values are highly positive (>0.75)
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and R2 >0.8 (Figure 4.9 bottom left), indicating that the model resolves the variability of

the rainfall signal (first four PCs) well.

As additional calibration, we pick two example years: (1) 1988-1989 - a strong La Niña

year, and (2) 1997-1998 - a strong El Niño year. These two years also happen to be strong
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Figure 4.9: Model calibration statistics for wind stress curl (top; using the first 8 PCs),
and rain (bottom; using the first 4 PCs) for the CCA-based reconstruction models. The β-
statistic (left) represents the resolved variance captured by the reconstructed contemporary
data (1949-2013 for wind stress curl, 1901-2004 for rain). The R2 (right) provides the
correlation between the observed contemporary data and the reconstructed contemporary
data. These statistics are calculated on the PC signal only, which is further clarified in the
text.
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and weak monsoon years, respectively, according to the All-India Summer Monsoon Rainfall

(AISMR) dataset (Sontakke et al., 1993). In either reconstruction, the general patterns of

winds are captured in the key regions, if, as expected the strengths are underestimated. For

example, in the La Niña summer of 1988 (Figure 4.10, top left), positive wind stress curl

anomalies, indicative of ocean upwelling, extended from the Yemen and northern Somali

coastlines across the Arabian Sea and along the western border of India. This zone of pos-

itive wind stress curl anomalies was neighbored to the north and south by negative wind

stress curl anomalies, indicative of ocean downwelling zones. The reconstruction captures

the correct signs and similar spatial extents of these anomalies, but with positive magni-

tudes underestimated in the upwelling zone. In terms of rainfall, the summer of 1988 was

interesting: although AISMR, a country-wide average monsoon rainfall index, reports an

above average monsoon season, there was deficit rainfall in the north central region (Figure

4.10, top right). Typically, during La Niña, one would expect excess rainfall across the core

monsoon region, which makes this particular year unusual. Despite this, the reconstructed

rainfall anomaly field shows a similar pattern to that of observed anomalies, capturing the

dry anomalies just west of Bangladesh. Again, magnitudes are muted.

For the El Niño summer of 1997, a band of strongly negative (-4 x 10−8 kg m−2

s−2) wind stress curl anomalies extends from the Yemen and northern Somali coastlines

across the Arabian Sea to the southern half of the Indian border (Figure 4.10, bottom left).

This negative (downwelling) zone is neighbored to the north by a positive (upwelling) zone

that extends from Oman to the northern half of the Indian border and to the south by a

second positive zone that encompasses the western half of the equatorial Arabian Sea. This

pattern is mostly captured, with the exception of the northern positive (upwelling) zone

which is omitted from the reconstruction. Magnitudes of the negative wind stress curl zone

are underestimated. The rainfall reconstruction captures the main signal of deficit rainfall,

but with negative rainfall anomalies across India that are more homogeneous than observed

anomalies (Figure 4.10, bottom right).
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Figure 4.10: Actual and reconstructed wind stress curl (10−8 kg m−2 s−2) and rain anomalies
(mm d−1) for 1988-1989 (a strong La Niña year and strong monsoon year) and 1997-1998 (a
strong El Niño year and weak monsoon year).



100

For independent verification we fitted the modes on using 1980-2013 for wind stress

curl and 1980-2004 for rainfall and then predicted the signal for the earlier period (1949-1979

for wind stress curl and 1901-1979 for rainfall). The verification maps for the two fields are

similar to resemble the calibration maps (Figure 4.11) but with lower magnitudes of β and

R2. For wind stress curl (Figure 4.11 top panels) the verification skills are poor (β <0) over

the Arabian Sea. The rainfall , however, shows skill with β >0.75, R2 >0.75 across the

country (Figure 4.11, bottom panels).

4.5 Multi-Proxy Reconstruction of Holocene Summer Wind Stress Curl
and Rainfall Fields

Figure 4.12 shows the reconstructions for wind stress curl anomalies for 10 ,8, 6, 4, and

2 ka. At 10 ka (Figure 4.12, bottom right), strongest positive wind stress curl anomalies of ∼

2 x 10−8 kg m−2 s−2 are shown off the coast of Oman and central Somalia, extending across

the northern Arabian Sea. Also shown is the reconstructed average anomaly for 1949-2013,

which shows small anomalies as expected. A zone of negative (∼ -2 x 10−8 kg m−2 s−2) wind

stress curl (downwelling) appears at the tip of the northern Somali coastline, and along the

southern half of the Indian coastline. This general pattern remains similar throughout the

Holocene, but gradually decreases in magnitude from 8 to 6 ka. By 4 to 2 ka, both positive

and negative anomalies are minimal, barely exceeding 1 x 10−8 kg m−2 s−2.

In agreement with the wind stress curl reconstructions, the greatest difference in rainfall

from present day occurred at 10 ka (Figure 4.13). The 10 ka reconstruction suggests that

compared to present day: (a) most of Rajasthan and northern India received 40% greater

precipitation, with some areas parts up to 60% greater precipitation, (b) the regions of the

Ganges and Godavari River Basins (Figure 1.3) received about 20% greater precipitation, and

(c) the rain shadow region of the Western Ghats, along with North East India, received less

rainfall (∼ 25%). (Note that Sukumar et al. (1993) had inferred relative arid conditions in

this region when Rajasthan was wet.) Throughout 10 to 6 ka, this pattern changes little. By
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4 ka, percentage differences in rainfall over Rajasthan and Northern India had decreased to

30% greater than present-day, but the central Ganges and Godavari regions remain at about

20% greater precipitation than present day. At 2 ka, precipitation across the core monsoon

region does not exceed 10-20% greater than present day. The reconstructed rainfall for the

1901-2004 contemporary period shows small negative anomalies across most of India.

Although the strength of a CCA method is in isolating dominant signals in a system,
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Figure 4.11: Model verification performed by training the model on the most recent period
(1980-2013 for wind stress curl, 1980-2004 for rainfall), and using that model to validate the
period prior (1949-1979 for winds and 1901-1979 for rain). The β- and R2-statistics are used
once again to quantify model skill and the statistics are calculated in the PC signal only.
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Figure 4.12: Multi-proxy reconstructed summer wind stress curl anomalies for 10, 8, 6, 4,
and 2 ka over the Arabian Sea region. The 1949-2013 panel of provides a reconstruction of
present-day wind stress curl anomalies using the limited-field data. The green point off the
coast of Oman in the northwestern Arabian Sea indicates the location of the G. bulloides
productivity/upwelling reconstruction provided by Gupta et al. (2003).
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Figure 4.13: Multi-proxy reconstructed rainfall over India for 10, 8, 6, 4, and 2 ka. These
are presented as percentage departures from the present day mean summer (June-Sep) daily
rainfall. Once again, the 1949-2013 panel of provides a reconstruction of present-day rainfall
percentage change anomalies using the limited-field data.
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its biggest weakness is in dealing with uncertainties. Unfortunately, uncertainties in the

reconstruction of PCs, eigenvalues, and eigenvectors are not robustly treated and difficult

to obtain without drowning out the dominant signal in noise. We quantify uncertainty on

the PCs of the dominant signal by calculating the standard error between the signal of the

observed period and the signal of the reconstruction (Figure 4.14). Standard errors in both

wind stress curl and rainfall are small (within 2% of present day values), which indicates

that the reconstruction of the signal is robust. We emphasize, however, that this represents

only the uncertainty on the dominant signal, not the total uncertainty in the entire field.

4.6 Comparisons of Reconstructions to Proxy Records

Recall from Figure 1.3 that a reconstruction of G. bulloides has been used to infer

enhanced upwelling of the coast of Oman (site OPD-732A) during early Holocene, which has

been used to suggest a weakening of the monsoon winds since 10 ka (Gupta et al., 2003). The

interpretation follows the logic that when the monsoon jet is strong, positive wind stress curl

across the western Arabian Sea coastlines induces upwelling and a flux of cold nutrient-rich

water to the surface. This nutrient-rich water allows surface dwelling organisms, such as G.

bulloides to bloom. Reconstructed summer wind stress curl anomalies at the ODP-732A site

(Figure 4.15, blue) to the Gupta et al. (2003) G. bulloides data (Figure 4.15, black), compare

well in the timing and trends of suggested upwelling. The G. bulloides record peaks at 8

ka, but is high from 10 to 8 ka. The reconstructed wind stress curl is consistently high

throughout 10 to 8 ka, and decreases only slightly throughout that period. Following 8 ka,

the G. bulloides record monotonically decreases to 2 ka. Although the reconstructed wind

stress curl does not decrease at a constant rate, anomalies lessen from 8 to 6 ka, and from 4

ka to present day, with a minimum at present day.

The proxy data that suggest enhanced early- to mid-Holocene rainfall over the Indian

subcontinent tend to cluster in defined regions of India (Figure 1.3). For example, most of

the lake evidence is contained to the northwestern region of Rajasthan, which is also near
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the 63KA proxy record recording discharge from the Indus River Basin (Staubwasser et al.,

2003). Another region is the Godavari River Basin, which extends across central India from

the Western Ghats to its mouth at 16A (Figure 1.3) . As shown in the spatial reconstructions,

the Indo-Gangetic Plains located along the northeastern border of India saw approximately

20% more rainfall during the early Holocene. With this information in mind, we define six

regions over India, for which we aim to reconstruct mean daily monsoon rainfall time series:

Northern India, Rajasthan, Western Ghats, Indo-Gangetic Plains, NE India, and Godavari

0.0

0.2

0.4

0.6

0.8

1.0

1.2
% 

40 50 60 70

0
10

20
30

0.0

0.2

0.4

0.6

0.8

1.0

40 50 60 70

0
10

20
30

10-8 kg m-2 s-2 

70 80 90 100

10
15

20
25

30
35

Figure 4.14: Standard error calculated from the actual 1949-2013 wind stress curl and 1901-
2004 rain anomalies and those reconstructed by the limited proxy field.
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(Figure 4.16).

For each region, mean 1901-2004 daily summer rainfall time series are averaged over

the regions defined in Figure 18. We then regressed these time series as functions of the first

four limited-field PCs from Step (ii) (Figure 10). These functional relationships, along with

the paleo PCs from Step iii, are used to predict rainfall for each 1000-year period from 10

to 1 ka (Figure 4.16). Standard errors from the regression model fit provide errors on the

rainfall reconstructions.

Among interesting features, first, most of the records reveal greater precipitation than

in the present day during the early- and mid-Holocene, as reflected in the spatial CCA re-

construction (Figure 4.16). The one record that shows the opposite trend is Northeast India,

which is consistent with the spatial reconstruction, but also consistent with contemporary

patterns. North East India is known (e.g. Guhathakurta and Rajeevan, 2008) to be out of
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Figure 4.15: Comparison of the G.bulloides reconstruction of (Gupta et al., 2003) (black)
to reconstructed percentage change in wind stress curl (blue) from 10 to 1 ka. A local
polynomial is used to smooth the G. bulloides data and is provided by the dotted line.
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Figure 4.16: Reconstructed mean daily rainfall (mm d−1) for the monsoon season for six
regions: (a) Northern India, (b) Rajasthan, (c) Western Ghats (green), (d) Indo-Gangetic
Plains, (e) North East India, and (f) Godavari River Basin. The stippled regions inside the
larger boundaries are the grid cells used for each respective reconstruction. Rajeevan et al.
(2006) mean daily rainfall from 1901-2004 is shaded on the map. Rainfall is reconstructed
by mean daily monsoon rainfall from each stippled region as a function of the limited field
SST proxies.
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phase with the rest of the core monsoon region in terms of interannual variability (see the

first EOF of rainfall in Figure 4.8), in that its relationship with ENSO (higher rainfall during

El Niño years) is opposite to that of the core monsoon region (lower rainfall during El Niño

years). Additionally, during the late Holocene when most records in the core monsoon region

suggest aridification, the precipitation time series for North East India is near present day,

if not slightly above, which would be consistent with a return of ENSO variability. Second,

the seemingly monotonic decrease in rainfall since 10 ka suggested by the spatial reconstruc-

tion (Figure 4.13) looks less monotonic in the time series reconstructions. For instance, the

Indo-Gangetic Plains time series shows greater precipitation than present day only during

10 to 6 ka, but not after. This is consistent with proxy records representative of runoff from

the Ganges River basin: (1) Kudrass et al. (2001) cite a minimum in salinity from the early-

to mid-Holocene that gradually increases to present day, and (2) Goodbred and Kuehl (2000)

cite greatest sediment discharge between 11 and 7 ka. For the Godavari River Basin, the

period of wetness extends to 3 ka, which is consistent with Ponton et al. (2012) who cite

increased salinity past 3 ka. The period of wetness for Rajasthan extended from 10 to 4 ka,

but seems more prominent in the earlier half of that time period.

A hydrological lake model Chapter 5 revealed that average annual precipitation 40-

65% greater than present day was necessary to sustain Lake Sambhar in Rajasthan India

(Figure 1.3). Reconstructions for Rajasthan of both spatial pattern (Figure 4.13) and the

appropriate Holocene time series (Figure 4.16) suggest that, although uncertainty is large, it

is possible that ENSO teleconnections during an early- to mid-Holocene La Niña-like state

contributed enough summer rainfall to Rajasthan to explain the enhanced wetness recorded

by lake proxy records.

The uncertainties on the each time series rainfall reconstruction is large, in part, be-

cause the PC models must predict rainfall outside that of the observed range. In most cases,

the large uncertainties make these trends marginally significant. At the least, these recon-

structions suggest that it is within the realm of possibility for equatorial Pacific SSTs to



109

externally force increased wetness over India.

4.7 Discussion

A total of forty proxy SST records (Mg/Ca and Uk′
37 that span the west Pacific, east

Pacific, Arabian Sea, and Bay of Bengal are used in a reduced dimension methodology to

reconstruct the full field dominant signal of Indian summer monsoon wind stress curl and

rainfall at 10, 8, 6, 4 and 2 ka. The reconstructions reveal greatest wind stress curl and

rainfall anomalies, as compared to present day, at 10 ka. These anomalies weaken and lessen

throughout the mid- and late- Holocene.

These reconstructions are consistent with a marine proxy record off the coast of Oman

(Gupta et al., 2003) that suggests enhanced upwelling during the early Holocene as compared

to late Holocene. Additionally, average rainfall time series for the past 10 ka for six regions

throughout India (Northern India, Rajasthan, Western Ghats, Indo-Gangetic Plains, North-

east India, and the Godavari Basin) are reconstructed using the PCs from the multi-proxy

limited field. The rainfall reconstructions are consistent with many marine and continental

proxy records that suggest enhanced rainfall during the early- to mid-Holocene as compared

to late Holocene. Although most rainfall time series reconstructions suggest greatest pre-

cipitation at 10 ka, they reveal slight differences in the timing of each region that can be

applied to various proxy records for precipitation and monsoon strength that have been

reconstructed across the Indian subcontinent 1.3.

The significance of these findings lies in the fact that only the patterns of wind stress

curl and rainfall tied to Indo-Pacific SSTs are reconstructed. Therefore, although these

findings suggest nothing of the effects of land warming, they imply that it is possible for

Pacific teleconnections to have written a signal on the Indian monsoon wetness that has been

suggested for the early- to mid-Holocene. Additionally, it is possible that a return of ENSO

variability in the late Holocene could be responsible for the aridification over India at that

time.



110

The significance of these findings lies in the fact that only the patterns of wind stress

curl and rainfall tied to Indo-Pacific SSTs are reconstructed. Therefore, while these findings

suggest nothing of the effects of land warming, they imply that it is possible for Pacific tele-

connections to have written a signal on the Indian monsoon wetness that has been suggested

for the early- to mid-Holocene. Additionally, it is possible that a return of ENSO variability

in the late-Holocene could be responsible for the aridification over India at that time.



Chapter 5

An Assessment of the Mean Annual Precipitation Needed to Sustain Lake
Sambhar in Rajasthan, India during Mid-Holocene Time

Abstract

An application of a simple hydrological model to likely climatic conditions of Lake

Sambhar provides tighter bounds on the range of increased precipitation seen during the

early- to mid-Holocene than those inferred from paleoclimatic proxies. To examine past lake

levels, we developed a simple lake model, based on hydrological principles of a watershed

balance between precipitation, evaporation, and runoff from the watershed to calculate daily

depth and volume. Calculations reveal that early- to mid-Holocene rainfall was most likely

in a range of 40-65% greater than present levels, resulting in lake depths of ∼ 6 to 8 m. This

estimate incorporates all major sources of uncertainty into the lake model, but it is likely

that the value of mid-Holocene precipitation lies in the lower part of the 40-65% range.

Additionally, a 40-65% greater precipitation could have led to greater interannual variability

in lake levels, which may account for the lack of clear shorelines. We find, however, that it

is unlikely Lake Sambhar filled to its maximum depth of 21 m above the present-day lake

bed during this period due both to the much greater precipitation than today required to

maintain a lake of such depth (greater than double present-day precipitation) and to the

lack of current evidence (no shorelines and little vegetation). We also find that differences

between mid-Holocene and present-day winter insolation alone have virtually no effect on

average annual lake depths.
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5.1 Background

Although the ability to predict the response of the South Asian monsoon to global

warming is of great interest to both the scientific field and society as a whole, there is much

disagreement as to whether the monsoon will intensify (strengthen) or stabilize (weaken)

in response to a warmer climate. Arguments for a future strengthening of the monsoon

rest on the theory that higher temperatures enhance the moisture-holding capacity of the

atmosphere and thus, on the presumption that with increased atmospheric moisture, more

rain will fall. The 1990 IPCC Scientific Assessment reported the results of several studies

using General Circulation Models (GCMs) of climate that simulated an intensification of the

monsoon in response to increased anthropogenic forcing. Since then, numerous other GCM

studies have predicted a similar intensification of the monsoon in response to warming (e.g.,

Meehl and Washington, 1993; Lal et al., 1995; Kitoh et al., 1997; Bhaskaran and Mitchell,

1998; Hu et al., 2000; Hsu et al., 2013). Alternatively, other studies have suggested a future

stabilization of the monsoon due to warming sea surface temperatures resulting in both a

decreased land-ocean pressure gradient and a weakened Walker circulation (e.g., Yang and

Lau, 1998; Xu et al., 2012). In general, historical datasets of precipitation over India during

the past century show no overall trend in increased monsoon strength over the country as

a whole (Krishnan et al., 2013). In fact, both APHRODITE (Yatagai et al., 2012) and

India Meteorological Department (IMD) gridded daily rainfall (Rajeevan et al., 2006) for the

period of 1951-2007 show a decrease in the rainfall rate for the summer monsoonal period in

the north and central regions of India (see Fig. 1 of Krishnan et al., 2013). Although some

studies have found no discernible trend within the last century (Krishna Kumar et al., 2011),

others have suggested a change in overall variability of extreme monsoon events despite the

absence of a long-term mean trend (Menon et al., 2013). It remains to be determined how

the South Asian monsoon will respond to a warmer climate.

Taking an alternative approach, we call attention to times of warmer climates dur-
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ing Earth’s history, namely the early- to mid-Holocene (∼10,000 - 5,000 years ago). It is

understood that the warmer conditions that characterize reconstructions of paleo-climate

during this period resulted from the precession of Earth’s orbit, with greater insolation dur-

ing summer months of that period than today. Specifically, average summer (June, July

and August) insolation at 25◦ N, the latitude of the site in our study, gradually decreased

from ∼ 483 W m−2 at 9 thousand years ago (ka) to ∼451 W m−2 during Present Day

(Berger , 1992). Although the mid-Holocene is not a strict analogue for future conditions,

Bartlein et al. (2011) claims, “the mid-Holocene offers the possibility of studying a period

with warmer conditions and longer growing seasons in many regions, comparable in some

respect to climates expected as a result of increasing radiative forcing in the future.”

The existence of salt lake deposits in the northwestern region of India was first reported

during the 1950s (Aggarwal, 1951; Deb, 1952; Godbole, 1952; Aggarwal, 1957). With the

scientific advances of the last half-century, we have gained more insight concerning the history

of these lakes. Isotopic analysis of oxygen and hydrogen from in and around these lakes shows

that the water is of meteoric origin with the salt content originating from weathering of rocks

(Ramesh et al. 1993). Pollen reconstructions reveal warmer and wetter conditions during 9 -

6 ka throughout the deserts of Rajasthan (Singh et al., 1974; Bryson and Swain, 1981), Bap

Malar, and Kanod (Deotare et al., 2004; Kajale and Deotare, 1997) as compared to present-

day conditions (see Figure 5.1). Wasson et al. (1984) reconstructed history of salinity and

water-level changes at Lake Didwana by using sediment texture and mineralogy of evaporites

and precipitates, and they found that lake level varied widely during early-Holocene with the

deepest conditions around 6 ka. Water level dropped around 4 ka and then dried quickly.

Studies of the lithostratigraphy and mineralogy of Lunkaransar (Enzel et al., 1999) and

Sambhar (Sinha et al., 2004) found similar timing of Holocene wet and dry periods. They

inferred that winter precipitation increased around 6 ka when the lake filled to its maximum

depth.

Other studies using various proxies of monsoon strength have suggested a general
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Figure 5.1: Ancient lakebeds of Lakes Lunkaransar, Didwana and Sambhar, located in the
Rajasthan desert region, used in this study to reconstruct lake levels through the early
Holocene. The map of rainfall over India was obtained from the Survey of India.

increase in monsoon intensity during this same time period as compared to the Present.

Reconstruction of the prevalence of Globigerina bulloides, a planktic foraminifer that blooms

along the western Arabian Sea during times of intense upwelling, suggests that monsoon

winds were strong during the early- to mid-Holocene and have gradually become weaker

(Gupta et al., 2003). High-resolution oxygen isotope (δ18O) profiles of stalagmites from

Oman (Neff et al., 2001; Fleitmann et al., 2003) and Yemen (Fleitmann et al., 2007) serve
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as proxies for monsoon rainfall and reflect a wetter early Holocene with gradual decreases in

precipitation after 8 ka to the Present.

Finally, Krishna Kumar et al. (2006) provide a recent example of the robust rela-

tionship between La Niña-like Pacific sea-surface temperature (SST) conditions and a strong

monsoon. Consistent with this relationship, Pacific SST reconstructions of the western warm

pool and eastern cold tongue show the largest zonal SST gradient during this 9-6 ka period

(Koutavas et al., 2002, 2006; Stott et al., 2004). Some have inferred from this that the Pacific

was in an enhanced La Niña-like state during this period (Clement et al., 1999, 2000; Mar-

chitto et al., 2010), which contributed to stronger rainfall and wetter conditions over India

(Koutavas et al., 2002; Conroy et al., 2008).

A recent study, which used the National Center for Atmospheric Research (NCAR)

Community Climate System Model 3.0 (CCSM3) GCM, along with a simple water-balance

model to simulate lake-level changes in monsoonal Asia, reported high lake levels during the

early- to mid-Holocene caused by a combination of low lake evaporation and high precipita-

tion (Li and Morrill, 2010). Another GCM study contrasting precession extremes (Battisti

et al., 2014) showed higher rainfall in times analogous to the early Holocene, but because of

increased cloud cover, they also found lower summer temperatures and, presumably, lower

evaporation.

Although there seems little doubt that the Rajasthan region in the early- to mid-

Holocene was wetter than today, we ask the question, how much wetter was it? To inves-

tigate the sensitivity of these lakes to changes in insolation and precipitation, we develop a

hydrological model to simulate lake level fluctuations in Lake Sambhar of Rajasthan, India,

back through the early Holocene (since 10 ka).
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5.2 Methodology and lake model

5.2.1 Study area and data

Lake Sambhar, the main lake investigated in this study, is a closed basin lake located

in Rajasthan, India (Figure 5.1). Sambhar, a tourist location centered at 26◦ 56’ 25” N, 75◦

05’ 07” E, is filled year-round with seasonally fluctuating lake levels and with a watershed

area of ∼5400 km2. The playa is fed by two major streams (Mendha and Rupangarh), which

are part of a larger dense drainage network reflecting abundant water supply during wetter

phases (Sinha et al., 2004). Two other nearby closed basin lakes were used in calibration of

the hydrological model: (1) Lake Lunkaransar, a perennially dry lakebed centered at 28◦ 30’

10” N, 73◦ 44’ 35” E with a watershed area of ∼102 km2 and (2) Lake Didwana, a seasonal

lakebed centered at 27◦ 22’ 20” N, 74◦ 34’ 12” E with a watershed area of ∼288 km2. The

average annual rainfall during the period 1969-2005 taken from Rajeevan et al. (2006) for

Lakes Sambhar, Didwana, and Lunkaransar, respectively, is 532 ± 137 mm yr−1, 450 ± 148

mm yr−1, and 345 ± 139 mm yr−1. During the 1969-2005 period, Lake Sambhar experienced

a mean daily temperature of 25.5 ± 0.5◦C, while its average coldest (hottest) month was

January (May and June) with temperatures around 15 ± 0.8◦C (33 ± 1.2◦C) (Srivastava

et al., 2009). The temperature regimes for Lakes Didwana and Lunkaransar follow that of

Lake Sambhar’s closely.

We rely on the deduction of Singh et al. (1974), who state that “the dry bed of the

lake lies at about 360 m a.s.l. but the lake sediments, consisting mainly of silt and clay,

extend some 6.1 m above the general surface in raised beaches formed on the slopes of the

promontory jutting into the basin in the extreme northwest.” This, albeit tentative, finding

provides the best geologic evidence for the maximum depth of Lake Sambhar. Although this

lake sediment has not been dated back to the mid-Holocene, pollen reconstructions (Bryson

and Swain, 1981; Singh et al., 1974; Swain et al., 1983) from the area limit the “lifetime” of

these lakes to the mid-Holocene epoch; the absence of pollen suggests lakes were dry prior to
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∼10 ka and following ∼5 ka. Further evidence of shorelines would significantly enhance the

value of a study like ours. For instance, if an unambiguous shoreline were found at a certain

depth and dated back to the mid-Holocene period, the lake model that we exploit could be

easily used to estimate the precipitation necessary to produce such depths. Furthermore, a

more detailed recent history of lake depths at Lakes Lunkaransar, Didwana, and Sambhar

would also enhance this study. We infer the present conditions of these three lakes from

satellite imagery and anecdotal information.

Watershed areas and lake hypsometry were determined using 30-arc second digital

elevation maps of the regions and the Hydrology toolset in ESRI’s ArcMap 10.1. For the

hypsometry, we obtained relationships for volume versus depth and depth versus surface

area, which are used for each lake (Figure 5.2). The hypsometric relationships in Figure

5.2 are representative of present-day relationships between depth, volume, and surface area.

Singh et al. (1972) find through stratigraphic analysis of the far eastern section of Lake

Sambhar, that at most 2 m of sediment (1.5-1.6 m since 4665 ± 110 BP and 1.85-1.95 m

since 6235 ± 135 BP) have been deposited since the mid-Holocene period. Additionally, 2 m

and 1.5 m of sediment have been deposited in Lakes Didwana and Lunkaransar, respectively

(Singh et al., 1972)). When running the lake model for present-day conditions, we use the

contemporary hypsometric relationships. When modeling mid-Holocene conditions (as in

Section 5.4), however, we must account for potentially deeper lake bottoms during that time

by shifting the hypsometry of each lake deeper by the amounts cited above.

5.2.2 Hydrological water budget

Previous studies have modeled shifts in average lake level and its variance using a

generalized water budget model (e.g., Shanahan et al., 2007), which is similar to the model

we use here. The volume (V ) of water in any lake can be expressed as the balance between

hydrological input volumes of precipitation (PV ) and of watershed runoff into the lake (RV )

and hydrological output volumes of evaporation from the lake (EV ) and of discharge from
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Figure 5.2: Hypsometric relationships, depth vs. volume (a) and surface area vs. depth (b)
for Lake Sambhar derived using 30-arc-second DEMs, Google Earth and ESRI ArcMap.

the lake (DV ). Lakes Sambhar, Didwana, and Lunkaransar lie in closed-basins, and therefore

have no discharge. With this, our water budget equation becomes

∆V = PV +RV − EV (5.1)

where ∆V is the change in lake volume between each time-step. Our water budget does not

consider snowmelt since: (1) temperatures at Sambhar throughout the year are too warm for

snow, and (2) the watershed that feeds Sambhar does not extend into high ground that would

be snow covered during modern or previously warmer periods, such as the mid-Holocene.

The model is run using a daily time-step, set by temporal resolution in our precipitation and

temperature datasets.
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5.2.3 Runoff

The U.S. Department of Agriculture Soil Conservation Service (SCS), now known as

the Natural Resource Conservation Service, developed a method of estimating runoff using

cumulative precipitation over a watershed (Mockus and Hjelmfelt, 2004). The beauty of this

method is that it directly estimates runoff based on daily totals of precipitation, eliminating

the need for sub-daily storm precipitation rate details. This method has been shown to model

runoff well in various watersheds of India (Gajbhiye et al., 2014; Mishra et al., 2006) and

has previously been used in Rajasthan, India by Durbude et al. (2001). Using this method,

one calculates a curve number, a dimensionless number between 0 and 100, with 100 used

for a completely impervious surface such as impermeable pavement. The curve number is a

function of land use, soil type, antecedent soil moisture, and other factors affecting runoff and

retention in a watershed (Mays, 2011). For a heterogeneous watershed, one can determine

the composite (weighted) curve number,

CNcomp = aCNa + bCNb + ...+ nCNn (5.2)

where a, b, ..., n are fractions of total area for each curve number, such that a + b + ... +

n = 1, and CNa, CNb, ..., CNn are the respective curve numbers for each fraction of the

watershed. In the case of a homogeneous watershed, computation of a composite curve

number is unnecessary.

5.2.3.1 Land use and soil type

In SCS four main soil group types are considered (Mockus and Hjelmfelt, 2004; Mays,

2011): (A) deep sand, deep loess, aggregated silts; (B) shallow loess, sandy loam; (C) clay

loams, shallow sandy loams, soils low in organic content, and soils usually high in clay;

(D) soils that swell significantly when they contain wet, heavy plastic clays, and certain

saline soils. Land use percentages for each region were taken from The Government of

India’s Department of Agriculture (DOA) Contingency Plans Department of Agriculture
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(2014) for Jaipur, Nagaur, and Bikaner districts - the districts of Lake Sambhar, Didwana,

and Lunkaransar, respectively. Using these reports, all three watersheds were given a soil

type defined as 50% soil Type A and 50% soil Type B, as well as a composite land cover

that is a combination of cultivated small grain contoured agriculture, desert shrubland,

barren/pasture land, and forest. The percentages of land-use applied and resulting composite

curve numbers (via Equation 5.2) for each of the three watersheds are found in Table 5.1.

Table 5.1: Land-use percentages in each watershed used in calculating the resulting compos-
ite curve numbers using the SCS rainfall-runoff method.

Lunkaransar (%) Didwana (%) Sambhar (%)
Cultivated 5 11 23
Desert/Shrubland 90 84 63
Pasture/Barren 2 4 7
Forest 3 1 7
Composite CN 58 59 59

Note that composite curve numbers were calculated using 50% soil type A (sand), 50% soil type
B (loam), Land-Use in Good Condition, and AMCII moisture conditions. Curve numbers are

subsequently converted to either AMCI or AMCIII using information on the cumulative rainfall
over the previous 5-day period.

5.2.3.2 Antecedent moisture condition (AMC)

Antecedent soil moisture, in addition to land use and soil type, plays a role in defining

three curve numbers specific to any given region. In the SCS method, AMC condition

(I, II, or III), is determined by calculating the cumulative rainfall for the previous five

days. More specifically, AMCII is the average moisture condition depending on whether

it is the dormant (0.5 to 1.1 inches) or growing (1.4 to 2.1 inches) season. AMCI and

AMCIII are the low (for the dormant season: <0.5 inches, or for the growing season: <1.4

inches) and the high (dormant season: >1.1 inches, or growing season: >2.1 inches) moisture

conditions, respectively. This classification is particularly important for the monsoon season

when Rajasthan not only is persistently wet, but also likely to be in AMCIII, and therefore
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should produce a higher amount of runoff than during the non-monsoonal time of year, when

Rajasthan is dry and likely in AMCI. Curve numbers are provided in AMCII for a multitude

of land surface conditions on SCS. Conversion to the two other AMC conditions can be done

using the following empirically derived formulae (Mockus and Hjelmfelt, 2004):

CN(I) = 4.2CN(II)
10− 0.0058CN(II) (5.3)

CN(III) = 23CN(II)
10 + 0.13CN(II) (5.4)

For each of the three watersheds, the composite curve numbers from Equation 5.2 are

either left as CN(II) appropriate for AMCII conditions, or converted to CN(I) or CN(III)

based on the cumulated daily precipitation from the previous five days provided by the

datasets of Rajeevan et al. (2006) and the thresholds for each AMC condition outlined above.

The defined AMC thresholds in Equations 5.3 and 5.4 do not vary with location. However,

since precipitation does vary with region, so does the percentage of time a CN spends in

either AMC I, II, or III. Also, CNs vary with region due to differences in land use and soil

type.

Although the assignments of curve number might seem to require many arbitrary de-

cisions, we emphasize that this approach has a long history in hydrology.

5.2.3.3 Calculating runoff

Following determination of a curve number that represents the entire watershed, one

can calculate the potential maximum retention of the watershed, S (mm), which is estimated

by the following relationship developed from empirical studies (Mockus and Hjelmfelt, 2004):

S = 1000
CN

− 10 (5.5)

As curve numbers can typically range between 30 and 90, S commonly lies between 1 mm and

23 mm. Furthermore, there is some amount of water that is initially abstracted, Ia, (through
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processes such as interception by vegetation), which has been determined commonly to be

Ia = 0.2S from a study of many small experimental watersheds (Mockus and Hjelmfelt,

2004). If the daily precipitation total is less than the initial abstraction (P ≤ Ia), there will

be no runoff. If P ≥ Ia, then the effective runoff, R, for that day can be calculated to be a

fraction of P − Ia, where the fraction depends on S:

R = (P − Ia)2

P − Ia + S
= (P − 0.2S)2

P + 0.8S (5.6)

For example, using the composite curve number calculated for Lake Sambhar (CN=59)

during AMCII, the potential maximum retention would be 6.9 mm (via Equation 5.5) and

the initial abstraction would be 1.4 mm. Assuming a cumulative five-day daily precipitation

total of 4 mm during AMCII, the SCS curve number method would estimate a cumulative

daily runoff amount of 0.7 mm (via Equation 5.6). Assume, instead, that the previous five

days had been particularly wet and pushed the model into AMCIII, then CN=76.8 (via

Equation 5.4), S=3.0 mm, Ia =0.6 mm, and runoff would therefore increase from 0.7 mm

during AMCII to 1.8-mm due to saturated ground conditions. Likewise, if the previous

five-day cumulative rainfall was low enough to push the model to AMCI, then CN=37.7

(via Equation 5.3), S=16.5 mm, Ia=3.3 mm, and runoff would decrease from 0.7 mm during

AMCII to 0.03 mm. This method was applied on a daily timescale to estimate a volume of

runoff that directly fed each of the three lakes.

5.2.4 Radiation

Radiation is necessary to calculate losses to evaporation from the lake itself. We know

that seasonal variation in the top-of-the-atmosphere insolation at 10 ka was different from

that of today, with higher insolation in the summer and lower insolation in the winter.

Therefore, presumably, the balance between precipitation and evaporation, which works to

sustain lakes, could have been different. Furthermore, if the monsoon activity was different,

cloud cover, and therefore atmospheric transmissivity, likely differed as well.
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Net radiation is given by RN = SWN−LWN , where SWN is the net shortwave radiation

onto the lake and LWN is the net longwave radiation back to space. To determine net

shortwave radiation, one must consider not only the incoming solar insolation, but also the

transmissivity of the atmosphere. Transmissivity, tr, is calculated by,

tr = a+ (1− cc)b (5.7)

where a and b are empirical constants and cc is cloud cover. Ideally, empirical constants

would be derived by comparing on local ground measurements with values of a and b. In

the absence of locally calibrated values, Shuttleworth (2012) recommends assuming a and b

to be 0.25 and 0.75, referring to 25% and 75% losses of energy on clear-sky and overcast

days, respectively. Without reliable daily cloud cover data for this area for the entire 1969-

2005 period, we used the relationship between observed cloud cover over Sanganer Airport

(weather station #33936 from NOAA National Climatic Data Center) in Jaipur, India during

the monsoonal season of 2004 and the corresponding daily precipitation rate during the same

period (mean rainfall rate = 35 mm d−1, sd = 8.3 mm d−1). Trace precipitation amounts

(less than 0.25 mm d−1) were recorded at 0% cloud cover. Cloud cover was recorded as 100%

on days when precipitation was equal to or exceeded three standard deviations greater than

the mean (∼60 mm d−1). A local logistic regression (Loader , 1999, e.g.) was fitted to model

the relationship between daily cloud cover percentage and daily rainfall values between these

thresholds (Figure 5.3). When simulating sequences of 2000-year periods, cloud cover was

estimated daily from this relationship using the randomly sampled daily precipitation values.

Actual net solar radiation, Sd, is equal to,

Sd = tr · STOA (5.8)

where STOA is the top-of-the-atmosphere insolation.

Finally, net shortwave radiation can be calculated using,

SWN = (1− α) · Sd (5.9)



124

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation (mm)

Fr
ac

tio
na

l M
ed

ia
n 

D
ai

ly
 C

lo
ud

 C
ov

er
Estimating Median Cloud Cover from Daily Precipitation

Figure 5.3: Median fractional daily cloud cover from NOAA NCDC versus daily precipitation
from Rajeevan et al. (2006), with a local logistic regression (red line). Trace values of
precipitation (less than 0.25mm per day) were assigned a median fractional cloud cover of
0%, and values greater than 50 mm per day were assigned a median fractional cloud cover
of 100%. An F-test for significance showed that the logistic regression model fit the data
significantly better (p-value = 2.1 x 10-6) than the global logistic model. Efron’s R2 was
calculated as 0.36.

where α is the surface albedo. Completely bare desert has an approximate albedo of 0.4.

Introduction of vegetation creates higher absorption, reducing albedo values toward 0.2 for

complete vegetation cover. In our case, we consider a desert environment with minimal

vegetation (Maidment et al., 1992). Variations in albedo between 0.2 and 0.3 resulted in

negligible changes in lake level, and therefore we used an albedo value of 0.3.

The empirically based Berliand formula Berliand and Berliand (1952), which uses the

theoretical dependence of net long-wave radiation upon the temperature and the specific



125

humidity of the air, has been shown to accurately estimate net long-wave radiation, LWN

(Maidment et al., 1992; Budyko, 1974) as,

LWN = εσT 4(0.39− 0.058√esat)(1− 0.54 · t2r) (5.10)

where ε is the emissivity of water (0.96) , σ is the Stefan-Boltzmann constant (5.67 ×

10−8Wm−2K−4), T (K) is the temperature of the water surface (assumed to be equal to

the surface air temperature) and esat is the saturation vapor pressure (kPa) given by,

esat = 0.611exp
(17.3 · T

237.3

)
(5.11)

where the temperature is given in ◦C.

5.2.5 Evaporative losses

Through the SCS method, runoff is directly estimated based on subsurface soil and

surface land characteristics, eliminating the need to estimate evaporative losses from the

watershed itself. However, evaporative loss from the lake must be considered in calculating

lake depth. With the methods described here we assume that: (1) due to the shallow depth

of Lake Sambhar, lake stratification does not affect evaporative losses, and (2) due to the

warm temperatures of the Lake Sambhar region throughout the year, lake ice does not affect

evaporative losses. A common method for evaluating evaporation is the Penman combination

approach (Penman, 1948) given by,

E = Rn

λv

∆
∆ + γ

+ Ea
γ

∆ + γ
(5.12)

where ∆ = desat

dT
, λv is the latent heat of vaporization, Rn is the net radiation, Ea is the evap-

oration due to wind and the vapor pressure gradient, and γ is the psychrometric constant,

which is equal to cpPr

0.622λv
, where cp is the specific heat and Pr is atmospheric pressure. Calcu-

lating evaporation due to wind (Ea ) requires wind and humidity data. For our purposes, we

lack both reliable daily wind speed and specific or relative humidity values for the Rajasthan
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region, and we have no easy way to estimate these for the early Holocene. To bypass this,

we use the Priestley-Taylor method (Priestley and Taylor , 1972), which has been shown to

accurately model evaporation in situations lacking humidity information (Shanahan et al.,

2007). This approach recognizes that the first term in Equation 5.12 dominates the total

evaporation rate. Evaporation can therefore be estimated by,

E = ω
Rn

λv

∆
∆ + γ

(5.13)

where ω is the Priestley-Taylor constant. Although ω =1.26 is a typical value for the

Priestley-Taylor constant, we used 1.74, which is the value recommended (Maidment et al.,

1992; Shuttleworth, 2012) for arid regions, such as Rajasthan. Our estimated present-day

annual total Priestley Taylor evaporation (∼2130 mm yr−1) compares well with present-day

annual total pan evaporation measurements (∼2340 mm yr−1) near Lake Samhbar provided

by the Government of India (Central Water Commission, 2006).

5.3 Comparison of lake model with present-day conditions

At present, Lake Sambhar fluctuates between 0 and 3 meters while responding to the

seasonal cycle but remains dry most of the year (Sinha et al., 2004; Sangha, 2008). Further-

more, using present-day lake hypsometry (Figure 5.2) and a typical average runoff coefficient

of 0.075 for sandy soils (Maidment et al., 1992) such as the Lake Sambhar watershed, one can

calculate that neglecting precipitation into and evaporation from the lake itself, an annual

total of at least 590 mm of rain over the watershed is necessary to fill the lake to a 3 m

depth (equivalent to ∼240 x 106 m3 volume of water via Figure 5.2). Using the contempo-

rary record of precipitation from (Rajeevan et al., 2006), we calculate that this amount of

annual rainfall occurred once in the 37-year period. Therefore, we assume that lake model

depths fluctuate above 3 m approximately 3% of the time. Figure 5.4 shows the effect of

CN on Lake Sambhar depth using contemporary precipitation for the 37-year period. For

CN=59 (Table 5.1; Figure 5.4) modeled Lake Sambhar depths exceed 3 m 3.5% of the time
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(469 days out of 37 years) with maximum and minimum average annual depths of 2.11 m

and 0.15 m and an overall average depth of 1.16 m. There is inherent error involved in

selecting one single curve number for a watershed that is both heterogeneous in terms of

land-use and soil content. On the upper end, a curve number greater than or equal to 64 for

Lake Sambhar would result in average annual depths that exceeds 3 m at least 10% of the

time, which seems too often given the 37 year history for which there are records. On the

lower end, a curve number less than or equal to 55 is representative of a watershed entirely

composed of sand. A curve number below 55 would inaccurately model the Lake Sambhar

watershed since some percentage of the soil is loam, which has a higher runoff yield than

sand. Moreover, a curve number of 55 results in lake depths exceeding 3 m only 1% of the

time. Therefore, in combining all of the information we have on the present-day state of

Lake Sambhar, we consider possible curve number to range from 55 to 64. We emphasize

that although evaporation was neglected from this calculation, which was used to determine

reasonable bounds for possible curve numbers in the absence of observational lake-level data,

evaporation is not neglected in the lake model itself. Evaporation is calculated in the lake

model using net radiation on a daily basis as described in Section 5.2.5.

In an application of the model to the Lake Sambhar watershed, using the parameters

discussed above, the lake responds to the seasonal cycle of monsoonal rainfall (Figure 5.5).

Figure 5.5 provides precipitation record for the period of 1969-2005 as well as the resulting

modeled Lake Sambhar depths using observed precipitation, temperature, and insolation.

IndiaToday (1999) cited that periods of persistent rainfall during the early 1980s resulted in

a deeper Lake Sambhar, which is successfully captured in contemporary runs of our model

(Figure 5.5).

5.4 Effects of insolation and precipitation

To investigate the feasibility of various increases in precipitation suggested by paleo-

climate studies, and consequent increases in lake depth, we ran a sensitivity study by calculat-
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ing the response of average annual Sambhar lake depth for various increases in precipitation

and changes in insolation. Recall that insolation plays a direct role in evaporation rates from

the lake. It should also be noted that changes in temperature could affect evaporation rates

as well. In our model, a 1◦C increase (decrease) in temperature, results in an approximate

0.03 mm d−1 (∼11 mm yr−1) increase (decrease) in evaporation (assuming a mean cloud

cover of 10% and mean annual insolation 32.6 MJ m−2 d−1). Additionally, we do not know

the exact magnitude by which temperatures shifted from the mid-Holocene to present day.
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Figure 5.4: This figure boxplots the annual depths (m) from Lake Sambhar modeled using
contemporary precipitation and insolation, while varying the curve number from 50 to 70.
The boxplots show the median (thick center line), first quartile (bottom of box), third
quartile (top of box), minimum (bottom whisker) and maximum (top whisker) annual lake
depths. The secondary axis plots blue asterisk to represent the percentage of time Lake
Sambhar spends at depths greater than 3 meters, which is the maximum depth most cited
for present-day Lake Sambhar conditions (Sinha et al., 2004; Sangha, 2008).
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Therefore, we chose to run the model with present day temperatures to avoid introducing

another free parameter into the model.

Berger’s Orbital Insolation Database (Berger , 1992) contains insolation values in 1 kyr

increments by 10◦ latitude bands per month for the past 100 thousand-years. For this study,

we calculated an average 20-30◦N monthly insolation for 10-9 ka, 7-6 ka, 4-3 ka and 0 ka to

represent early Holocene, mid-Holocene, late Holocene, and Present Day, respectively. To

create 2000-year long daily sequences with which to run the model, we randomly selected
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Figure 5.5: Daily observed precipitation (mm) from 1969-2005 (top) and calculated Lake
Sambhar depth (m) using current precipitation, temperature and insolation records (bot-
tom). The various colors correspond to different initial depths of the lake, red = 0 m
(empty), black = 2 m, blue = 4 m, and yellow = 8 m, and are included to show that initial
condition does not play a significant role in the long-term behavior of Sambhar lake depth.
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years of precipitation and temperature from those measured over the past 60 years (Rajeevan

et al., 2006). Differences in insolation alone had an almost unrecognizable effect, less than

a few percent, on the annual average calculated depth of each lake for each precipitation

level (Table 5.2). However, insolation changes throughout the Holocene may have played a

subtle role in the likelihood that Lake Sambhar entered different states (discussed further in

Section 5.6).

Table 5.2: Average annual lake depths resulting from both Early Holocene (8 - 9 ka), Mid
Holocene (5 - 6 ka), Late Holocene (2 - 3 ka) and present-day insolation from Berger (1992)
across various precipitation levels (present-day levels to a doubling).

Early Holocene Mid Holocene Late Holocene Present Day
Current 1.15 1.19 1.12 1.14
25% increase 2.52 2.54 2.52 2.44
50% increase 5.58 5.50 5.66 5.66
75% increase 12.00 12.13 12.05 12.08
100% increase 17.94 17.85 18.28 18.10

Since insolation alone had a negligible effect on annual average calculated depths, we

continue the analysis using present-day insolation values. For the remaining model runs

aimed at simulating paleo lake conditions, we use the shifted hypsometry for each respective

lake, as discussed in the methodology. In shifting the hypsometry, we assume that 2 m of

sediment accumulated in Lakes Sambhar and Didwana and 1.5 m of sediment accumulated

in Lake Lunkaransar since the mid-Holocene. Besides insolation and hypsometry, the other

likely significant change throughout the Holocene was the mean annual precipitation rate.

For this, we ran the model for 2000-year sequences at current insolation for a range of pre-

cipitation increases in steps of 10% up to 100% increase for all three lakes (Figure 5.6).

The average annual depths displayed in Figure 5.6a are for the composite curve numbers

provided in Table 5.1. Under a constant curve number, as precipitation increases, the water-

shed spends a higher percentage of time in AMCIII and therefore has higher runoff (Table

5.3). Furthermore, we find that summer evaporation decreases due to higher cloud cover,
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which is consistent with findings by Li and Morrill (2010) for areas in Rajasthan, India.

Reduced summer evaporation helps sustain higher lake levels due in large part to greater

precipitation.

Figure 5.6b considers the error introduced not only by variability in precipitation, but
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Figure 5.6: Calculated average annual lake depths for ratios of different annual amounts of
precipitation to that of present (1.0) up to a doubling (2.0) of current precipitation showing
both error from (a) variability in precipitation and (b) curve number shift through time.
For Figure 5.6b, the points are the average annual depth for Lake Sambhar using CN=59,
while the shaded region is the uncertainty due to a range of possible curve numbers ranging
from 55 to 64, intended to represent possible curve numbers from early Holocene to present-
day. The dashed lines represent uncertainty in sedimentation since the mid-Holocene. Singh
et al. (1974) cited a shoreline at 6 m above the present-day lake bottom, which, assuming no
sedimentation, is marked by the lower dashed line. The upper dashed line marks the depth of
this shoreline assuming that 2 m of sedimentation has accumulated since the mid-Holocene.
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Table 5.3: Effect of increasing current precipitation on the percentage of time Lake Sambhar
spends in each antecedent moisture condition: low (AMC I), medium (AMC II), or high
(AMC III).

AMC I (%) AMC II (%) AMC III (%)
Current 92 4 4
25% increase 90 4 6
50% increase 88 5 7
75% increase 86 5 9
100% increase 85 5 10

also the error in the curve number and possible curve number shifts back through time. If

precipitation were greater during the early- to mid-Holocene, vegetation would also have

been greater, and although greater vegetation presumably does not affect overall soil type, it

might alter soil texture (i.e. the increased precipitation could shift the percentages from equal

sand and loam to higher loam than sand). The shaded region on Figure 5.6b encompasses

calculated lake depths for a plausible range of curve numbers (55 to 64) that allow for a

shift in soil texture. Figure 5.6b also includes uncertainty bands to account for a range of

sedimentation between 0-2 m since the mid-Holocene. The upper dashed line at 8 m provides

a range of precipitation necessary assuming that sedimentation has raised the floor of the lake

everywhere by 2 m. The lower dashed line at 6 m provides a range of precipitation necessary

for a lake bottom the same as present-day (i.e. no sedimentation since the mid-Holocene).

The inference by Singh et al. (1974) that the surface of the lake was 6 m above the

present-day lakebed is the best available geologic evidence of Lake Sambhar’s mid-Holocene

maximum depth. In addition, a natural outlet channel to the Lake at 381 m a.s.l. places a

maximum possible depth of Lake Sambhar at 21 m above present-day lake bottom. If one

were to assume a 2 m rise in the lake bed level since the mid-Holocene, the 6 m difference

would imply an 8 m deep paleo-lake with a maximum possible depth of 23 m. From ecological

interpretations of pollen stratigraphy, Singh et al. (1974) estimate that mid-Holocene precip-

itation could have been 50% greater than that today. Swain et al. (1983) utilized calibration
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functions to fine tune these predictions and found that an increase of about 40% more than

present-day precipitation at Lake Lunkaransar was more appropriate for that lake, which

compares closely to other estimations made using pollen-climate calibration functions by

Bryson and Swain (1981).

With these various benchmarks in mind, we compare our lake model results to the

three main lines of thought described above: (1) How much precipitation would it take to

fill Lake Sambhar completely to a height of 381 m a.s.l?; (2) How much precipitation would

it take to fill Lake Sambhar to an average annual depth of 8 m as inferred by Singh et al.

(1974)?; and (3) How deep would Lake Sambhar be if present-day precipitation increased by

40% as estimated from various pollen studies?

According to our results, more than a doubling of present-day precipitation is necessary

to fill Lake Sambhar to its maximum depth of 23 m (Figure 5.6a). This seems unlikely, as

there is no evidence for such a drastic shift in precipitation regime (discussed in further detail

in Section 5.6). Our model calculates that an increase of present-day precipitation by 65%

would deepen to 8.1 ± 2.3 m. A 50% increase in precipitation would deepen Lake Sambhar

to 5.7 ± 1.7 m, close to a 6 m deep lake assuming no sedimentation. On the lower end,

a 40% increase in precipitation, as inferred by pollen reconstructions, would deepen Lake

Sambhar to 3.8 ± 1.4 m.

Despite a large discrepancy in estimates of mid-Holocene precipitation depending upon

the method used, our calculations suggest that the possible range of increased precipitation

is perhaps not so large after all. Specifically, our model results differ from those of Swain

et al. (1983) who predicted that a 40% increase in precipitation, as inferred from pollen

calibrations, would result in a 21-m deep lake, but a 6-m increase in depth would require

only a 7% increase in precipitation. Using the Sambhar lake model, both geologic shoreline

evidence suggesting a level 6 m above the present-day lake floor and pollen calibration

estimates fall within a range of increased precipitation of 40-65% greater than present-day

precipitation.
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5.5 Role of winter evaporation

As mentioned previously, early- to mid-Holocene insolation calls for greater amounts

in summer, with correspondingly smaller amounts in winter, than today. Other studies (?)

have modeled lake-level changes over monsoonal Asia and found that reduced evaporation

during both summer (due to increased cloud cover) and winter (due to the decreased in-

solation) played a role in sustaining lakes in multiple regions, including Rajasthan, India.

Theoretically, reduced winter insolation could reduce winter evaporation and allow the lake,

particularly at low levels, to remain full until the following monsoon season. We calculated

water depths on May 1st as functions of depths at Lake Sambhar on the previous October

1st and evaporation rates for the Present and early Holocene (8-9 ka), and found no visi-

ble difference between spring lake levels, despite the expected reduced evaporation in early

Holocene time. We repeated this exercise using data from years where lake depths on Octo-

ber 1 were 2 m or lower, with the thought that perhaps the role of winter evaporation was

visible only at very low lake levels. Again, there was no discernible difference between lake

levels with present-day insolation and those with early-Holocene insolation. From this we

conclude that winter evaporation plays little to no role in sustaining lake levels.

5.6 Lake dynamics

Although the inputs and outputs (precipitation, evaporation, and runoff,) of the lake

model affect the volume of water in a lake approximately linearly, the introduction of the

non-linearity of the hypsometric relationships introduces interesting lake dynamics. This can

be seen in Figure 5.6, where lake level does not increase linearly with precipitation. Instead,

for 40% greater precipitation than present-day and higher, lake depth is more sensitive to

increased precipitation than it is for smaller precipitation amounts. This non-linear rela-

tionship suggests that there are states (or levels) to which the lake tends to be attracted.

Hidden Markov (HM) models (Zucchini and MacDonald, 2009) are appropriate for model-
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ing systems that switch between states, such as precipitation (Jackson, 1975; Zucchini and

Guttorp, 1991) or streamflow (Bracken et al., 2014). An order-m HM model identifies m

‘hidden’ states, each characterized as a probability distribution function (PDF), and the

transition probabilities to move between them for each time step. Thus, the model fitting

involves estimating the parameters of the state PDFs and transition probabilities. The best

order of the HM model, m, is obtained using objective criteria such as Akaike Information

Criteria or Bayesian Information Criteria (Zucchini and MacDonald, 2009). For the simu-

lated depth time series of Lake Sambhar from a range of possible precipitation scenarios, we

fitted order-3 HM models for each precipitation scenario to capture the low, medium, and

high lake levels.

The PDFs of the three states are shown for a range of precipitation increase scenarios

in Figure 5.7. Several interesting features are apparent. Currently, Lake Sambhar tends to

sustain shallow depths of about 0 - 1.5 m seen by the two dominant PDFs centered around

∼0.5 m and ∼1 m (blue and orange curves, respectively; Figure 5.7a), and infrequently to

higher depths of 1.5 - 3 m (as shown by the green curve centered around 2 m; Figure 5.7a).

With a 50% increase in precipitation there is a drastic shift in the PDFs. The lower state

PDF is centered at ∼3 m, the medium state PDF near ∼5 m, and the high state PDF near

∼8 m. The overall lake level PDF (black curve) indicates that the lake depths range between

4 and 8 m (the middle part of the distribution). For a 75% increase in precipitation the lake

tends to be higher than 5 m, and for a 100% increase, the levels are greater than 12 m,

suggesting a persistently deeper Lake Sambhar closer to its maximum possible depth of 23

m.

Regarding the formation of shorelines, a consistent depth of the lake is necessary in

order to allow waves to carve a shoreline into the surrounding rock. Frequent variation in lake

depth would not be conducive to creating shorelines. Therefore, it is possible that although a

40 - 65% increase in precipitation deepened Lake Sambhar, the seasonal variability inhibited

its ability to form a clear shoreline. If this were the case, the lack of sharply defined ancient
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shoreline at Lake Sambhar would not be surprising. Furthermore, this HM analysis shows

that for Lake Sambhar to reach depths close to 21 m, the lake shifts into regimes that

are closer together with lower variability. Therefore, if precipitation had exceeded twice its

current amount, one would expect to see evidence of shorelines had the lake reached its

maximum depth.

5.7 Discussion

We have shown that a relatively straightforward hydrological model captures the sea-

sonal variability of ancient lakes in Rajasthan, India, as well as capturing the historically

deep events due to periods of persistent rainfall as recorded in the early 1980s by IndiaToday

(1999). The only data required to run this model were precipitation, temperature, insolation,

soil-type and land-use data, and lake hypsometry. The lack of wind and specific humidity

data was avoided using the Priestley-Taylor evaporation method.

Increases in precipitation of 40% or 50%, as hypothesized by pollen reconstructions,

would increase Lake Sambhar from an average annual depth of 1.1 ± 0.8 m under present-day

rainfall to 3.8 ± 1.4 m or 5.7 ± 1.7 m, respectively. Furthermore, as shown in our Hidden

Markov Model analysis, a 50% increase in precipitation not only shifts the PDF of Lake

Sambhar depths to greater amounts, but also shows marked variability in depths due to the

hypsometry (Figure 5.2), with depths between 4 and 8 m comparably frequent. This marked

variability could potentially explain the lack of visibly obvious shorelines today. Finally, we

conclude that Lake Sambhar most likely did not fill to 21 m above the present day lake

floor during the early- to mid-Holocene, which according to our lake model would require

more than twice the current day precipitation. The evidence one would expect from such an

event would include, but not be limited to, prominent shorelines and evidence that nearby

lakes (i.e. Didwana and Lunkaransar) would have reached extreme depths (∼8 m and ∼4

m, respectively). None of this evidence has been found to our knowledge. In summary, we

estimate the range of plausible precipitation increases to approximately 40-65% during early-
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to mid-Holocene, which is narrower but higher than the range of 7-40% previously reported

(Singh et al., 1974; Bryson and Swain, 1981; Swain et al., 1983).

Additional considerations favor the lower end of the the 40-65% range. First, differences

in mid-Holocene pollen from present-day vegetation imply that vegetation has changed since

the mid-Holocene. Under an increased precipitation regime, one would expect: (1) watershed

conditions to remain saturated and therefore in AMCIII condition for a higher percentage of

the year, (2) vegetation to increase, and (3) soil texture to shift from less sand to more loam.

All three of these changes would result in increased runoff. Apart from the uncertainty in

the curve number provided in Figure 6, we did not explicitly consider changing vegetation

cover or soil in our model. It is possible that the added runoff from increased vegetation

would shift the precipitation range to the lower part of 40-65%.

Second, our model does not consider the possibility of smaller interannual variability

of mid-Holocene precipitation than that today. As discussed in the Introduction, several

paleoceanographic and paleoclimatic studies suggest that the tropical Pacific was in an en-

hanced La-Niña-like state with reduced ENSO variability during this early- to mid-Holocene.

By analogy with ENSO correlations in modern climate, this implies that the monsoon was

strong from year to year. In our model, we randomly sample years, including those during

both El Niño and La Niña events. We anticipate that if precipitation was preferentially

sampled for strong monsoons, during La Niña years, this reduced variability among rainier

summers, too, would push the precipitation estimate to the lower part of the 40-65% range.

Third, GCM modeling studies suggest that with higher rainfall and therefore, higher

cloud cover, surface temperatures of the mid-Holocene would be lower than those today Li

and Morrill (2010); Battisti et al. (2014), and hence, evaporation would have been lower.

As discussed earlier, a 1◦ decrease in temperature results in small decreases in evaporation.

If the monsoon region was several ◦C cooler during the mid-Holocene, however, the effect

of temperature would be more influential, in which case, Lake Sambhar would require less

precipitation to sustain the same lake levels.
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The question of what climatic forcing led to heavier rainfall in the mid-Holocene than

present time remains. The traditional school of thought has been that the primary mecha-

nism creating a strong monsoon during mid-Holocene time is enhanced solar radiation that

strengthened the land-ocean temperature gradient, and thus, the pressure gradient, which in

turn enhanced moisture transport onto India and enhanced convergence there. As a second

mechanism, we know La Niña SST conditions are also particularly conducive to a productive

South Asian monsoon. Although increased summer insolation presumably could enhance the

land-ocean pressure gradient over the Indian subcontinent, and induce a stronger monsoon,

it seems likely that the La Niña-like state of the Pacific contributed to the 40-65% increase

in precipitation as well.
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Figure 5.7: Hidden Markov (HM) results for average annual lake depths of Lake Sambhar
following runs of the lake model with various precipitation levels: (a) current precipitation,
(b) 25% increase, (c) 50% increase, (d) 75% increase and, (e) 100% (doubling) of precipi-
tation. The blue, orange, and green lines correspond to States 1 (low depth), 2 (medium
depth), and 3 (high depth), respectively as modeled by the HM analysis.



Chapter 6

Dissertation Conclusions

6.1 Summary

In Sub-Seasonal Variations in Spatial Signatures of ENSO on the Indian Summer Mon-

soon (Chapter 2), correlations of NINO3.4 SST anomalies with seasonal average rainfall

anomalies over India reveal a rich teleconnection mosaic across the subcontinent that shifts

as the monsoon season progresses through early, middle, and late sub-seasons. As a result,

some regions of India are more affected by anomalous SSTs in the Pacific during certain sub-

seasons more than others. Specifically, a 1◦C cooling of the central equatorial Pacific (i.e. La

Niña conditions) can result in: ∼ 70-100% increase in precipitation in north-central Indian

and the Indo-Gangetic Plains during the early season, ∼ 30-80% increase in peak season

precipitation in south-central India, and northwestern Rajasthan, and ∼ 60-100% increase

in late season precipitation in northern, north-western, and central India. Addtionally, we

note spatial and temporal asymmetries between the signature of rainfall associated with La

Niña versus El Niño conditions. For example, El Niño suppresses peak season rainfall in

the south-central and northwestern Rajasthan regions more than La Niña enhances it. In

the late-season, however, La Niña writes a stronger signature than El Niño in the northern,

northwestern, and central India. Composites of geopotential height and velocity potential

suggest anomalous subsidence (ascent) during El Niño (La Niña) seasons with slightly dif-

ferent patterns during the early season as compared to the middle or late season. These

patterns are consistent with the hypothesis that local Hadley cell circulation is the primary
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mechanism responsible for enhanced or reduced rainfall over India during the early season,

but that as the monsoon season progresses, larger scale teleconnections (associated with a

shifted Walker circulation) dominate the dynamics. The findings of this study urge that

monsoon forecasting efforts incorporate ENSO asymmetries and focus on smaller regions by

utlizing high resolution rainfall datasets during sub-seasonal periods.

In Multi-Proxy Reconstruction of Equatorial Pacific SST and Zonal Wind Fields of the

past 10,000 years using Mg/Ca and Alkenone Records (Chapter 3), Mg/Ca and Uk
37 proxy

SST records are used to reconstruct full fields of SST and zonal wind anomalies for 10, 8, 6,

4 and 2 ka. The reconstructions reveal coldest SST anomalies (∼ -1◦C) occur in the eastern

Pacific at 10 ka. At the same time, the largest zonal wind anomalies (∼ 8 m s−1) occur in

the central Pacific, which is indicative of strong easterlies. The largest zonal temperature

anomaly differences (average east Pacific SST minus average west Pacific SST) are -0.36◦C

and -0.33◦C, which occur at 6 and 10 ka, respectively. After 10 ka until 2 ka, the eastern

Pacific warms, the zonal temperature difference decreases, and the easterlies weaken.

Using a similar methodology to Chapter 3, Multi-Proxy Reconstruction of Indian Sum-

mer Monsoon Winds and Precipitation of the past 10,000 years using Mg/Ca and Alkenone

Records (Chapter 4), Mg/Ca and Uk
37 proxy SST records are used to reconstruct full fields

of summer monsoon wind stress curl and Indian rainfall for 10, 8, 6, 4 and 2 ka. Consistent

with the Pacific SST reconstructions, strongest wind stress curl and rainfall anomalies over

the monsoonal region occur during 10 ka, gradually weakening to present day. Despite large

uncertainties, this chapter suggests that telconnections from the Pacific could be responsible

for the mid-Holocene wetness as revealed by proxy records scattered across the south Asian

summer monsoon region.

In An Assessment of the Mean Annual Precipitation Needed to Sustain Lake Sambhar

in Rajasthan, India during Mid-Holocene Time (Chapter 5), a simple hydrological model

for Lake Sambhar provides tighter bounds on the range of increased precipitation needed

to sustain lakes in Rajasthan, India during the early- to mid-Holocene. The lake model
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reveals that precipitation during high lake stands was likely 40-65% greater than present

day precipitation levels, which would result in a lake depth of ∼ 6 to 8 m.

6.2 Discussion

This dissertation presents quantitatively reconstructed Indian monsoon hydroclimate

variability over the past 10 ka using contemporary relationships between Pacific SSTs and

Indian monsoon rainfall and proxy SST records that span the Holocene time. According to

Mg/Ca and Uk
37 proxy SST records, coldest temperatures and greatest easterlies (i.e. La

Niña-like conditions) were strongest at 10 and 6 ka during the early- to mid-Holocene. Ad-

ditionally, this research tested the plausibility of the hypothesis that ENSO teleconnections

could account for the enhanced wetness as implied by early- to mid-Holocene paleo-proxies

across the monsoon region. Proxy records suggest a 40% increase in precipitation during

the early- to mid-Holocene, which, according to the results of the lake model study, would

account for the majority, if not all, of the precipitation needed to sustain Lake Sambhar. We

emphasize that this research shows that it is possible that Pacific SSTs were resposible for

the early- to mid-Holocene wetness over India.

6.3 Future Work

This work sets the stage for interesting extensions in the fields of monsoon forecasting,

climate field prediction, and lake modeling.

The findings of the contemporary analysis provide the basis for creating a sub-seasonal

and regional monsoon forecasting tool. Another interesting area to investigate would be

trends in the asymmetry between La Niña and El Niño. We found preliminary evidence

that although El Niño’s have continued to suppress rainfall over India in recent decades, the

relationship between La Niña’s enhancing rainfall has diminished. This suggests that the

overall weakening in the ENSO-monsoon teleconnection that has been documented in recent

years is due to the La Niña-side only. It is possible this could be tied to strong warming of
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the Indian Ocean, however, more rigorous analysis is needed.

A shortcoming to the reduced dimension reconstruction methodologies is the difficulty

to define uncertainties in a CCA-based approach. Bayesian hierarchies offer a tool that

can be used to interpret sparse and uncertain data and has been applied to paleo-climate

reconstructions . Hierarchical relationships between the desired climate fields are established,

and errors are more easily propagated through the reconstruction.

The lake model built for Lake Sambhar provides a tool that could be esily applied to

various lake beds throughout the Indian monsoon region. Lake levels have typically been

reconstructed by using proxy records, such as pollen. Proxy records, however, can be biased

by environmental factors. A hydrological lake model allows one to model lake levels directly

using the principals of a watershed balance. If a lake bed has dateable shorelines, assumptions

of this methodology are minimal. Application of this simple lake model to scattered lake

beds could provide a spatial picture of rainfall levels during early- to mid-Holocene time.

It is likely that a wetter precipitation regime would drastically change vegetation

throughout the monsoon region. An increase in vegetation would likely increase runoff,

which would potentially make 40-65% an overestimate. A worthy endeavor would involve

reconstructing vegetation throughout India to better reconstruct hydrological processes and

further tighten the bounds of possible precipitation levels.

Finally, following this research, one might wonder whether the enhanced La Niña-like

state was a result of changes in insolation during the early- to mid-Holocene time. This is

an entirely different question than those addressed in this dissertation, but an interesting

one nonetheless, as it will be important to understand how ENSO might respond to future

warming.
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Appendix A

Appendix A: Sub-Seasonal Variations in Spatial Signatures of ENSO on the
Indian Summer Monsoon from 1901-2009

Signatures of NINO4 and NINO3 Indices on Indian Monsoon Rainfall. This

appendix contains figures that show the signature of SSTs from the NINO4 and NINO3

regions on seasonal monsoon rainfall over India. Specifically shown are the results of an

SMA regression analysis of daily monsoon rainfall with the NINO4 (Figure A.1) and NINO3

(Figure A.2) indices.

Influence of Indian Ocean Dipole (IOD) on Indian Monsoon Rainfall Some

studies have suggested that Indian summer monsoon rainfall is tied to the Indian Ocean

Dipole (IOD) (e.g. Ashok et al., 2001, 2004; Saji et al., 1999) and that while the ENSO-

monsoon relationship has weakened in recent times, the IOD-monsoon relationship has

strengthened (Ashok et al., 2001, 2004; Ashok and Saji, 2007; Ihara et al., 2008b; Krish-

naswamy et al., 2014). To investigate the importance of considering IOD in our analysis, we

scatterplot AISMR seasonal rainfall versus seasonal IOD SST anomalies and provide corre-

lations (in red) between the two time series (Figure A.3). The IOD indices were computed

using the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) definition

of eastern Indian Ocean SSTs (averaged over the region of 90◦E - 110◦E and 10◦S - 0◦) sub-

tracted from western Indian Ocean SSTs (averaged over the region of 50◦E - 70◦E and 10◦S -

10◦N). SST anomalies used in calculation of the IOD index were obtained from Kaplan et al.

(1998). As seen in Figure A.3, all correlations are negative, but weak. The strongest of the
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Figure A.1: Same as Figure 2.3 but using the NINO4 index.
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Figure A.2: Same as Figure 2.3 but using the NINO3 index.
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four is during the late season, but it is still only -0.25. To look at this relationship spatially,

we plot the slopes and R2 values from the SMA regression between IOD and Rajeevan et al.

(2006) gridded rainfall (Figure A.4). Due to weak correlations and sparse spatial signatures

throughout most of the monsoon season, we proceed with the analysis without distinguishing

between positive and negative IOD years.
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Figure A.3: Scatterplot of IOD anomalies with AISMR standardized total rainfall anomalies
or the (a) full, (b) early, (c) middle and (d) late seasons. The blue line plots the SMA
regression trend through the points. The correlation between the two time series is displayed
in red in the lower left corner of each plot. The IOD indices were computed using the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC) definition of eastern Indian
Ocean SSTs (averaged over the region of 90◦E - 110◦E and 10◦S - 0◦) subtracted from western
Indian Ocean SSTs (averaged over the region of 50◦E - 70◦E and 10◦S - 10◦N). SST anomalies
used in calculation of the IOD index were obtained from (Kaplan et al., 1998).
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Figure A.4: Slopes of SMA regression between average daily rainfall (Rajeevan et al., 2006)
and NINO3 SSTs from 1901-2009 (Kaplan et al., 1998) for the full (a - June to September),
early (b - June), middle (c - July and August), and late (d - September) seasons. The first
and second columns show the slopes (mm d−1 ◦C−1) and R2 values of the SMA regressions,
respectively. Colored regions show values at least 95% significant.
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