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Abstract
Pilot whales are two cetacean species (Globicephala melas andG.macrorhynchus) whose
distributions are correlated with water temperature and partially overlap in some areas like

the North Atlantic Ocean. In the context of global warming, distribution range shifts are

expected to occur in species affected by temperature. Consequently, a northward displace-

ment of the tropical pilot whaleG.macrorynchus is expected, eventually leading to

increased secondary contact areas and opportunities for interspecific hybridization. Here,

we describe genetic evidences of recurrent hybridization between pilot whales in northeast

Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmet-

ric introgression ofG.macrorhynchus genes intoG.melas was observed. For the latter spe-

cies, a significant correlation was found between historical population growth rate estimates

and paleotemperature oscillations. Introgressive hybridization, current temperature

increases and lower genetic variation in G.melas suggest that this species could be at risk

in its northern range. Under increasing environmental and human-mediated stressors in the

North Atlantic Ocean, it seems recommendable to develop a conservation program forG.

melas.

Introduction
Global environmental changes, including temperature increase, glacial ice melting and sea level
rising, are intense in the northern latitudes where they are reshaping the fragile local ecosys-
tems with potentially devastating consequences for vulnerable species [1]. Amongst other con-
sequences of global change, a general increase of interspecific hybridization is predicted in
Polar and subpolar zones due to the loss of temperature barriers [2] and the arrival of new
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species displaced from warmer zones. Although introgressive hybridization occurs rarely in
nature [3], it is more frequent in fast-changing ecosystems. Species may alter their mate choice
under altered or adverse conditions, subsequently acquiring new genetic variation [4]. Inter-
specific hybridization is especially scarce in mammals [5]; the exception is cetaceans for which
many hybrids occur e.g. [6, 7], not only between species within a genus but also between differ-
ent genera [8]. Cetacean species experiencing distribution shifts could be good models to test
Kelly et al. [2] prediction of an increase of hybridization caused by global warming.

Long-finned (Globicephala melas) and short-finned (Globicephala macrorhynchus) pilot
whales are two sympatric cetaceans of Delphinidae, a family under recent speciation [9, 10]
and a controversial number of species [11, 12]. Based on osteological data, Van Bree [13] dem-
onstrated that pilot whales are two clearly distinct species, which was later supported by molec-
ular phylogenetic studies [9, 14, 15]. Predicted impacts of global climate change on the marine
environment may induce changes in pilot whales species range, abundance and/or migration
patterns [16, 17]. The distribution of G.melas is correlated with sea surface temperature [18–
21]. Moreover, at the northern limits of its range, G.melas abundance is also correlated with
the North Atlantic climate oscillation [21–23]. G.macrorhynchus also seems to be affected by
climate variations [24, 25]. On the other hand, pilot whale distribution is primarily associated
with prey abundance (e.g. [20, 24, 26, 27]), which in turn is also influenced by temperature [21,
25, 28].

The genetic identification of one post-F1 hybrid pilot whale in the Northeast Atlantic
Ocean [29] demonstrated that G.melas and G.macrorhynchus are able to hybridize success-
fully. Twenty years before this finding, a Faeroese study [30] reported clines of external mor-
phological traits of pilot whales, instead of clear diagnostic features: 2.7% of G.melas off the
Faeroe Islands exhibited morphometric traits typical of G.macrorhynchus. This scenario
makes the Northeastern Atlantic pilot whales a good model for investigating the association
between climate change and interspecific hybridization in cold-temperate latitudes. We ana-
lysed information from different disciplines to infer the effect of global climate change on the
sympatric distribution of G.melas and G.macrorhynchus at the northernmost limit of their
range. Microsatellite markers with species-specific alleles and coalescent demographic recon-
structions from DNA sequences were combined with oceanographic data and paleo-tempera-
ture reconstructions, for tracing the evolutionary history of these species. The departure
hypothesis was that climate warming alterations could promote population genetic alterations
(like population size reduction, interspecific hybridization, etc.) in pilot whales from the colder
waters of North Atlantic regions.

Material and Methods

Oceanographic and temperature reconstructions
GISS temperature analysis [31, 32] was used to calculate trends in annual temperature change
from 1914 to 2014. We also estimated changes in sea surface temperature (SST) per month
during the 1980–2015 period, and the seasonal mean SST anomalies per year at all latitudes
from 1988 to 2013 using the database SST-Hadley/Reynols. All estimations were calibrated
with a base period from 1951 to 1980 [31].

Climate reconstruction focused on the known reproduction seasons of North Atlantic pilot
whales: May-October for G.melas [33, 34] and July-August for G.macrorhynchus [35].

For paleoclimatic reconstructions, temperatures were obtained fromMarcott et al. [36]. We
used the core MD95-2015 with the proxy UK´37, calibrated with Müller et al. [37] for marine
ages of North Atlantic annual temperatures [38].
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Pilot whale samples
A total of 151 samples of the two pilot whale species were collected from four different loca-
tions between 1997 and 2012 (Faeroe Islands, coasts of the Iberian Peninsula, Azores Islands
and Canary Islands). A vicariant population outgroup of G.macrorhynchus was obtained from
French Polynesia, Pacific Ocean. Tissue samples were taken from stranded animals, biopsies
and museum collections. An attempt was made to avoid sampling more than one member
from the same family group. No animal was injured or killed for this study. All protocols and
analyses were approved by the Committee of Ethics of the University of Oviedo. We obtained
the CITES permit (ESBI00001/12I) and all the permissions from the Faroese Museum of Natu-
ral History to bring the Faroese samples to Spain, as well as French Polynesian samples (CITES
permit 13NZ000012; original permit number FR-02-987-0083-E).

Genetic analysis
DNA was extracted employing a Chelex-based protocol [39]. The mitochondrial control region
(D-loop) was amplified following Oremus et al. [15]. Sequences were edited and aligned using
ClustalW [40] from the BioEdit Sequence Alignment Editor [41]. NCBI-BLAST [42] online
software was employed for species identification. The number of haplotypes, haplotypic and
nucleotidic diversities were calculated with DNAsp v5 [43]. A median-joining [44] haplotype
network was constructed to visualize the relationships among the different mitochondrial hap-
lotypes, and their frequencies, in the sampled populations with the program Network 4.5.1.6
[45]. Network software reconstructs all possible, shortest, least complex phylogenetic trees
(maximum parsimony) from a given dataset using different algorithms.

Eight microsatellite loci (EV37MN; EV94MN; 199/200; 415/416, 417/418, 409/470; 468/469
and 464/465) were amplified as in Fullard et al. [20]. A multi-tube method [46] was employed
to validate the allele scores. Each microsatellite locus was individually amplified three times in
three different thermal cycler machines (Applied Biosystems 2720 Thermal Cycler). Microsat-
ellites were genotyped employing GeneMapper1 Software Version 4.0 (Applied Biosystems).
Scoring errors, large allele dropout and null alleles were tested employing the program
MICROCHECKER [47].

Samples with positive amplification for all mitochondrial and microsatellite loci were sexed
by amplifying the Y-linked SRY gene [48], typical of males. PCR was run with positive and neg-
ative controls to avoid possible errors. PCR products were run and visualized in 2% agarose
gel.

Population genetics
Conformity with Hardy-Weinberg equilibrium was calculated using the exact probability test
with GENEPOP software [49] and Bonferroni corrections. Microsatellite variation (number of
alleles per locus, allelic richness and observed and expected heterozygosity) was calculated with
the programs GENETIX Version 4.03 [50] and FSTAT Version 2.9.3.2 [51]. Genetic divergence
between populations was estimated using population pairwise FST values obtained with Arle-
quin version 3.0 [52]. To detect recent bottleneck events we employed the software BOTTLE-
NECK version 1.2.02 [53] with default settings.

Evolutionary and demographic inferences
Population divergence time estimations were computed under a Bayesian Markov Chain
Monte Carlo (MCMC) framework using BEAST version 1.6.1 [54]. Following a burn-in of 5
million cycles, rates were sampled once every 1 000 cycles from 50 million MCMC steps for an
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Extended Bayesian Skyline tree, with a stepwise model for mitochondrial DNA and an evolu-
tion rate of 1.5% per million years [55–57]. Bayesian intraspecific phylogenies are based on
coalescent theory [58] and allow the inference of past population dynamics and parameters
from contemporary gene sequences. The best evolution model and its priors (kappa, gamma-
shape, proportion of invariant sites, etc.) were defined by jModeltest software version 0.11 [59]
using the Akaike information criterion [60]. Tracer version 1.5 [54] was used to check chains
had converged to a stationary distribution.

Interspecific genetic relationships
The software STRUCTURE v.2.3.1 [61] was employed for estimating the membership of each
individual to each species (K = 2; two expected genetic units) under the “Admixture model”
which assumes that individuals may have mixed ancestry. Settings were a burn-in period of
70000 steps followed by 700000 MCMC iterations and seven runs. Since there is no clear con-
sensus about the proportion of membership that indicates introgression [62], for conservative
interpretation we have considered>25% as a threshold for significant introgression [29]. Con-
fidence intervals of 95% were calculated for all membership values. The software NewHybrids
[62] was run for identifying individuals of each pure species, hybrids of first and second gener-
ation and backcrosses. An initial run was implemented for only pure species individuals with
>0.980 membership detected from STRUCTURE, in order to assess the discrimination power
of our dataset in NewHybrids. A second run was done for 10 hypothetical F1 hybrids and pure
species. Then, the MCMC was run for 500000 iterations after a burn-in period of 50000 itera-
tions for our original data set.

Gene flow between species in the North Atlantic Ocean was estimated with MIGRATE 3.0
[63] fromӨ = xNeμ and M = m/μ (x, inheritance parameter; Ne, effective size; m, immigration
rate; μ, mutation rate) in each species based on coalescent theory [64] and relaxing the original
assumption of Wright [65]. IfӨ and M are multiplied together, the number of immigrants per
generation can be calculated as gene flow. We used this formula, employing the inheritance
parameter x (x = 4 for nuclear DNA [here microsatellite loci] and 1 for mtDNA sequences), to
calculate the effective number of immigrants per generation for nuclear and mitochondrial
DNA separately. To be sure that results do not reflect spurious local likelihood peaks, three
independent runs were performed with a Bayesian approximation to ensure final chains were
estimating the same value of Theta (Ө), burn-in of 500000, fifteen long chains (50000 recorded
steps with increment of 100) and five replicates. Gene flow between species was also calculated
from microsatellite data using the private alleles method implemented in GENEPOP [49].

Results

Temperature reconstructions
Temperature increased globally in the last hundred years (Fig 1A), especially in the Northeast
Atlantic Ocean for the last decades (Fig 1B). Air temperature increased there two Celsius
degrees between 1984 and 2014. Focusing on sea surface temperature (SST) anomalies, water
temperature increased up to 2.4°C in the last ten years (Fig 2A). The increase in SST was
greater in the northern latitudes (Fig 2A and 2B). There, the SST warming was more intense
during summer months (Fig 2B), coincident with the reproduction season of pilot whales. Fur-
thermore, at this time of the year the SST warming affected a wider area from 30°N to the
northernmost latitude. This temperature increase may favour the northward expansion of G.
macrorhynchus, thereby promoting the overlap in distribution between the two species during
the reproduction season. This coincidence provides the climate context for further results on
population genetics of these species.
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Fig 1. Global temperature changes. A. GISS surface temperature analysis [32] taken from NASA by using annual temperature change trends
from 1914 to 2014 and calibrated with a base period from 1951 to 1980. B. GISS surface temperature analysis [32] taken from NASA by using
annual temperature change trends from 1984 to 2014 and calibrated with a base period from 1951 to 1980. Gray color means data missing.

doi:10.1371/journal.pone.0160080.g001
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Population genetics
A total of 120 DNA samples provided positive PCR amplification for all mitochondrial and
nuclear genetic markers considered. These samples were genetically sexed. More males than
females were analyzed for the two species (Table 1): 32 males versus 31 females for G.macro-
rhynchus and 50 males versus 7 females for G.melas.

Twenty eight D-Loop haplotypes of 703 base pairs (bp) were found. They are available in
GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) under the accession numbers
KJ740360-KJ740387. High haplotype diversity and low nucleotide diversity were found in both
species but G.melas had lower haplotype and nucleotide diversities, as well as lower number of
haplotypes and lower theta values (Table 1) than G.macrorynchus.

Two microsatellite loci (EV94MN and 468/469) might exhibit possible null alleles (detected
with MICROCHECKER) and were discarded from further analyses. Null alleles and scoring
errors were not detected for six microsatellite loci. Linkage disequilibrium was not significant
and none of these loci deviated significantly from Hardy-Weinberg equilibrium, thus they were
used in further population analysis. The six loci were very variable (S1 Table). Species-specific
alleles were present in all loci (except EV37NM and 415/416 for the species G.melas; S1 Table)
and allowed identification of interspecific hybrids. No significant differences between expected
and observed heterozygosities were detected, and low FIS values were found (S1 Table).

G.melas and G.macrorhynchus were unambiguously differentiated in the haplotype net-
work (Fig 3), with 10 different mutations and two inferred haplotypes between them. For the
two species the haplotype network exhibited a star-like shape that may indicate recent popula-
tion expansion [66]. No genetic population differentiation was found in G.melas, neither in G.
macrorhynchus for Atlantic Ocean samples (S2 Table). Recent bottlenecks were not detected
for any Globicephala species in this study.

Interspecific genetic relationships
Hybridization and introgression were detected from the analyzed microsatellite loci (Fig 4),
which had a high discrimination power in STRUCTURE (99.8%) and NewHybrids (98.4%).
Four post-F1 hybrids were identified (Fig 4; Table 2) in G.melas while none was found in G.
macrorhynchus samples. Three of the four hybrids (Table 2) originated from crosses between
G.melas females and G.macrorhynchusmales, as deduced from their mitochondrial DNA G.
melas-type. The other hybrid was morphologically identified as G.melas, and genetically
assigned to G.melas from nuclear markers, but had G.macrorhynchus-type mitochondrial
DNA. This evident morphological and nuclear-mitochondrial discordance can be caused by
repeated backcrosses of a hybrid issued from a cross [G.macrorhynchus female x G.melas
male] to G.melas. These findings demonstrate that introgression is asymmetrical, with the
genome of G.macrorhynchus entering into G.melas genome and not in the opposite direction.
In the studied population, hybrids represented 7.02% of G.melas individuals with an average
of 6.2% introgressed membership estimated from STRUCTURE (Fig 4; Table 2). The number
of alleles in G.melas was indeed higher when hybrids were included in the dataset (45 alleles;
Table 1) than when they were not (39 alleles; S1 Table).

Fig 2. Sea surface temperature (SST). A. SST anomalies represented by zonal means versus years from 1980 to 2015. Data base: Sea Surface
Temperatures (°C)—Hadley/Reynolds. Base period: 1951–1980. GISS surface temperature analysis [32]. B. SST change represented by zonal
means from 1988 to 2013 versus Months. Data base: Sea Surface Temperatures (°C)—Hadley/Reynolds. Base period: 1951–1980. GISS surface
temperature analysis [32]. Reproduction seasons are represented with a black square forGlobicephala melas and a grey square forG.
macrorhynchus.

doi:10.1371/journal.pone.0160080.g002
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A high interspecific genetic interchange between species, measured as effective immigrants,
was obtained from two different statistical approaches. Based on private alleles and microsatel-
lite data, the interchange between species was estimated at 1.131 individuals per generation.
From a coalescence method and mitochondrial sequences, interspecific gene flow was esti-
mated at 0.429 individuals per generation. It increased to 1.463 individuals per generation
when employing microsatellite data with G.melas being always the receptor species.

Coalescent evolutionary and demographic inferences
The divergence time between pilot whale species was estimated to occur about 648 500 years
ago (standard deviation = 4817.4 years; 95% Highest Posterior Density = 363 600–961 900). A
reconstruction of historical population growth of both species revealed a very pronounced
peak in G.macrorhynchus growth rate between 30 000–40 000 years ago. After this point, the
growth rate of G.macrorhynchus decreased rapidly, remaining below that of G.melas. In the
last 10 000 years, the situation changed for G.melas that suffered a drastic decrease in growth
rates and reaching values lower than those of G.macrorhynchus (Fig 5). Historical growth rate
of G.melas in this later period seems to match historical temperature anomalies (Fig 5) during
the Holocene (starting 11000 years ago), following the last glacial period in late Pleistocene
(30000–25000 years ago). Significant polynomial regressions were found between Holocene
paleotemperatures and historical growth rate of the two species, stronger for G.melas (R2 =
0.9187) than for G.macrorhynchus (R2 = 0.7799).

Discussion
This is the first report of genetic admixture and interactions between pilot whale species pro-
moted by distribution shifts that might be caused by global temperature warming., These
results may be extended to other cetacean species, since shifts in distribution ranges resulting
from climate warming are expected to occur in many cetaceans e.g. [16, 17, 67]. However,
since the results of this study are based on correlational inferences and the period considered is
relatively long, an alternative scenario of continuous limited admixture between species regard-
less of climate changes may also be possible.

Previous studies have reported the strong relationship between sea surface temperature
(SST) and pilot whale distribution, migration and abundance [16, 18–24, 26–28, 68]. Water
temperature increased significantly in the last decades (Figs 1 and 2). Along with temperature,

Table 1. Genetic diversity for each species and location.

Species Sex D-LOOP Microsatellite loci

Localities N (M: F) Nh Hd (π) Ө (= Ne μ) NA AR He Ho

G.macrorhynchus 62 32: 30 16 0.667 0.002 64 62.690 0.828 0.779

Azores Islands 16 14: 2 4 0.517 0.001 0.0022 45 28.200 0.822 0.783

Canary Islands 26 14: 12 11 0.697 0.002 0.0101 50 27.299 0.806 0.804

French Polynesia 20 4: 16 3 0.582 0.001 0.0007 44 26.003 0.776 0.782

G.melas 57 50: 7 12 0.474 0.001 45 44.268 0.644 0.616

Faeroe Islands 50 48: 2 9 0.263 0.001 0.0029 41 20.389 0.644 0.617

Iberian Peninsula 7* 2: 5 6 0.928 0.003 0.0044 21 17.680 0.603 0.525

*The only G.macrorhynchus individual from the Iberian Peninsula was not taken into account for these calculations.

N: sample size; M: Male; F: Female; Nh, Number of haplotypes; Hd, Haplotype diversity; (π), Nucleotide diversity;Ө (= Ne μ), theta is equal to the effective

population size (Ne) times the mutation rate of the species per site per generation (μ). NA, Number of alleles per locus. AR, allelic richness. He and Ho,

heterozygosity observed and expected respectively

doi:10.1371/journal.pone.0160080.t001
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the distribution limit of Globicephala macrorhynchus in the Northeast Atlantic shifted 3° lati-
tude in only two decades. In 1988 it was described in the western edge of the Cantabrian Sea
within Spanish waters at 43°36’ N [69], while in 2010 it occurs in Charente-Maritime in France
at 46°06’ N [70]. Moreover, strandings of this species (confirmed by genetic analyses) have
been recently reported in this area of France providing another unequivocal signal of the north-
ward displacement of this species [71, 72]. Climate change could therefore facilitate mating
between G.macrorhynchus and G.melas by widening the area of co-occurrence of the two spe-
cies, especially during the reproductive peaks in summer (Fig 2B). In the North Atlantic
Ocean, reproduction happens during the warmer months and the observation of larger groups
coincides with a higher proportion of mixed pods [73–74]. The warmer SST anomalies in the
last decades in northern latitudes (Fig 2) are particularly intense and coincide with the repro-
duction season of Globicephala (Fig 2B). The increase in water temperature during mating sea-
son (Fig 2B) facilitates northward incursions of G.macrorhynchus, and therefore may have
increased opportunities for interspecific mating between pilot whales.

A process of introgressive hybridization is happening in Northeast Atlantic G.melas.
Nuclear genetic markers revealed only unidirectional introgression of G.macrorhynchus DNA
into G.melas genome. Between-species gene flow estimates were higher for microsatellites
(1.14–1.46 individuals per generation) than for mitochondrial DNA (0.43 individuals per

Fig 3. Mitochondrial haplotypes network.Median-Joining network representing the relationships among D-loop
mitochondrial haplotypes. Circle sizes are proportional to the frequency of each haplotype. Different locations are
represented in different colors. Each species is clustered in a square. Mutations are represented as perpendicular
bars in the branches. Inferred haplotypes not present in the dataset are symbolized with a small red circle.

doi:10.1371/journal.pone.0160080.g003
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generation), as it was also reported for intraspecific gene flow in pilot whales [75]. The high
level of introgression found in this study, quite uncommon for mammal species, might be
explained by a recent species divergence. The divergence time between the two pilot whales
was estimated about 648500 (± 5000) years ago. This is a very recent split from the last com-
mon ancestor and would explain the relative permeability of interspecific reproductive barriers
[76–78].

Hybridization is more frequent in areas where population density is low and where species
are near the edge of their ecological range [79]. This could be the case of Globicephala in their
northernmost distribution area. Lower population variation suggests reduced population size
of G.melas in comparison with G.macrorhynchus. Differential selection and other possible fac-
tors may explain this difference between species [80, 81]. Bottlenecks and genetic or cultural
hitchhiking also leave similar footprints in DNA [15, 82]. Although we did not detect any
recent bottleneck event in G.melas from our analysis, matrilineal social structure together with
high mortality can reduce mitochondrial DNA diversity [81]. This could explain reduced
diversity in G.melas since this species has been and continues to be hunted. Climate warming
has accelerated in recent decades, and it is possible that the population reduction is too recent

Fig 4. Genetic introgression inGlobicephala species. Introgression detected with STRUCTURE 2.3.1 software and represented as
membership of eachGlobicephala species. Each bar represents one individual and each color means one species: green forG.melas and
blue forG.macrorhynchus. Hybrids are indicated with a black asterisk and the nuclear-mitochondrial discordant with a red asterisk.
Sampling locations are indicated below the graph.

doi:10.1371/journal.pone.0160080.g004

Table 2. Hybridization in Pilot whales.

New Hybrids 1.0 STRUCTURE 2.3.1

Hybrid Pure GME Pure GMA Memb.GME Memb.GMA

G.macrorhynchus 0 0.000 0.985 0.003 (0.002–0.004) 0.996 (0.995–0.997)

G.melas 4 0.966 0.000 0.937 (0.902–0.972) 0.062 (0.027–0.097)

All 4 hybrids 4 0.665 0.000 0.629 (0.518–0.740) 0.371 (0.260–0.482)

Hybrid F 07 F2 GME 0.524 0.000 0.465 (0.354–0.576) 0.535 (0.424–0.646)

Hybrid F 12 Bx GME 0.711 0.000 0.650 (0.539–0.761) 0.350 (0.239–0.461)

Hybrid F 33 Bx GME 0.671 0.000 0.742 (0.631–0.853) 0.258 (0.147–0.369)

Hybrid IP 53 F2 GME 0.752 0.000 0.674 (0.563–0.785) 0.326 (0.215–0.437)

Hybridization scores in proportions per species, per introgressed individuals and for each descendent of hybrid calculated with two different methods

(NewHybrids 1.0 and STRUCTURE 2.3.1 software) STRUCTURE confidence intervals (95%) are included in brackets. GME: Globicephala melas; GMA:

Globicephala macrorhynchus; Memb.: Membership; F: Feroe Islands; IP: Iberian Peninsula; F2: second generation; Bx: Backcrossing.

doi:10.1371/journal.pone.0160080.t002
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for detecting significant genetic evidence of bottlenecks. Another possible explanation would
be a sustained population decline over a long period, which is not viewed as a bottleneck. Our
reconstruction of historical population growth rates suggests that North Atlantic G.melas has
been declining since the last glacial period in the late Pleistocene (30000–25000 years ago), and
more intensely during the Holocene when population growth became negative (Fig 5). The
intense warming that occurred throughout the Holocene (e.g. [83]) could have contributed to
G.melas decline, as suggested by the correlation between temperature anomalies and the his-
torical population growth rate of this species.

As a final remark, historical and present population reductions, global warming, climate
change and other possible factors, like human-mediated stressors such as marine traffic or cul-
tural hunts, seem to negatively affect G.melas. An uncertain future is waiting for this species
under climate change and global warming scenarios. G.melas could disappear from the North-
east Atlantic Ocean, as it has already disappeared from the North Pacific, about 800–1200
years ago in Japan [84] and 3500–2500 years ago in Alaska [85]. To preserve G.melas in north-
ern latitudes it seems advisable to develop a monitoring program and implement a conserva-
tion plan for this species.

Fig 5. Pilot whale historical growth rates. Reconstruction of the historical growth rates of both pilot whale species. The graph at the left side of
the bottom shows the growth rates during the last 10000 years.G.macrorhynchus is represented in dark grey andG.melas is in light grey. The
graph at the right side of the bottom represents the global temperature anomalies over the past 10000 years compared to historic average (1961–
1990), this image is adapted fromMarcott et al. [36]

doi:10.1371/journal.pone.0160080.g005
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