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Abstract. Atmospheric CO; levels during interglacials prior to the Mid Bruhnes Event (MBE, ~430 ka BP) have lower values
of around 40 ppm than after the MBE. The reasons for this difference remain unclear. A recent hypothesis proposed that
changes in oceanic circulation, in response to differences in external forcing before and after the MBE, might have increased
the ocean carbon storage and thus explained the lower CO,. Nevertheless, no quantitative estimate of this hypothesis has been
produced up to now. Here we use an intermediate complexity model including the carbon cycle to evaluate the response of the
carbon reservoirs in the atmosphere, ocean and land in response to the changes of orbital forcings and atmospheric CO»
concentrations over the nine last interglacials. We show that the ocean takes up more carbon during pre-MBE interglacials in
agreement with data, but the impact on atmospheric CO: is limited to a few ppm. Terrestrial biosphere is simulated to be less
developed in pre-MBE interglacials, which reduces the storage of carbon on land and increases atmospheric CO,. Accounting
for different simulated ice sheet extents modifies the vegetation cover and temperature, and thus the carbon reservoir
distribution. Overall, atmospheric CO; is slightly smaller in these pre-MBE simulated interglacials including ice sheet
variations, but the magnitude is still far too small. These results suggest a possible mis-representation of some key processes
in the model, such as the magnitude of ocean circulation changes, or the lack of crucial mechanisms or internal feedbacks,

such as those related to permafrost, that could explain the lower atmospheric CO; concentrations during pre-MBE interglacials.

1 Introduction

Ice core data have shown that atmospheric CO; concentration during interglacials of the last 800,000 years has changed
(Luthi et al., 2008; Bereiter et al., 2015). Older interglacials before the Mid-Bruhnes Event (MBE) around 430 ka BP, i.e.
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Marine Isotope Stage (MIS) 13, 15, 17 and 19, are characterised by relatively lower atmospheric CO,, around 240 ppm,
compared to more recent interglacials, i.e. MIS 1, 5, 7, 9 and 11, which have a higher CO level of around 280 ppm
(Figure 1a).
Proxy data such as the marine 580 stack record, embedding both deep-sea temperature and ice-sheet volume (Lisiecki and

5 Raymo, 2005), indicate that older interglacials (pre-MBE) have a colder climate than the more recent ones (post-MBE). This
tendency is also supported by individual 5'80 and sea surface temperature (SST, derived from Mg/Ca paleothermometry,
alkenones or foraminifera assemblages) records from marine sediment cores (Lang and Wolff, 2011; Past Interglacials
Working Group of PAGES, 2016), although some individual sub-stages such as MIS 7c and 7e do not follow this general
tendency.

10 Numerical simulations with an intermediate complexity model have demonstrated that differences in Earth’s orbital
configuration, and hence seasonal and spatial distribution of insolation, cannot explain alone the colder climate recorded
during pre-MBE interglacials, whereby lower atmospheric CO, concentration is also necessary to simulate colder climate
(Yin and Berger, 2010; 2012). However, the reasons for the lower CO; values remain elusive. In that respect, transient
simulations of the last 740,000 years with a box model have shown that the lower interglacial CO- values prior to the MBE

15 might be explained by lower ocean temperature and weaker thermohaline circulation compared to post-MBE interglacials
(Kohler et al., 2006). Another hypothesis proposed that vigorous bottom water formation and stronger ventilation in the
Southern Ocean during pre-MBE interglacials could increase deep oceanic carbon storage and lower atmospheric CO; (Yin,
2013). However, this has not been evaluated yet in a climate model including a carbon cycle representation. In addition,
changes in surface temperature also modify the partition of the carbon cycle: in the ocean, colder sea surface temperature

20 increases the solubility of CO, increasing its potential uptake from the atmosphere during pre-MBE interglacials. In contrast,
on land a colder climate might yield a decrease in biomass reducing CO; uptake via lower continental carbon storage.
Because the ice sheets in the North Hemisphere are different during the interglacials in response to the different values of
CO; and orbital configurations (Ganopolski and Calov, 2011), they might also have an impact on the carbon cycle, for
example by modifying the terrestrial biosphere extent.

25 Here, we test the impact of the different orbital configurations of the last nine interglacials on the carbon cycle. For this purpose,
we use a coupled carbon-climate model to evaluate the changes of carbon storage in the ocean and in the terrestrial biosphere,

as well as the impact of different North Hemisphere ice sheet volumes.

2 Methods

30 We use the iILOVECLIM climate model of intermediate complexity, which is a new development branch (code fork) of the
LOVECLIM model in its version 1.2 (Goosse et al., 2010). iLOVECLIM has an atmosphere module (ECBILT) with a T21

spectral grid truncation (~5.6° in latitude/longitude in the physical space) and 3 vertical layers. The ocean component (CLIO)

2
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has a horizontal resolution of 3° by 3° and 20 vertical levels. The evolution of the terrestrial biosphere, i.e. the proportion of
desert, grasses and tree cover, is computed by the VECODE model (Brovkin et al., 1997). It includes a carbon cycle module
on land and in the ocean (Boulttes et al., 2015). iLOVECLIM is an evolution from the LOVECLIM model used in previous
model studies of the last nine interglacials focused on climate (Yin and Berger, 2010; 2012; Yin, 2013). It has the same

5 atmospheric and oceanic modules, but includes a different carbon cycle representation in the ocean (Bouttes et al., 2015). We
have chosen the same dates for the nine orbital configurations as in Yin and Berger (2010; 2012) and Yin (2013), i.e. the
maximum of insolation preceding the 0 peak values (Table 1, Figure 1b and c). Contrary to most simulations from these
studies, we also use the CO; values (as well as CH4 and NO) at the same dates as for the orbital configurations (and not at

the CO; peak), but as stated in Yin and Berger (2012), this may not affect the main results concerning the simulated climatic

10 changes.
MIS Date of 5'°0 peak (ka Date for orbital CO2 values from data
BP) configuration and CO:2 (ka (ppm)
BP)
1 6 12 243.2
55 123 127 268.64
7.5 239 242 269.23
9.3 329 334 280.32
11.3 405 409 282.29
13.13 501 506 235.92
15.1 575 579 249.36
17 696 693 234.38
19 780 788 242.73

Table 1 Dates of orbital parameters and CO, used for the simulations (Luthi et al., 2008).

In the model, we separate the atmospheric CO; concentration into two distinct variables depending on its physical and
chemical impact. The first one is used in the radiative scheme of the atmosphere, for which we prescribe in all the described
simulations the CO, from measured values (Liithi et al., 2008; Figure 1a). Another atmospheric CO; is computed

15 interactively in the model, as a result of the balance of the carbon fluxes between the different carbon sub-components
(atmosphere, ocean and terrestrial biosphere). We make this choice of keeping the two separated to ensure that the climate
simulated by the model is coherent with past measured atmospheric CO,. In other words, we consider the atmospheric CO>
concentration as an imposed external forcing, while within the carbon cycle the atmospheric CO; concentration is allowed to

vary, but does not impact the atmospheric radiative forcing. By doing this, we limit the number of degrees of freedom in our
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climate carbon system, which notably allows to avoid the complication arising from simulating a different climate when the

climate-carbon is fully coupled.

The simulations performed are snapshots, run with constant orbital and atmospheric CO» concentration forcing and
integrated over 3000 years allowing the ocean to reach a quasi-equilibrium. All simulations start from the pre-industrial

5 control one, and the average of the last 100 years is used to analyse the results.

Our strategy is to evaluate the impact of the different climate and carbon compartments to set the atmospheric CO»
concentration. For this purpose, we consider three series of simulations, which have all been run for the nine interglacials
(Table 2). The first series (OC “Ocean Carbon™) has fixed ice sheets set to the observed pre-industrial ones and fixed
terrestrial biosphere set to the simulated pre-industrial one. This first set of simulations thus provides the response of the

10 ocean alone to the different orbital parameters and CO levels of the nine interglacials. The second series (OVC “Ocean
Vegetation Carbon”) has still fixed ice sheets, but includes an interactive terrestrial biosphere, computed by the model. It
gives the response of both the ocean and land vegetation reservoirs to the different orbital parameters and CO; as well as
their interactions for setting the atmospheric CO- concentration. Finally, the third series (OVIC “Ocean Vegetation Ice sheet
Carbon”) has different prescribed ice sheets in the North Hemisphere for the nine interglacials. The ice sheet distribution

15 change is based on modelling results, given that the uncertainty from data is very large for the interglacials of the last
800,000 years, especially the oldest ones. The ice sheet distributions are thus taken from an ice sheet simulation of the last
800,000 years with the CLIMBER-2 model and its ice sheet component SICOPOLIS (Ganopolski and Calov, 2011). The ice
sheet distribution is chosen 2,000 years after the chosen interglacial date to account for the long timescale of the ice sheet
response during a deglaciation and ensure that the ice sheet corresponds to an interglacial configuration. The ice sheet

20 elevations for the nine interglacial simulations are shown on Figure 2. The terrestrial biosphere is also interactive in this
OVIC series of simulations. This last set of simulations thus adds the effect of having different ice sheets in the North

Hemisphere for the carbon cycle variations.

Name of the series Components impacting the carbon cycle
Ocean Vegetation Different interglacial ice
sheets
ocC X X
ove X
oviCc
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Table 2. Summary of the three series of simulations.

3 Results and discussion
3.1 Role of the ocean (OC simulations)

Similar to previous numerical studies of the interglacials with the LOVECLIM model (Yin and Berger, 2010; 2012), the
changes in orbital configuration and atmospheric CO; lead to altered sea surface temperature and oceanic circulation for each
interglacial simulation of the OC series. All simulations are warmer than the control pre-industrial in the high latitudes in the
North Hemisphere (Figure 3). Except for MIS1, the post-MBE simulations (corresponding to MIS 5, 7, 9 and 11) are also
warmer than the pre-industrial control in large areas in the mid latitudes of the North Hemisphere and MIS 5, 9 and 11 are
slightly warmer in the Southern Ocean. In the pre-MBE simulations (MIS 13, 15, 17 and 19), the ocean is mainly colder than
the pre-industrial, especially in the South Hemisphere. To compare the pre-MBE to post-MBE simulations, we built a
composite (average) for each period (pre- and post-MBE). We have excluded MIS 1 from the post-MBE composite, for
which the date chosen corresponds to a CO, much lower than the other post-MBE interglacials. We thus consider MIS 5,7 9
and 11 in the post-MBE composite and MIS 13, 15, 17 and 19 in the pre-MBE composite. The difference between the pre-
and post-MBE composites show that the pre-MBE interglacial simulations are colder in the surface ocean than the post-MBE
ones, especially in the Southern Ocean (Figure 4a). This is in general agreement with SST data, which indicate colder SST in

the pre-MBE interglacial oceans, especially in the Southern Ocean (Table 3 and figure 4a).

Difference
MIS | MIS | MIS | MIS | MIS | MIS | MIS | MIS | post- pre- pre-post
latitude | longitude | site 5e Te 9e 11c |13a | 15a | 17c | 19c | MBE MBE MBE
57.51 -15.85 ODP982 | 16.2 | 145 | 158 | 15 137 | 141 | 142 | 141 | 15375 | 14.025 -1.35
DSDP
56.04 -23.23 552s 151 | 147 | 142 | 164 | 124 | 147 | 183 | 147 | 151 15.025 -0.075
ODP
41.01 -126.43 1020 141 | 117 | 128 | 14 10.2 | 125 | 136 | 12.1 | 13.15 121 -1.05
DSDP
41.00 -32.96 607s 251 | 205 | 236 | 26.8 | 22.3 | 203 | 25.2 | 24 24 22.95 -1.05
ODP
32.28 -1148.40 | 1012 195 | 17.7 | 19.7 | 19.1 | 175 | 18.3 | 19.3 | 18 19 18.275 -0.725
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ODP

19.46 116.27 1146 273 | 26.3 | 27.3 | 26.8 | 26.1 | 26.3 | 26.9 | 26.2 | 26.925 26.375 -0.55

16.62 59.80 ODP 722 | 27.7 | 27.3 | 275 | 275 | 27 27.1 | 272 | 27.2 | 2715 27.125 -0.375
ODP

9.36 113.29 1143 28.8 | 27.8 | 28.6 | 28.3 | 284 | 28.1 | 28.6 | 28.2 | 28.375 28.325 -0.05
MD97-

2.04 141.76 2140 295 | 28.6 | 29 295 | 28.6 | 28.4 | 29.3 | 28.9 | 29.15 28.8 -0.35
ODP

0.32 159.36 806B 29.6 | 29.2 | 28.8 | 30.2 | 28.2 | 294 | 29 29.4 | 29.45 29 -0.45

-3.10 -90.82 ODP 846 | 25.1 | 24 23.8 | 24 23.6 | 23.7 | 23.7 | 23.7 | 24.225 23.675 -0.55
ODP

-41.79 -171.50 1123 17.7 | 19 19.6 | 19.3 | 17.8 | 18.8 | 18 179 | 189 18.125 -0.775
ODP

-42.91 8.9 1090 171 | 10.2 | 14.7 | 13.9 | 10.2 | 11.7 | 11.1 | 10.4 | 13.975 10.85 -3.125
MDO06-

-43.45 167.9 2986 18 16.5 | 16.6 | 18.1 | 155 | 16.2 | 16.3 | 15.8 | 17.3 15.95 -1.35

-45.52 174.95 DSDP594 | 18.3 | 7.1 9.5 175 | 10 11.7 | 121 | 9.7 13.1 10.875 -2.225

10

15

Table 3. SST data from Past Interglacials Working Group of PAGES (2016) and shown on Figures 4a, 13a and 16.

Compared to the preindustrial, the ventilation of the Southern Ocean is increased in all simulations (Figure 5). The formation
of AABW as well as the wind driven meridional cell between 40 and 60°S (so called Deacon cell) are both stronger. On
average, the maximum of the Deacon cell is increased by 7% between pre and post MBE simulations, while AABW is
increased by 18% (Figure 4b). The meridional overturning circulation is also slightly increased by 6% and deepened in the
Atlantic Ocean. All these results concerning oceanic circulation changes are very similar to those of Yin et al. (2013),
allowing to test their hypothesis on the impact of these changes on ocean carbon uptake and atmospheric CO, concentrations.
The change of circulation and sea surface temperature modifies the uptake of carbon into the ocean. The colder sea surface
temperature of the pre-MBE simulations, which increases dilution of CO, at the ocean surface, associated with stronger
ventilation, yields a larger carbon uptake by the ocean. This results in higher dissolved inorganic carbon (DIC)
concentrations in the Southern Ocean, as well as higher DIC concentration in the upper ocean (first 2 km of the ocean)
(Figure 4c), reflecting the global increase of carbon storage in the ocean of 4.7 GtC on average for pre-MBE simulations. On
the opposite, the DIC slightly decreases in the deeper ocean, which may be due to the increased ventilation of NADW

bringing more carbon back from the deep ocean to the surface.
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The stronger uptake of carbon by the ocean in the old interglacials leads to a decrease in CO; and lower values for the pre-
MBE interglacials compared to the post-MBE ones (Figure 6), in agreement with CO; data, as shown by the very good
correlation between the measured and simulated values (r=0.91, p<0.01, Fig. 6). However, the difference in magnitude
between pre and post MBE values is very small in the simulations and accounts only for a few ppm. Thus, even though it
goes qualitatively in the same direction as the data, with lower values for the older interglacials, the magnitude of the
difference is much larger in the data with a ~30-40 ppm difference while the maximum difference is ~1-5 ppm in the
simulations. In fact, the slope of the linear regression between simulated atmospheric CO2 concentration and observed ones
is of 0.07, indicative of an underestimation of more than 14 times in the simulations.

Hence the ocean carbon uptake in the simulations is not sufficient to drive a significant lowering of CO; as seen in the
measured data. Either the change of circulation and surface temperature should be larger, or another mechanism and
feedbacks need to be taken into account to modify the biological or physical carbon uptake and amplify the initial change.
Since the representation of bottom water formation in the Southern Ocean is biased in the model with an overrepresentation
of open ocean convection, as is also the case for many more complex General Circulation Models (GCMs) (Heuzé et al.,
2013), it is possible that this hinders simulating the full range of carbon storage due to circulation changes, as it is suspected
for colder periods such as the Last Glacial Maximum (around 21,000 years ago) (Fischer et al., 2010). In particular, for the
colder pre-MBE interglacials as for the LGM, it is possible that modifying the simulation of sinking of bottom water in the
Southern Ocean due to brine release during the formation of sea ice would result in more carbon stored in the ocean (Bouttes
etal., 2010).

3.2 Role of land vegetation and soils (OVC simulations)

In the first series of simulations, only the ocean was allowed to respond to the different external forcings, while the
vegetation and soils on land were fixed to the pre-industrial distribution. To account for changes in land vegetation and soils
on the carbon cycle, the second series of simulations (OVC) has an interactive terrestrial biosphere module on top of the
ocean one (Table 2).

Compared to the pre-industrial control simulation (and the OC series with fixed terrestrial biosphere), more trees develop in
North Africa and the southern part of Eurasia in these interglacial simulations, while the tree cover is reduced in central
North America and some regions in the northern part of Eurasia (Figure 7). When compared to the simulations with fixed
vegetation, the interactive vegetation leads to ocean surface warming almost everywhere except in the North Atlantic for
some interglacials (Figure 8). In response to this general warming of the surface ocean, the stratification in the convection
region is increased (e.g. Swingedouw et al., 2007) leading to a slowdown of the Atlantic Meridional Oceanic Circulation
(AMOC), especially for MIS 1,5 7, 9 and 15 (Figure 9).

For the carbon cycle, the activation of the terrestrial module results in more carbon stored in the vegetation and soils for all

interglacial simulations (Figure 10b) since the vegetation cover increases compared to the control because of the warmer

7
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climate. This tends to lower atmospheric CO, concentration, hence the pCO, difference at the air-sea interface, leading to an
outgassing of carbon from the ocean to the atmosphere, which ultimately decreases the storage of carbon in the ocean. The
ocean carbon storage is also diminished compared to the series of simulations with fixed vegetation due to the warmer ocean
temperature, which reduces the CO; solubility in water. The increase of carbon storage in the terrestrial biosphere is
generally larger than the loss of carbon from the ocean so that the carbon content of the atmosphere is also diminished in
these simulations compared to the fixed vegetation simulations, and atmospheric CO; is slightly lower or not changed
(Figure 11a).

In terms of difference between pre and post MBE interglacial simulations, we find less vegetation cover in most areas for the
older interglacials that are colder (except in North Africa and parts of south Eurasia) and consequently less carbon stored (-
48 GtC) in the vegetation and soils in the pre-MBE simulations compared to post-MBE simulations (Figure 12). This effect
tends to increase atmospheric CO; on average in pre-MBE interglacial simulations.

For the ocean, the differences between pre- and post-MBE simulations are similar to the ones for the simulations with fixed
vegetation (OC). On average, the sea surface temperature is lower in the pre-MBE simulations compared to post-MBE
simulations except in a small area in the North Atlantic (Figure 13a) and the ventilation is increased in the pre-MBE
simulations (Figure 13b). Hence the ocean can store more carbon in the pre-MBE simulations than the post-MBE
simulations with an average increase of carbon storage in the pre-MBE ocean of 43 GtC compared to the post-MBE ocean.
Similarly, the DIC concentration is higher in pre-MBE simulations, especially in the upper ocean and deep Southern Ocean,
as in the previous series of simulations with fixed vegetation (Figure 13c).

As the diminution of carbon storage by the terrestrial biosphere in the pre-MBE simulations is larger than the increase of
carbon storage by the ocean, it results in more carbon in the atmosphere and higher CO; on average for the pre-MBE
simulations than the post-MBE simulations (Figure 11b), which is thus in qualitative disagreement (negative correlation of -
0.33 (p=0.38) between simulated and observed atmospheric CO, for the interglacials considered) with the observations.
Nevertheless, it should be noted that permafrost (frozen soil) was not taken into account in these simulations. If there was
more permafrost during the colder pre-MBE interglacials, it could store more carbon on land and counteract the loss of
carbon due to the lowering of vegetation cover and production (Crichton et al., 2016).

Comparison with pollen data (Table 4) indicates that the model is in qualitative agreement with reconstructed tree cover
change in South America where the tree cover was smaller on average in pre-MBE than in post-MBE interglacials (Figure
12a). In southern Europe the tree fraction data also indicate that less tree cover prevailed during pre-MBE than during post-

MBE interglacials, this time contrasting with the simulations which are not correctly representing the change of tree cover.
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SW lberian margin Tenaghi-Phillipon Funza
(MD95-2042, MDO1- Tree cover = Temperate | Arboreal pollen%-
2443, IODP U1385) Forest pollen % Quercus %
Tree cover =
Mediterranean Forest
pollen %
Interglacial Average Interaglacial | average | Interglacial | average
values values values
Post- MIS5e 68 96 86
MBE MIS7e 42 92.4 95.9 75 76.7
MIS9c 54 95.5 73
MIS1lc 28 530 995 73
Pre- MIS13a 48 95.8 73
MBE MIS15a 48 44.5 96.9 89.5 65 71.2
MIS17¢c 35 82.2 78
MIS19c 47 83.3 69
Difference Pre-MBE — -8.5 -6.4 -5.5
post-MBE

Table 4: Tree cover (%) reconstructed from pollen data in three sites. SW Iberian margin: MIS 5 (MD95-2042, Sanchez
Goiii et al., 1999), MIS 7 (MDO01-2443, Roucoux et al. 2006), MIS 9, 13, 15, 17 (IODP 1385, unpublished data), MIS11
(U1385, Oliveira, 2016), MIS 19 (U1385, Sanchez Gofii et al., 2016); Tenaghi-Phillipon, Greece (Past Interglacials Working
Group of PAGES, 2016); and Funza, Colombia (Past Interglacials Working Group of PAGES, 2016).

3.3 Impact of different ice sheets (OVIC simulations)

The last series of simulations (OVIC) has the same design as OVC but also takes into account possible differences in ice

sheet distribution in the North Hemisphere based on numerical simulations (Ganopolski and Calov, 2011). The simulated ice

sheet distributions used for our interglacial simulations mainly differ in North America. On average, the North American ice
10 sheet is more extended in the pre-MBE interglacials compared to the post-MBE interglacials (Figure 14).

The change of ice sheet extent has a large regional impact on vegetation cover, which is reduced where the ice sheet extends

more. On average, it results in a reduction of vegetation in North America in the pre-MBE interglacials, when the ice sheet is

more extended, compared to the post-MBE interglacials (Figure 15).

9
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The increase of ice sheet extent and diminution of vegetation cover for pre-MBE simulations has two main impacts for the
carbon cycle: (i) it diminishes the terrestrial biosphere carbon storage, increasing atmospheric CO, but (ii) it also cools the
climate due to the higher albedo from the ice. Consequently, the ocean temperature decreases, especially in the North
Hemisphere (Figure 16 compared to Figure 13a) and the ocean carbon storage increases, which lowers atmospheric CO».
This second effect dominates and the overall result is a lower atmospheric CO; in pre-MBE simulations compared to post-
MBE simulations (Figure 11). As for the other processes analysed, it only modifies atmospheric CO, by a few ppm, though
correcting back (compared to OVC simulations) the difference pre-MBE minus post-MBE towards the observations.
Nevertheless, the correlation between simulated and measured CO; (accounting for MIS1) is very small (-0.08) and not
significant (p=0.83). The magnitude of the changes of atmospheric CO, among the different interglacials is once again
largely underestimated as compared to observations.

Accounting for different ice sheets in the OVIC series seems to improve the model-data comparison in southern Europe for
tree cover (Figure 15a) where the data are at the limit between regions of more tree coverage and less tree coverage in the
model. This highlights the role of ice sheet extent in setting the vegetation pattern. Nevertheless, the uncertainty in ice sheet
distribution is very large and the model-based reconstruction might not be accurate. For example, the lack of IRD (Ice Rafted
Debris) from North America before MIS16 and the presence of IRD from Europe indicate that the ice sheet over Europe
(Hoddell et al., 2008) could have been more extended and not the Laurentide ice sheets in North America. In addition, the
model-based reconstruction that we used shows relatively small changes of sea level equivalent between interglacials. Data
reconstructions seem to indicate possible larger differences between interglacials (Spratt and Lisiecki, 2016), whose effect
on the size of the land surface and the carbon cycle remains to be tested.

4 Conclusions

Using a fully coupled climate model including an interactive carbon cycle, we have shown that the difference between pre-
MBE and post-MBE cannot be explained by the simulated changes in ocean and vegetation induced by orbital and
greenhouse gases forcing. While the oceanic response alone is in qualitative agreement with data (sign of the changes,
correlation between each interglacial), it largely underestimates the amplitude of the changes. Furthermore, accounting for
the vegetation response complicates the simulated response and entirely removes the qualitative agreement. The vegetation
response depends on ice sheet extent and accounting for ice sheet variations limits the disagreement.

Comparison of vegetation changes with available pollen data indicates partial agreement, underlying the need to improve
vegetation simulations and increase the data coverage to constrain more precisely the change of vegetation cover. We argue
that additional processes need to be accounted for or should be better represented in climate models to explain the
observations. It is either possible that many different processes, some of them not included in the present model, adds up to

lead to the observed atmospheric CO> concentration, or just that a first order process is mis-represented or not included. In

10
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particular, the storage of carbon in frozen soils (permafrost) should be included in future modelling work. Response of the
Southern Ocean, the widest oceanic region with large air-sea fluxes of CO; is also a good candidate, given the known
deficiency in coarse resolution climate models for the representation of key element of its dynamics (eddies, katabatic winds,
AABW formation, brines...). The use of higher resolution models in this region could help to better evaluate its response to

5 different interglacial conditions.
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20 Captions

Figure 1: (a) Atmospheric CO2 (ppm) evolution from data (Luthi et al., 2008), (b) insolation (W/m2) (a) at 65°N on 215 of June and
(c) at 65°S on 21t of December, based on Berger et al. (1978).

Figure 2: Ice sheet elevation (m) in the North hemisphere simulated by the CLIMBER-2 model (Ganopolski and Calov, 2011) and

used in the OVIC series for each interglacial simulation, in difference with the pre-industrial elevation.

25 Figure 3: Annual SST (°C) in (a) the pre-industrial control simulation and (b-j) the interglacial simulations of the OC series with
fixed vegetation and fixed ice sheets, in anomalies with respect to the pre-industrial control simulation.

13



Clim. Past Discuss., doi:10.5194/cp-2016-108, 2016 Climate
Manuscript under review for journal Clim. Past of the Past
Published: 8 November 2016

(© Author(s) 2016. CC-BY 3.0 License.

10

15

20

25

Discussions

Figure 4: (a) Annual SST difference (°C), (b) Meridional Overturning Circulation difference (Sv) and (c) Dissolved Inorganic
Carbon difference (umol/kg) between pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacials simulations for
the OC series with fixed vegetation and fixed ice sheets. The vertical black line indicates the limit between the Southern Ocean
south of 32°S and the Atlantic Ocean north of 32°S. The dots on panel (a) are SST data differences based on Past Interglacials
Working Group of PAGES (2016) (Table 3).

Figure 5: Meridional Overturning Circulation (Sv) in the Southern Ocean and in the Atlantic Ocean north of 32°S in (a) the pre-
industrial control simulation and, (b-j) the interglacial simulations of the OC series with fixed vegetation and fixed ice sheets, in
anomalies with respect to the pre-industrial control simulation. The vertical black line indicates the limit between the Southern
Ocean south of 32°S and the Atlantic Ocean north of 32°S.

Figure 6: Simulated COz in the interglacial simulations of the OC series as a function of the measured CO. from data (Luthi et al.,
2008). The Pearson correlation coefficient and the p-value are indicated on top.

Figure 7: Tree cover (%) change with respect to the pre-industrial control simulation for the OVC series with interactive
vegetation and fixed ice sheets.

Figure 8: Annual sea surface temperature difference (°C) between simulations with interactive vegetation (OVC) and with fixed
vegetation (OC).

Figure 9: Meridional Overturning Circulation difference (Sv) between simulations with interactive vegetation (OVC) and with
fixed vegetation(OC). The vertical black line indicates the limit between the Southern Ocean south of 32°S and the Atlantic Ocean
north of 32°S.

Figurel0: Carbon stocks (GtC) in the three reservoirs (atmosphere, ocean and land) for each simulation. (a) OC series with fixed
vegetation and fixed ice sheets, (b) OVC series with interactive vegetation and fixed ice sheets and (c) OVIC series with interactive
vegetation and different prescribed ice sheets. The stocks are given as anomalies with respect to the control pre-industrial

simulation.

Figure 11: (a) CO2 concentration (ppm) at the end of the simulations and (b) composite (average) CO2 (ppm) in the pre-MBE (MIS
13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacial simulations.

Figure 12: (a) Tree cover (%) and (b) carbon storage (kgC/m?) difference between pre-MBE (MIS 13, 15, 17, 19) and post-MBE
(MIS 5, 7,9, 11) interglacials simulations for the OVC series with interactive vegetation and fixed ice sheets. Qualitative indication
of tree cover change from data are indicated with dots: blue indicates a reduction of tree cover on average during pre-MBE

interglacials compared to post-MBE interglacials, and red an increase.
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Figure 13: (a) Annual sea surface temperature difference (°C), (b) Meridional Overturning Circulation difference (Sv) and (c)
Dissolved Inorganic Carbon difference (umol/kg) between the average of the pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5,
7,9, 11) interglacials with interactive vegetation (OVC). The vertical black line indicates the limit between the Southern Ocean
south of 32°S and the Atlantic Ocean north of 32°S. The dots on panel (a) are SST data differences based on Past Interglacials

5 Working Group of PAGES (2016) (Table 3).

Figure 14: Ice sheet elevation difference (m) between the average of the pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5,7, 9,
11) interglacial simulations.

Figure 15: Difference of tree cover (%) between the average of the pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11)
interglacials with interactive vegetation and difference ice sheets (OVIC). Qualitative indication of tree cover change from data are

10 indicated with dots: blue indicates a reduction of tree cover on average during pre-MBE interglacials compared to post-MBE
interglacials, and red an increase.

Figure 16: Annual sea surface temperature difference (°C) between the average of the pre-MBE (MIS 13, 15, 17, 19) and post-
MBE (MIS 5, 7, 9, 11) interglacials with interactive vegetation and different ice sheets (OVIC). The vertical black line indicates the
limit between the Southern Ocean south of 32°S and the Atlantic Ocean north of 32°S. The dots on panel (a) are SST data

15 differences based on Past Interglacials Working Group of PAGES (2016) (Table 3).
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Figure 1: (a) Atmospheric COy (ppm) evolution from data (Luthi et al., 2008), (b)
insolation (W/m?) (a) at 65° N on 21st of June and (c) at 65°S on 21st of December,
based on Berger et al. (1978).
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Figure 2: Ice sheet elevation (m) in the North hemisphere simulated by the CLIMBER-2
model (Ganopolski and Calov, 2011) and used in the OVIC series for each interglacial
simulation, in difference with the pre-industrial elevation.
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Figure 3: Annual SST (°C) in (a) the pre-industrial control simulation and (b-j) the
interglacial simulations of the OC series with fixed vegetation and fixed ice sheets, in
anomalies with respect to the pre-industrial control simulation.
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Figure 4: (a) Annual SST difference (°C), (b) Meridional Overturning Circulation dif-
ference (Sv) and (c) Dissolved Inorganic Carbon difference (13mol/kg) between pre-MBE
(MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacials simulations for the
OC series with fixed vegetation and fixed ice sheets. The vertical black line indicates the
limit between the Southern Ocean south of 32 ° S and the Atlantic Ocean north of 32° S.
The dots on panel (a) are SST data differences based on Past Interglacials Working
Group of PAGES (2016) (Table 3).
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Figure 5: Meridional Overturning Circulation (Sv) in the Southern Ocean and in the
Atlantic Ocean north of 32°S in (a) the pre-industrial control simulation and, (b-j) the
interglacial simulations of the OC series with fixed vegetation and fixed ice sheets, in
anomalies with respect to the pre-industrial control simulation. The vertical black line
indicates the limit between the Southern Ocean south of 32°S and the Atlantic Ocean
north of 32°S.
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Figure 6: Simulated CO2 in the interglacial simulations of the OC series as a function
of the measured COs from data (Luthi et al., 2008). The Pearson correlation coefficient
and the p-value are indicated on top.
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Tree cover (%)

Figure 7: Tree cover (%) change with respect to the pre-industrial control simulation for
the OVC series with interactive vegetation and fixed ice sheets.
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Figure 8: Annual sea surface temperature difference (°C) between simulations with
interactive vegetation (OVC) and with fixed vegetation (OC).
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Figure 9: Meridional Overturning Circulation difference (Sv) between simulations with
interactive vegetation (OVC) and with fixed vegetation(OC). The vertical black line
indicates the limit between the Southern Ocean south of 32 °S and the Atlantic Ocean
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Figurel0: Carbon stocks (GtC) in the three reservoirs (atmosphere, ocean and land) for
each simulation. (a) OC series with fixed vegetation and fixed ice sheets, (b) OVC series
with interactive vegetation and fixed ice sheets and (c) OVIC series with interactive
vegetation and different prescribed ice sheets. The stocks are given as anomalies with
respect to the control pre-industrial simulation.
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Figure 12: (a) Tree cover (%) and (b) carbon storage (kgC/m?) difference between pre-
MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacials simulations for
the OVC series with interactive vegetation and fixed ice sheets. Qualitative indication
of tree cover change from data are indicated with dots: blue indicates a reduction of tree
cover on average during pre-MBE interglacials compared to post-MBE interglacials, and
red an increase.
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Figure 13: (a) Annual sea surface temperature difference (° C), (b) Meridional Overturn-
ing Circulation difference (Sv) and (c) Dissolved Inorganic Carbon difference (12mol/kg)
between the average of the pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9,
11) interglacials with interactive vegetation (OVC). The vertical black line indicates the
limit between the Southern Ocean south of 32 ° S and the Atlantic Ocean north of 32~ S.

The dots on panel (a) are SST data differences based on Past Interglacials Working
Group of PAGES (2016) (Table 3).
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Figure 14: Ice sheet elevation difference (m) between the average of the pre-MBE (MIS
13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacial simulations.
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Figure 15: Difference of tree cover (%) between the average of the pre-MBE (MIS 13,
15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacials with interactive vegetation and
difference ice sheets (OVIC). Qualitative indication of tree cover change from data are
indicated with dots: blue indicates a reduction of tree cover on average during pre-MBE
interglacials compared to post-MBE interglacials, and red an increase.
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Figure 16: Annual sea surface temperature difference (°C) between the average of the
pre-MBE (MIS 13, 15, 17, 19) and post-MBE (MIS 5, 7, 9, 11) interglacials with interac-
tive vegetation and different ice sheets (OVIC). The vertical black line indicates the limit
between the Southern Ocean south of 32° S and the Atlantic Ocean north of 32°S. The
dots on panel (a) are SST data differences based on Past Interglacials Working Group
of PAGES (2016) (Table 3).



